JP4726816B2 - Wastewater treatment system - Google Patents

Wastewater treatment system Download PDF

Info

Publication number
JP4726816B2
JP4726816B2 JP2007017479A JP2007017479A JP4726816B2 JP 4726816 B2 JP4726816 B2 JP 4726816B2 JP 2007017479 A JP2007017479 A JP 2007017479A JP 2007017479 A JP2007017479 A JP 2007017479A JP 4726816 B2 JP4726816 B2 JP 4726816B2
Authority
JP
Japan
Prior art keywords
gas
wastewater
exhaust gas
tank
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007017479A
Other languages
Japanese (ja)
Other versions
JP2008183494A (en
Inventor
祐介 青▲柳▼
隆司 大濱
末和 山田
裕士 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2007017479A priority Critical patent/JP4726816B2/en
Publication of JP2008183494A publication Critical patent/JP2008183494A/en
Application granted granted Critical
Publication of JP4726816B2 publication Critical patent/JP4726816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Description

本発明は、下水、産業排水などの排水を処理するための処理システムに関する。   The present invention relates to a treatment system for treating wastewater such as sewage and industrial wastewater.

例えば、下水などを処理するための処理システムとして、気液混合槽及び加圧浮上槽を用いたもの(所謂、加圧浮上分離方式)が知られている(例えば、特許文献1参照)。気液混合槽においては、処理すべき排水と気体、例えば炭酸ガスとが加圧状態において混合され、加圧浮上槽においては、加圧状態が解除されて減圧され、この減圧の際に発生した気泡により排水に含まれた汚泥が浮上され、このようにして加圧浮上槽において浮上汚泥と分離水に分離される。   For example, as a treatment system for treating sewage or the like, a system using a gas-liquid mixing tank and a pressure levitation tank (so-called pressure levitation separation method) is known (see, for example, Patent Document 1). In the gas-liquid mixing tank, wastewater to be treated and gas, for example, carbon dioxide gas, are mixed in a pressurized state, and in the pressurized levitation tank, the pressurized state is released and the pressure is reduced. The sludge contained in the wastewater is floated by the air bubbles, and is thus separated into the floating sludge and the separated water in the pressurized flotation tank.

特開2002−28700号公報JP 2002-28700 A

このような加圧浮上分離方式では、分離効率を高めるための一つとして、気液混合槽において、処理すべき排水に気体(例えば、空気)を多く溶解させるのが好ましいが、気体を多く溶解させようとすると加圧圧力を高めなければならず、加圧状態を保つための加圧動力が増すという問題が生じる。   In such a pressurized flotation separation system, it is preferable to dissolve a large amount of gas (for example, air) in the wastewater to be treated in the gas-liquid mixing tank as one way to increase the separation efficiency. If it is going to make it, pressurization pressure must be raised and the problem that the pressurization power for maintaining a pressurization state will increase will arise.

また、空気に比して炭酸ガスの方が水への溶解性が高いために、混合すべき気体として炭酸ガスを用いることによって溶解性を高めることができるが、特許文献1に開示された如く、嫌気性消化工程から発生する消化ガス(この消化ガス成分は、例えば、メタン80%、炭酸ガス20%である)を用いようとすると、嫌気性消化工程にて発生する消化ガスが安定しないために、気液混合槽において排水に液化ガスを所要の通りに溶解させることができず、これによって、加圧浮上槽において減圧の際に発生する気泡が一定とならず、排水に含まれた汚泥の分離効率が悪くなる問題がある。   In addition, since carbon dioxide has higher solubility in water than air, the solubility can be increased by using carbon dioxide as the gas to be mixed. However, as disclosed in Patent Document 1, When digestion gas generated from an anaerobic digestion process (this digestion gas component is 80% methane, 20% carbon dioxide, for example) is used, the digestion gas generated in the anaerobic digestion process is not stable. In addition, the liquefied gas cannot be dissolved in the wastewater as required in the gas-liquid mixing tank, and as a result, bubbles generated during decompression in the pressurized flotation tank are not constant, and the sludge contained in the wastewater There is a problem that the separation efficiency is deteriorated.

