JPH04293598A - Solid-liquid separation method for fermentable organic liquid matter and sludge treatment apparatus using the same method - Google Patents

Solid-liquid separation method for fermentable organic liquid matter and sludge treatment apparatus using the same method

Info

Publication number
JPH04293598A
JPH04293598A JP3081865A JP8186591A JPH04293598A JP H04293598 A JPH04293598 A JP H04293598A JP 3081865 A JP3081865 A JP 3081865A JP 8186591 A JP8186591 A JP 8186591A JP H04293598 A JPH04293598 A JP H04293598A
Authority
JP
Japan
Prior art keywords
sludge
solid
tank
liquid separation
fermentable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3081865A
Other languages
Japanese (ja)
Inventor
Tokuo Kitahara
北原 徳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO KUMIAI INBAIOMENTO
Original Assignee
KYODO KUMIAI INBAIOMENTO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO KUMIAI INBAIOMENTO filed Critical KYODO KUMIAI INBAIOMENTO
Priority to JP3081865A priority Critical patent/JPH04293598A/en
Publication of JPH04293598A publication Critical patent/JPH04293598A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To provide a method for subjecting fermetable org. liquid matter to solid- liquid separation in low running cost by relatively simple equipment and a sludge treatment system capable of efficiently treating a large amount of sludge in reduced equipment space using the method. CONSTITUTION:In a solid-liquid separation method for fermentable org. liquid matter, fermentable org. liquid matter mixed with fermentative bacteria or enzyme is put in a separation tank capable of being indirectly heated by a heating medium to be heated and expanded or generated gas bubbles are bonded to an org. solid component to float and separate the org. solid component. A sewage treatment system using said method is characterized by that the raw sludge from a first sedimentation basin 14 and/or the excessive sludge from an aeration tank are put in a solid-liquid separation tank 10 and fermentative bacteria are added to the sludge to subject the sludge to fermentation and generated gas bubbles or the gas bubbles bonded to the sludge are expanded to separate the sludge into floated sludge and clarified water and, thereafter, the separated and floated sludge is guided to a separate digestion tank 11 to be anaerobically digested.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、発酵性食品液、バイオ
パルピング液、下水汚泥の生汚泥あるいは余剰汚泥等の
発酵性有機質液状体を濃縮する方法及び該方法を使用し
た汚泥処理システムに関する。
[Field of Industrial Application] The present invention relates to a method for concentrating fermentable organic liquids such as fermentable food liquids, biopulping liquids, raw sludge of sewage sludge, or surplus sludge, and a sludge treatment system using the method. .

【0002】0002

【従来の技術】従来の固液分離方法としては、高分子凝
集剤や無機凝集剤を用いる凝集沈降分離法、遠心力を利
用した遠心分離法、加圧浮上分離法等や重力による沈降
法が広く知られている。そして、汚泥処理システムにお
いては、上記加圧浮上分離法や重量を利用した沈降法が
広く採用されている。また、従来の嫌気性菌を用いた汚
泥処理システムは、最初沈殿池から重量沈降槽を経由し
て送られてきた濃度4%前後の生汚泥と曝気槽から送ら
れてきた余剰汚泥等の混ざった混合汚泥を第1消化槽お
よび第2消化槽を備える2槽式消化槽に導き略37℃に
保持して消化処理されていた。
[Prior Art] Conventional solid-liquid separation methods include coagulation-sedimentation using polymer flocculants or inorganic flocculants, centrifugation using centrifugal force, pressure flotation, and gravity-based sedimentation. widely known. In sludge treatment systems, the above-mentioned pressurized flotation separation method and sedimentation method using weight are widely employed. In addition, the conventional sludge treatment system using anaerobic bacteria initially mixes raw sludge with a concentration of around 4%, which is sent from the settling tank via the gravimetric settling tank, with surplus sludge, etc. sent from the aeration tank. The mixed sludge was introduced into a two-tank type digestion tank comprising a first digestion tank and a second digestion tank, and was maintained at approximately 37°C for digestion treatment.

【0003】0003

【発明が解決しようとする問題点】しかしながら、上記
従来例に係る汚泥処理システムにおいては、第1及び第
2消化槽による消化処理日数は各々15日であるので、
計30日の長期間を要し、汚泥の終末処理場における処
理システムの隘路になっていた。また、該汚泥処理シス
テムにおいては、処理する汚泥の濃度が4%程度と低い
ので、装置が大型化し巨大な空間を必要とするという問
題点があった。そこで、発酵性有機質液状体の一例であ
る処理汚泥を一旦濃縮すれば全体のシステムが小型化さ
れることになるが、上記した凝集剤を用いる沈降分離方
法では、凝集剤を消耗品とするため経済的負担が大きい
という問題点がある。また、上記した遠心分離法や加圧
浮上法では多大の電力を必要とし、ランニングコストが
高価となるという問題点があり、重力による沈降法では
時間がかかり極めて非能率的である。本発明はかかる事
情に鑑みてなされたもので、比較的ランニングコストが
安い発酵性有機質液状体の固液分離方法を提供すること
を第1の目的とし、該方法を用いたランニングコストが
安く設備空間が比較的狭くて済む汚泥処理システムを提
供することを第2の目的とする。
[Problems to be Solved by the Invention] However, in the sludge treatment system according to the above-mentioned conventional example, the number of days for digestion processing in the first and second digestion tanks is 15 days each.
The process took a total of 30 days and became a bottleneck for the treatment system at the sludge final treatment plant. Further, in this sludge treatment system, since the concentration of the sludge to be treated is as low as about 4%, there is a problem that the device becomes large and requires a huge space. Therefore, once the treated sludge, which is an example of a fermentable organic liquid, is concentrated, the entire system can be made smaller.However, in the sedimentation separation method using the flocculant described above, the flocculant is a consumable item. The problem is that it imposes a large economic burden. Furthermore, the above-mentioned centrifugal separation method and pressurized flotation method require a large amount of electric power and have the problem of high running costs, while the sedimentation method using gravity takes time and is extremely inefficient. The present invention has been made in view of the above circumstances, and has as its first object the provision of a solid-liquid separation method for fermentable organic liquids that is relatively inexpensive in running cost, and has the purpose of providing a method for solid-liquid separation of fermentable organic liquids that is relatively inexpensive in running cost. A second object is to provide a sludge treatment system that requires relatively small space.

【0004】0004

【問題点を解決するための手段】上記第1の目的に沿う
請求項第1項記載の発酵性有機質液状体の固液分離方法
は、蒸気あるいは温水等の熱媒体で間接加熱のできる分
離槽に、発酵性バクテリアあるいは酵素等が混入された
発酵性有機質液状体を入れて加熱し、付着する気泡を膨
張させると共に発生する気泡を有機質固形分に付着させ
て浮上分離させるようにして構成されている。また、請
求項第2項記載の発酵性有機質液状体の固液分離方法は
、請求項第1項記載の方法において、発酵性有機質液状
体の加熱温度は25〜60℃であるようにして構成され
ている。そして、請求項第3項記載の発酵性有機質液状
体の固液分離方法は、請求項第1項または第2項記載の
方法において、分離槽が単層または仕切られた多層から
なって、一つの区分の底面積Sに対して槽の深さが、S
1/2 〜4×S1/2 の範囲にあるようにして構成
されている。次に、上記第2の目的に沿う請求項第4項
記載の汚泥処理システムは、最初沈殿池からの生汚泥及
び/又は曝気槽からの余剰汚泥を請求項第1項記載の発
酵性有機質液状体の固液分離方法によって固液分離し、
しかる後該分離された浮上汚泥を別の消化槽に導き、該
消化槽にて嫌気性消化を行うようにして構成されている
。なお、上記発酵性有機質液状体とは、下水汚泥、発酵
性食品液、バイオパルピング液等を言う。
[Means for Solving the Problems] The solid-liquid separation method for fermentable organic liquid according to claim 1, which meets the first object, comprises a separation tank capable of indirect heating with a heat medium such as steam or hot water. A fermentable organic liquid mixed with fermentable bacteria or enzymes, etc. is poured into the container, heated, and the attached air bubbles are expanded, and the generated air bubbles are attached to the organic solid content and are floated and separated. There is. Further, the solid-liquid separation method for a fermentable organic liquid according to claim 2 is the method according to claim 1, wherein the heating temperature of the fermentable organic liquid is 25 to 60°C. has been done. The method for solid-liquid separation of a fermentable organic liquid according to claim 3 is the method according to claim 1 or 2, in which the separation tank is composed of a single layer or a partitioned multilayer. The depth of the tank is S for the bottom area S of the two sections.
It is configured to be in the range of 1/2 to 4×S1/2. Next, the sludge treatment system according to claim 4, which meets the second objective, converts the raw sludge from the initial settling tank and/or surplus sludge from the aeration tank into the fermentable organic liquid according to claim 1. Solid-liquid separation using the body's solid-liquid separation method,
Thereafter, the separated floating sludge is guided to another digestion tank, and anaerobic digestion is performed in the digestion tank. The fermentable organic liquid mentioned above refers to sewage sludge, fermentable food liquid, biopulping liquid, and the like.