本発明の目的は、気液混合槽においては燃焼設備又は発電設備からの燃焼排気ガスを排水に効率よく溶解させることができるとともに、加圧浮上槽においては溶解された燃焼排気ガスを効率よく気泡として放出させることができる排水の処理システムを提供することである。   The object of the present invention is to efficiently dissolve the combustion exhaust gas from the combustion facility or power generation facility in the waste water in the gas-liquid mixing tank and to efficiently dissolve the dissolved combustion exhaust gas in the pressurized levitation tank. It is to provide a wastewater treatment system that can be discharged as.

本発明の請求項1に記載の排水の処理システムは、処理すべき排水と気体とを加圧状態で混合してこの気体を排水に溶解させる気液混合槽と、加圧状態を解除した際に発生する気泡により排水に含まれた汚泥を浮上させる加圧浮上槽とを備えた排水の処理システムであって、
排水の一部を前記気液混合槽に供給するための第1供給ラインと、排水の残部を前記加圧浮上槽に供給するための第2供給ラインとが設けられ、前記第2供給ラインに熱交換器が設けられており、
また、前記気液混合槽にて混合される気体として燃焼設備又は発電設備の燃焼排気ガスが用いられ、この燃焼排気ガスが前記気液混合槽において排水と混合されるとともに、前記熱交換器において前記加圧浮上槽に供給される排水と前記気液混合槽に供給される燃焼排気ガスとの間で熱交換が行われ、この熱交換により加温された排水が前記加圧浮上槽に供給されて加温されることを特徴とする。
In the wastewater treatment system according to claim 1 of the present invention, when the wastewater to be treated and the gas are mixed in a pressurized state and the gas-liquid mixing tank for dissolving the gas in the wastewater is released, the pressurized state is released. A wastewater treatment system comprising a pressurized levitation tank that floats sludge contained in the wastewater by bubbles generated in
A first supply line for supplying a part of the wastewater to the gas-liquid mixing tank and a second supply line for supplying the remainder of the wastewater to the pressurized flotation tank are provided, and the second supply line A heat exchanger is provided,
Further, combustion gas of combustion equipment or power generation equipment is used as gas mixed in the gas-liquid mixing tank, and this combustion exhaust gas is mixed with waste water in the gas-liquid mixing tank, and in the heat exchanger Heat exchange is performed between the wastewater supplied to the pressurized levitation tank and the combustion exhaust gas supplied to the gas-liquid mixing tank, and the wastewater heated by this heat exchange is supplied to the pressurized levitation tank. It is characterized by being heated .

本発明の請求項1に記載の排水の処理システムによれば、排水に溶解される気体として燃焼設備又は発電設備から排出される燃焼排気ガスを用いるので、浮上媒体としての気体を供給するための専用の設備などを必要とせず、システム全体の構成を簡単にすることができる。このような燃焼設備(例えば、ボイラーなど)又は発電設備(例えば、ガスエンジンなど)は下水汚泥処理場、産業排水汚泥処理場などに設置されることが多く、この燃焼設備又は発電設備から排出される燃焼排気ガスは安定して排出され、汚泥を浮上させる気体として有効利用することができる。また、第2供給ラインに配設された熱交換器は、加圧浮上槽に供給される排水と気液混合槽に供給される燃焼排気ガスとの間で熱交換を行うので、気液混合槽に供給される燃焼排気ガスの温度は低下される一方、加圧浮上槽に供給される排水は加温される。一般に、炭酸ガスを含む燃焼排気ガスの水への溶解度は、温度が下降すると多くなり、温度が上昇すると少なくなることから、上述したように熱交換することによって、気液混合槽においては、排水への炭酸ガスを含む燃焼排気ガスの溶解度が増し、炭酸ガスを含む燃焼排気ガスをより多く排水に溶解させることができ、また加圧浮上槽においては、排水の温度が高くなるので炭酸ガスを含む燃焼排気ガスの溶解度が少なくなり、溶解された炭酸ガスを含む燃焼排気ガスをより多く気泡として放出させることができ、その結果、排水に含まれた汚泥を効率よく浮上分離させることができる。 According to the wastewater treatment system of the first aspect of the present invention, the combustion exhaust gas discharged from the combustion facility or the power generation facility is used as the gas dissolved in the wastewater. No special equipment is required, and the entire system configuration can be simplified. Such combustion facilities (for example, boilers) or power generation facilities (for example, gas engines) are often installed in sewage sludge treatment plants, industrial wastewater sludge treatment plants, etc., and are discharged from the combustion facilities or power generation facilities. The combustion exhaust gas is discharged stably and can be effectively used as a gas for floating sludge. The heat exchanger disposed in the second supply line exchanges heat between the wastewater supplied to the pressurized levitation tank and the combustion exhaust gas supplied to the gas-liquid mixing tank. While the temperature of the combustion exhaust gas supplied to the tank is lowered, the waste water supplied to the pressurized flotation tank is heated. In general, the solubility of combustion exhaust gas containing carbon dioxide gas in water increases as the temperature decreases, and decreases as the temperature increases. The solubility of the combustion exhaust gas containing carbon dioxide increases, so that more of the combustion exhaust gas containing carbon dioxide can be dissolved in the wastewater, and in the pressurized flotation tank, the temperature of the wastewater increases, so the carbon dioxide gas The solubility of the contained combustion exhaust gas is reduced, and more combustion exhaust gas containing dissolved carbon dioxide gas can be released as bubbles. As a result, sludge contained in the waste water can be efficiently levitated and separated.