【0005】[0005]

【作用】請求項第1項、第2項及び第3項記載の発酵性
有機質液状体の固液分離方法においては、蒸気、温水等
の熱媒体で間接加熱できる分離槽に、発酵性バクテリア
あるいは酵素等を混入した発酵性有機質液状体を入れる
ことによって、発酵性有機質液状体を該発酵性バクテリ
ア及び酵素で消化させる。この消化発酵は、加温するこ
とによって活発となり、ガス自体が膨張すると共に新た
にCO2 ガスやCH4 ガスを発生するが微泡である
ので、固体物に付着し、該固体分の相対的比重が小さく
なって浮上する。そして、予め発酵性有機質液状体の固
形分に付着していた気体も温度によって膨張するので、
これによっても相対比重が小さくなって浮上する。実験
によれば加熱によって発生するガス容積は液温20℃よ
り急速に増大し、30℃で極大値を与える。また、固体
物が大量に含まれる濃縮部界面の浮上速度は常温より6
0℃に昇温するにつれて対数的に加速される。そして、
請求項第2項記載の発酵性有機質液状体の固液分離方法
においては、加熱温度が25〜60℃であるので、発酵
条件が適当であり、かつ、大量の加熱エネルギーを必要
としない。特に、請求項第3項に示すように、単層の底
面積または層を多層を区切った場合は一つの槽の底面積
Sに対して槽の深さが、S1/2 〜4×S1/2 (
好ましくは1.5×S1/2 〜3×S1/2 )の範
囲にあるようにして構成することによって、更に、分離
効率を向上させることが実験的に確認されている。請求
項第4項記載の汚泥処理システムにおいては、生汚泥及
び/又は余剰汚泥に酵素または発酵性バクテリアを混入
して固液分離槽に入れる。そして、該汚泥を所定の温度
に加温することよって、発酵消化し、CO2 ガスやC
H4 ガスを発生すると共に、既に発生したガスが加温
されることによって膨張するので、固形分が浮上し固液
分離される。そして、固液分離されて浮上する上部の固
体部分は生汚泥及び/又は余剰汚泥が濃縮されたことに
なるので、この浮上汚泥を別の消化槽に導き、該消化槽
によって嫌気性消化を行うと、濃縮汚泥が分解してガス
と残留物となる。全体の処理時間の一例を上げれば、最
初の固液分離槽の処理時間が約8〜10時間程度であり
、消化槽での処理が約18日である。また、浮上汚泥の
濃度が上がるので、装置も小型化となる。
[Operation] In the solid-liquid separation method for a fermentable organic liquid according to claims 1, 2, and 3, fermentable bacteria or By adding a fermentable organic liquid mixed with an enzyme or the like, the fermentable organic liquid is digested by the fermentable bacteria and enzyme. This digestive fermentation becomes active when heated, and the gas itself expands and generates new CO2 gas and CH4 gas, but since they are fine bubbles, they adhere to solid objects and the relative specific gravity of the solids increases. It becomes smaller and floats to the surface. The gas that was previously attached to the solid content of the fermentable organic liquid also expands depending on the temperature.
This also reduces the relative specific gravity and causes it to float. According to experiments, the gas volume generated by heating increases rapidly at a liquid temperature of 20°C, and reaches a maximum value at 30°C. In addition, the floating speed at the interface of the concentrated part, which contains a large amount of solid matter, is 6
It accelerates logarithmically as the temperature rises to 0°C. and,
In the solid-liquid separation method for a fermentable organic liquid according to claim 2, the heating temperature is 25 to 60°C, so the fermentation conditions are appropriate and a large amount of heating energy is not required. In particular, as shown in claim 3, when the bottom area of a single layer or the layer is divided into multiple layers, the depth of the tank is S1/2 to 4×S1/ with respect to the bottom area S of one tank. 2 (
It has been experimentally confirmed that the separation efficiency can be further improved by configuring the ratio to be within the range of preferably 1.5 x S1/2 to 3 x S1/2. In the sludge treatment system according to claim 4, raw sludge and/or surplus sludge are mixed with enzymes or fermentable bacteria and placed in a solid-liquid separation tank. Then, by heating the sludge to a predetermined temperature, it is fermented and digested, producing CO2 gas and C
As H4 gas is generated, the already generated gas is heated and expands, so the solid content floats up and is separated into solid and liquid. Then, the upper solid portion that floats after solid-liquid separation is concentrated raw sludge and/or surplus sludge, so this floating sludge is led to another digestion tank where it undergoes anaerobic digestion. Then, the thickened sludge decomposes into gas and residue. To give an example of the total processing time, the initial processing time in the solid-liquid separation tank is about 8 to 10 hours, and the processing time in the digestion tank is about 18 days. Furthermore, since the concentration of floating sludge increases, the size of the device also becomes smaller.

【0006】[0006]

【実験例1】続いて、本発明の作用効果を確認するため
に行った実験例について説明する。それぞれのポリアク
リレート樹脂製の円柱容器に発酵性バクテリアを含む濃
度4.0%の生汚泥(A)と、発酵性バクテリアを含む
濃度4.1%の余剰汚泥及び上記生汚泥との等重量混合
汚泥(B)と、発酵性バクテリアの殆ど含まれない消化
済汚泥(C)との各々を試料として注ぎ込む。この容器
全体を外部温水加熱によって試料全体を適当な温度に加
熱すると、汚泥濃縮層が浮上し、下部の清澄水と相分離
を起こす。上記実験において、各試料毎の浮上に要する
時間と液温を表1に示す。
[Experimental Example 1] Next, an experimental example conducted to confirm the effects of the present invention will be described. In each cylindrical container made of polyacrylate resin, mix equal weights of raw sludge (A) containing fermentable bacteria with a concentration of 4.0%, surplus sludge containing fermentable bacteria with a concentration of 4.1%, and the above raw sludge. Sludge (B) and digested sludge (C) containing almost no fermentable bacteria are each poured as samples. When the entire sample is heated to an appropriate temperature by externally heating the container with hot water, the sludge concentrated layer rises to the surface and undergoes phase separation from the clear water at the bottom. Table 1 shows the time and liquid temperature required for levitation for each sample in the above experiment.

【0007】[0007]

【表1】[Table 1]

【0008】表1からも明らかなように、発酵性バクテ
リアを含む生汚泥(A)と、混合汚泥(B)の場合には
浮上効果が表れ、特に液温30℃以上においては浮上分
離に要する時間が18℃の場合の1/3以下と極めて短
時間で効率良く固液分離が行われる。一方、発酵性バク
テリア濃度の低い汚泥(C)は汚泥濃縮部の浮上分離は
なかった。
As is clear from Table 1, a flotation effect appears in the case of raw sludge (A) containing fermentable bacteria and mixed sludge (B), and especially when the liquid temperature is 30°C or higher, the flotation effect required for flotation separation is Solid-liquid separation is efficiently carried out in an extremely short time, less than 1/3 of the time required at 18°C. On the other hand, sludge (C) with a low concentration of fermentable bacteria was not separated by flotation in the sludge thickening section.

【0009】[0009]

【実験例2】上記混合汚泥(B)をポリアクリレート樹
脂製の円柱容器に注入し、40℃に加熱保温して濃縮層
の生成状況を処理時間と共にプロットした結果を図2に
示す。初期注入時の液層40cmで、浮上分離の進行に
伴い発生したガスによる濃縮層の膨張が起こり汚泥高さ
(H1 ) が上昇し、これに伴って汚泥と清澄水との
界面高さ(H2 )も上昇する。従って、この図におい
ては(H1 −H2 )が分離された汚泥の高さになる
。図に示されるように、汚泥の浮上分離の進行に伴い発
生したガスによる濃縮層の膨張が起こり、分離の完了が
ガス膨張量の最大となる。なお、30〜40℃でガス膨
張量が最大となるので、この温度で処理するのが好まし
い。
[Experimental Example 2] The above mixed sludge (B) was poured into a cylindrical container made of polyacrylate resin, heated and kept at 40° C., and the formation status of the concentrated layer was plotted with the treatment time, and the results are shown in FIG. At a liquid layer of 40 cm at the time of initial injection, the concentrated layer expands due to the gas generated as flotation separation progresses, and the sludge height (H1) rises. ) will also rise. Therefore, in this figure, (H1 - H2) is the height of the separated sludge. As shown in the figure, as the flotation separation of sludge progresses, the concentrated layer expands due to the gas generated, and the amount of gas expansion reaches its maximum when separation is completed. Note that since the amount of gas expansion becomes maximum at 30 to 40°C, it is preferable to perform the treatment at this temperature.