以下、添付図面を参照して、本発明に従う排水の処理システムの実施形態について説明する。図1は、第1の実施形態の排水の処理システムを簡略的に示す簡略図である。
図1において、図示の排水の処理システムは、排水に気体を混合させるための気液混合槽2と、排水に含まれた汚泥を浮上分離させるための加圧浮上槽4とを備えている。この実施形態では、排水の一部が気液混合槽2に供給され、その残部が加圧浮上槽4に供給されるように構成されている。即ち、処理すべき排水は、排水供給ライン6を通して供給され、この排水供給ライン6に排水を供給するための排水供給ポンプ8が配設されている。また、排水供給流路6の下流側は第1供給ライン10及び第2供給ライン12に分岐され、第1供給ライン10は気液混合槽2に接続され、第2供給ライン12は加圧浮上槽4に接続されている。
Hereinafter, an embodiment of a wastewater treatment system according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a simplified diagram simply showing the wastewater treatment system of the first embodiment.
In FIG. 1, the illustrated wastewater treatment system includes a gas-liquid mixing tank 2 for mixing gas with the wastewater, and a pressurized floating tank 4 for levitating and separating sludge contained in the wastewater. In this embodiment, a part of the waste water is supplied to the gas-liquid mixing tank 2, and the remainder is supplied to the pressurized levitation tank 4. That is, waste water to be treated is supplied through a waste water supply line 6, and a waste water supply pump 8 for supplying waste water to the waste water supply line 6 is provided. Further, the downstream side of the drainage supply flow path 6 is branched into a first supply line 10 and a second supply line 12, the first supply line 10 is connected to the gas-liquid mixing tank 2, and the second supply line 12 is pressurized and floated It is connected to the tank 4.

また、排水に溶解される気体として燃焼排気ガスを利用するように構成されている。発電設備14として例えばコージェネレーションシステムを用いる場合、このコージェネレーションシステムのエンジン(例えば、ガスエンジン)からの燃焼排気ガスが利用される。即ち、発電設備14(例えば、ガスエンジン)の排気系が排気ガス供給ライン16を介して気液混合槽2に接続され、この排気ガス供給ライン16に燃焼排気ガスを加圧供給するための排気ガス供給ポンプ18(所謂、加圧ポンプ)が配設されている。   Moreover, it is comprised so that combustion exhaust gas may be utilized as gas melt | dissolved in waste_water | drain. For example, when a cogeneration system is used as the power generation facility 14, combustion exhaust gas from an engine (for example, a gas engine) of the cogeneration system is used. In other words, the exhaust system of the power generation facility 14 (for example, a gas engine) is connected to the gas-liquid mixing tank 2 via the exhaust gas supply line 16, and the exhaust for supplying pressurized combustion exhaust gas to the exhaust gas supply line 16. A gas supply pump 18 (so-called pressurizing pump) is provided.

この実施形態では、第2供給ライン12に熱交換器20が配設されている。この熱交換器20には、図1から理解されるように、排気ガス供給ライン16を通して供給される燃焼排気ガスが流れ、第2供給ライン12を供給される排水と排気ガス供給ライン16を流れる燃焼排気ガスとの間で熱交換が行なわれ、この熱交換によって加温された排水が加圧浮上槽4に供給され、冷却された燃焼排気ガスが気液混合槽2に供給される。   In this embodiment, the heat exchanger 20 is disposed in the second supply line 12. As understood from FIG. 1, the combustion exhaust gas supplied through the exhaust gas supply line 16 flows through the heat exchanger 20, and the waste water supplied through the second supply line 12 and the exhaust gas supply line 16 flow through the heat exchanger 20. Heat exchange is performed with the combustion exhaust gas, the waste water heated by this heat exchange is supplied to the pressurized levitation tank 4, and the cooled combustion exhaust gas is supplied to the gas-liquid mixing tank 2.