【0010】0010

【実験例3】底面積1m3 の円柱状固液分離層に、濃
度4.9%の混合汚泥を入れる。液温を40℃に保ち、
該汚泥の初期高さが1.5m、2.5m、4.0mの3
種類について、それぞれ汚泥濃縮部の浮上時間とその時
点の濃度を測定した結果を表2に示す。
[Experimental Example 3] Mixed sludge with a concentration of 4.9% is placed in a cylindrical solid-liquid separation layer with a bottom area of 1 m3. Keep the liquid temperature at 40℃,
The initial height of the sludge is 1.5 m, 2.5 m, and 4.0 m.
Table 2 shows the results of measuring the floating time in the sludge thickening section and the concentration at that time for each type.

【0011】[0011]

【表2】[Table 2]

【0012】上記表2によれば、初期高さ4mの場合に
比較して、2.5m、1.5mと高さを低くした場合、
分離時間は著しく短縮され、初期高さが1.5mの場合
には4mの場合の2倍以上の驚くべき速度で浮上するこ
とが分かった。また、1.5mの場合には濃縮部濃度も
4mの場合の1.5倍と極めて濃厚分が分離され、高効
率があることが分かった。従って、表1に示す液温18
℃の重力沈降(初期高さ4m、現行)と比較すると分離
時間42hに対し、表2に示す1.5mの高さの場合は
4.5hであるので、約10倍の分離効率を示すことか
ら、分離層を1/10に小型化できるか、あるいは汚泥
処理量が現行の10倍という極めて高効率な施策が期待
できる。従って、一つの槽の底面積Sに対して槽の深さ
が、S1/2 〜4×S1/2 であれば、一応固液分
離が行なえることになるが、好ましくは1.5×S1/
2 〜3×S1/2 の範囲にあるようにして構成する
ことによって、更に、分離効率を向上させることがわか
る。
According to Table 2 above, compared to the initial height of 4 m, when the height is lowered to 2.5 m and 1.5 m,
It was found that the separation time was significantly reduced and the initial height of 1.5 m resulted in a surprising ascent speed of more than twice that of 4 m. In addition, in the case of 1.5 m, the concentration of the concentrated part was 1.5 times that in the case of 4 m, and it was found that extremely concentrated parts were separated, indicating high efficiency. Therefore, the liquid temperature 18 shown in Table 1
Compared to gravity sedimentation at ℃ (initial height 4 m, current), the separation time is 42 hours, whereas in the case of the 1.5 m height shown in Table 2, it is 4.5 hours, so it shows about 10 times the separation efficiency. Therefore, it is expected that the separation layer will be downsized to 1/10, or that the amount of sludge treated will be 10 times that of the current one, making it extremely efficient. Therefore, solid-liquid separation can be performed if the depth of the tank is S1/2 to 4 x S1/2 with respect to the bottom area S of one tank, but preferably 1.5 x S1 /
It can be seen that the separation efficiency can be further improved by configuring it within the range of 2 to 3 x S1/2.

【0013】[0013]

【実施例】続いて、本発明方法を使用した汚泥処理シス
テムについて説明する。図1には本発明の一実施例に係
る汚泥処理システムのブロック図を示すが、従来設備に
おける第1消化槽の部分に固液分離槽10を、その後に
設けられる第2消化槽の部分に該固液分離槽10から送
られる濃縮汚泥の消化槽11を設けている。従って、家
庭の台所、風呂場、水洗便所等から排出される汚水は沈
砂池12に集められて沈み易い塵、土砂が取り除かれた
後、ポンプ13によって汲み上げられて最初沈澱池14
に行き、沈んだ小さな生汚泥が機械によって掻き集めら
れて濃縮槽15に集められる。
[Example] Next, a sludge treatment system using the method of the present invention will be explained. FIG. 1 shows a block diagram of a sludge treatment system according to an embodiment of the present invention, in which a solid-liquid separation tank 10 is installed in the first digestion tank in conventional equipment, and in the second digestion tank installed after that. A digestion tank 11 for the concentrated sludge sent from the solid-liquid separation tank 10 is provided. Therefore, sewage discharged from household kitchens, bathrooms, flush toilets, etc. is collected in the sedimentation basin 12 and after removing easily sinkable dust and earth, it is pumped up by the pump 13 and first sent to the sedimentation basin 14.
The small pieces of raw sludge that have settled are scraped up by a machine and collected in the thickening tank 15.

【0014】一方、沈澱した汚泥が取り除かれた汚水は
曝気槽16によって混入された活性汚泥と共に曝気され
微生物によって分解し、最終沈澱池17によって沈んだ
汚物を排除し、減菌池18で塩素によって減菌された後
、海に放流されている。上記最初沈澱池14で集められ
た生汚泥及び曝気槽16及び最終沈澱池17によって集
められた余剰汚泥は濃縮槽15で濃縮されて4%前後の
混合汚泥となり、固液分離槽10に入れられる。ここで
、固液分離槽10には発酵性バクテリアの一例である嫌
気性バクテリア(または酵素)が投入され、その温度を
25〜60℃(好ましくは30〜45℃)にすると、混
合汚泥が発酵してCO2、CH4 等が発生するので、
これが汚泥に付着すると共に、汚泥に付着していた気泡
が膨張し、約8〜10時間の経過によって濃縮された浮
上汚泥と、清澄水とに分離される。なお、この固液分離
槽10には該汚泥を投入する導入口、濃縮された汚泥の
排出口、分離された清澄水の排出口及び発生するガスの
排気口が設けられているものとする。また、該固液分離
槽10で発生した清澄水は上記曝気槽16に戻されて、
最終的には放流される。この後、12〜14%に濃縮さ
れた浮上汚泥のみを排出口から取り出して消化槽11に
入れると、嫌気性バクテリアによってガスと消化汚泥に
分解され、発生するガスはガスタンク19に集められ、
消化汚泥は汚泥貯留槽20を通った後、脱水設備21に
よって脱水した後含水汚泥として排出される。なお、固
液分離槽10及び消化槽11の汚泥の搬送はバッジ式で
あっても良いし、あるいは槽の形状を樋状にするなどし
て連続式を採用することも可能である。
On the other hand, the sewage from which the settled sludge has been removed is aerated with the activated sludge mixed in in the aeration tank 16 and decomposed by microorganisms, the settled sludge is removed in the final settling tank 17, and the sewage is treated with chlorine in the sterilization tank 18. After being sterilized, it is released into the sea. The raw sludge collected in the first settling tank 14 and the surplus sludge collected in the aeration tank 16 and the final settling tank 17 are concentrated in the thickening tank 15 to become a mixed sludge with a concentration of about 4%, which is then put into the solid-liquid separation tank 10. . Here, anaerobic bacteria (or enzymes), which are an example of fermentable bacteria, are put into the solid-liquid separation tank 10, and when the temperature is set to 25 to 60°C (preferably 30 to 45°C), the mixed sludge is fermented. As CO2, CH4, etc. are generated,
As this adheres to the sludge, the air bubbles attached to the sludge expand, and over a period of about 8 to 10 hours, the sludge is separated into concentrated floating sludge and clear water. It is assumed that the solid-liquid separation tank 10 is provided with an inlet for introducing the sludge, an outlet for concentrated sludge, an outlet for separated clear water, and an outlet for gas generated. Further, the clear water generated in the solid-liquid separation tank 10 is returned to the aeration tank 16,
Eventually it will be released. After this, only the floating sludge that has been concentrated to 12 to 14% is taken out from the outlet and put into the digestion tank 11, where it is decomposed by anaerobic bacteria into gas and digested sludge, and the generated gas is collected in the gas tank 19.
After passing through the sludge storage tank 20, the digested sludge is dehydrated by a dewatering equipment 21 and then discharged as water-containing sludge. Note that the transport of the sludge in the solid-liquid separation tank 10 and the digestion tank 11 may be carried out by a badge type, or it is also possible to adopt a continuous type by making the shape of the tank gutter-like.

【0015】[0015]

【発明の効果】請求項第1項〜第3項記載の発酵性有機
質液状体の固液分離方法は、以上の説明からも明らかな
ように、間接加熱できる固液分離槽に発酵性有機質液状
体と発酵性バクテリアあるいは酵素を入れているので、
加温されることによって、発酵性有機質液状体に付着し
たガスが膨張する共に、微泡のガスが発生し汚泥に付着
して濃度の高い浮上汚泥と、清澄水とに分離される。従
って、ランニングコストが比較的安く、しかも複雑な装
置も必要とせずして、固液の分離が行なえる。また、請
求項第4項記載の汚泥処理システムにおいては、汚泥が
濃縮され、しかも処理時間が短いので、従来の如く大型
の消化槽を必要とせず、大量の汚泥を効率良く処理でき
る。
Effects of the Invention As is clear from the above description, the solid-liquid separation method for a fermentable organic liquid according to claims 1 to 3 is such that a fermentable organic liquid is placed in a solid-liquid separation tank that can be indirectly heated. Because it contains the body and fermenting bacteria or enzymes,
By heating, the gas adhering to the fermentable organic liquid expands, and microbubbles of gas are generated, which adhere to the sludge and are separated into high-concentration floating sludge and clear water. Therefore, running costs are relatively low, and solid-liquid separation can be performed without the need for complicated equipment. Further, in the sludge treatment system according to claim 4, the sludge is concentrated and the treatment time is short, so a large amount of sludge can be efficiently treated without requiring a large-scale digestion tank as in the conventional system.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例に係る汚泥処理システムのブ
ロック図である。
FIG. 1 is a block diagram of a sludge treatment system according to an embodiment of the present invention.

【図2】処理時間と分離効果を示すグラフである。FIG. 2 is a graph showing processing time and separation effect.

【符号の説明】[Explanation of symbols]

10  固液分離槽 11  消化槽 12  沈砂池 13  ポンプ 14  最初沈殿池 15  濃縮槽 16  曝気槽 17  最終沈殿池 18  減菌池 19  ガスタンク 20  汚泥貯留槽 21  脱水設備 10 Solid-liquid separation tank 11 Digestion tank 12 Sand settling pond 13 Pump 14 First settling tank 15 Concentrator tank 16 Aeration tank 17 Final settling tank 18 Sterilization pond 19 Gas tank 20 Sludge storage tank 21 Dehydration equipment

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  蒸気あるいは温水等の熱媒体で間接加
熱のできる分離槽に、発酵性バクテリアあるいは酵素等
が混入された発酵性有機質液状体を入れて加熱し、付着
する気泡を膨張させると共に発生する気泡を有機質固形
分に付着させて浮上分離させることを特徴とする発酵性
有機質液状体の固液分離方法。
Claim 1: A fermentable organic liquid mixed with fermentable bacteria or enzymes is placed in a separation tank that can be indirectly heated with a heat medium such as steam or hot water, heated, and the attached air bubbles are expanded and generated. A solid-liquid separation method for a fermentable organic liquid, characterized in that air bubbles attached to an organic solid are floated and separated.
【請求項2】  発酵性有機質液状体の加熱温度は25
〜60℃である請求項第1項記載の発酵性有機質液状体
の固液分離方法。
[Claim 2] The heating temperature of the fermentable organic liquid is 25
The solid-liquid separation method for a fermentable organic liquid according to claim 1, wherein the temperature is 60°C.
【請求項3】  分離槽が単層または仕切られた多層か
らなって、一つの区分の底面積Sに対して槽の深さが、
S1/2 〜4×S1/2 の範囲にある請求項第1項
または第2項記載の発酵性有機質液状体の固液分離方法
Claim 3: The separation tank is composed of a single layer or partitioned multilayers, and the depth of the tank is as follows with respect to the bottom area S of one section.
3. The method for solid-liquid separation of a fermentable organic liquid according to claim 1 or 2, wherein the solid-liquid separation is in the range of S1/2 to 4×S1/2.
【請求項4】  最初沈殿池からの生汚泥及び/又は曝
気槽からの余剰汚泥を請求項第1項記載の発酵性有機質
液状体の固液分離方法によって固液分離し、しかる後該
分離された浮上汚泥を別の消化槽に導き、該消化槽にて
嫌気性消化を行うことを特徴とする汚泥処理システム。
[Claim 4] The raw sludge from the initial settling tank and/or the surplus sludge from the aeration tank are subjected to solid-liquid separation by the method for solid-liquid separation of fermentable organic liquid according to claim 1, and then the separated A sludge treatment system characterized by guiding floating sludge to another digestion tank and performing anaerobic digestion in the digestion tank.
JP3081865A 1991-03-20 1991-03-20 Solid-liquid separation method for fermentable organic liquid matter and sludge treatment apparatus using the same method Pending JPH04293598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3081865A JPH04293598A (en) 1991-03-20 1991-03-20 Solid-liquid separation method for fermentable organic liquid matter and sludge treatment apparatus using the same method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3081865A JPH04293598A (en) 1991-03-20 1991-03-20 Solid-liquid separation method for fermentable organic liquid matter and sludge treatment apparatus using the same method

Publications (1)

Publication Number Publication Date
JPH04293598A true JPH04293598A (en) 1992-10-19

Family

ID=13758369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3081865A Pending JPH04293598A (en) 1991-03-20 1991-03-20 Solid-liquid separation method for fermentable organic liquid matter and sludge treatment apparatus using the same method

Country Status (1)

Country Link
JP (1) JPH04293598A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012476A (en) * 2006-07-07 2008-01-24 Honda Motor Co Ltd Wastewater treatment system
JP2008183494A (en) * 2007-01-29 2008-08-14 Osaka Gas Co Ltd Wastewater treatment system
WO2009071878A1 (en) * 2007-12-06 2009-06-11 United Utilities Plc Production of volatile fatty acids by means of mesophilic fermentation of sludge
JP2016172237A (en) * 2015-03-17 2016-09-29 水ing株式会社 Apparatus and method for treating water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012476A (en) * 2006-07-07 2008-01-24 Honda Motor Co Ltd Wastewater treatment system
JP2008183494A (en) * 2007-01-29 2008-08-14 Osaka Gas Co Ltd Wastewater treatment system
JP4726816B2 (en) * 2007-01-29 2011-07-20 大阪瓦斯株式会社 Wastewater treatment system
WO2009071878A1 (en) * 2007-12-06 2009-06-11 United Utilities Plc Production of volatile fatty acids by means of mesophilic fermentation of sludge
JP2016172237A (en) * 2015-03-17 2016-09-29 水ing株式会社 Apparatus and method for treating water

Similar Documents

Publication Publication Date Title
US5227051A (en) System for processing organic waste liquid
WO2006039508A2 (en) Continuous multistage thermophilic aerobic and aerobic-anaerobic sludge digestion systems
US6391202B1 (en) Process and apparatus for treating wastewater from oil plant processing and cereal processing
WO2002074703A1 (en) Method and device for fluid treatment
US4948509A (en) Anaerobic fermentation process
CA1081378A (en) Continuous fermentation process and apparatus
JP6271787B1 (en) Sludge treatment system that produces biogas
JPH04293598A (en) Solid-liquid separation method for fermentable organic liquid matter and sludge treatment apparatus using the same method
US9187355B2 (en) Production of volatile fatty acids by means of mesophilic fermentation of sludge
JPH08155496A (en) Method and apparatus for digestion treatment of sludge
CN207121472U (en) A kind of aerobic integrated sewage-treating reactor device of internal circulating anaerobic
US3649531A (en) Dewatering of digested sludge
JPH0218915B2 (en)
RU2480521C2 (en) Device for effluent treatment, method of washing of device for effluent treatment and method of effluent treatment using this device
JPH0760299A (en) Method for pressure-dehydrating fermentable organic liquid with high efficiency
CN113226997B (en) Method and apparatus for anaerobic purification
JPH0199690A (en) Anaerobic waste water treatment device
CN113909276B (en) Integrated combined medium-constant-temperature anaerobic digestion process
KR20180137960A (en) Bio-reactor for sewage treatment and sewage treatment system comprising the same
CN207079067U (en) Response bioreactor certainly for sewage disposal
Viraraghavan et al. Anaerobic filters for municipal wastewater treatment
JP2600885B2 (en) Wastewater treatment equipment using immobilized microorganisms
JPS5775194A (en) Treatment of organic waste
CN206156950U (en) Sewage biological sludge processing apparatus
JPH0461996A (en) Methane fermentation apparatus