気液混合槽2と加圧浮上槽4とは排水供給ライン22を介して接続され、気液混合槽2にて燃焼排気ガスが溶解された排水が排水供給ライン22を通して加圧浮上槽4に供給される。この排水供給ライン22には、供給される排水を減圧するための減圧弁24が配設される。   The gas-liquid mixing tank 2 and the pressurized levitation tank 4 are connected via a drainage supply line 22, and the wastewater in which the combustion exhaust gas is dissolved in the gas-liquid mixing tank 2 passes through the drainage supply line 22 to the pressurized levitation tank 4. Supplied. The drainage supply line 22 is provided with a pressure reducing valve 24 for depressurizing supplied wastewater.

加圧浮上槽4の底部には、排水を放出するための放出部26が設けられ、排水供給ライン22を通して供給された排水は、この放出部26から加圧浮上槽4内に放出される。この加圧浮上槽4の上部には、浮上分離した汚泥を掻き寄せて回収するための掻寄せ回収機28が配設されている。図示の掻寄せ回収機28は、矢印の方向に回動されるベルト30を有し、このベルト30の表面に間隔をおいて掻寄せ部材32が設けられ、かかる掻寄せ部材32によって浮上分離した汚泥が所定側に掻き寄せられて回収される。尚、掻寄せ回収機28は、それ自体周知の適宜の形態のものでよい。   A discharge part 26 for discharging waste water is provided at the bottom of the pressurized levitation tank 4, and the waste water supplied through the waste water supply line 22 is discharged from the discharge part 26 into the pressurized levitation tank 4. In the upper part of the pressurized levitation tank 4, a scraping and collecting machine 28 for scraping and collecting the sludge that has floated and separated is disposed. The illustrated scraping and collecting machine 28 includes a belt 30 that is rotated in the direction of an arrow, and a scraping member 32 is provided on the surface of the belt 30 with an interval therebetween, and is floated and separated by the scraping member 32. Sludge is scraped to the predetermined side and collected. The scraping and collecting machine 28 may be of any appropriate form known per se.

次に、上述した排水の処理システムによる処理について説明する。処理すべき排水は、排水供給ポンプ8の作用によって排水供給ライン6を通して供給され、かく供給された排水は第1供給ライン10を通して気液混合槽2に供給されるとともに、第2供給ライン12を通して加圧浮上槽4に供給される。また、発電設備14(例えば、コージェネレーションシステムのガスエンジン)からの燃焼排気ガスが、排気ガス供給ポンプ18の作用によって所定圧力状態で排気ガス供給ライン16を通して気液混合槽2に供給される。このとき、熱交換器20において、第2供給ライン12を流れる排水と排気ガス供給ライン16を流れる燃焼排気ガスとの間で熱交換が行われ、熱交換によって温度が低下した燃焼排気ガス(例えば、50℃程度)が気液混合槽2に供給され、熱交換によって温度が上昇した排水(例えば、40℃程度)が加圧浮上槽4に供給される。   Next, processing by the above-described wastewater processing system will be described. The waste water to be treated is supplied through the waste water supply line 6 by the action of the waste water supply pump 8, and the supplied waste water is supplied to the gas-liquid mixing tank 2 through the first supply line 10 and through the second supply line 12. It is supplied to the pressure levitation tank 4. Further, combustion exhaust gas from the power generation facility 14 (for example, a gas engine of a cogeneration system) is supplied to the gas-liquid mixing tank 2 through the exhaust gas supply line 16 at a predetermined pressure by the action of the exhaust gas supply pump 18. At this time, in the heat exchanger 20, heat exchange is performed between the waste water flowing through the second supply line 12 and the combustion exhaust gas flowing through the exhaust gas supply line 16, and the combustion exhaust gas (for example, the temperature is lowered by the heat exchange (for example, , About 50 ° C.) is supplied to the gas-liquid mixing tank 2, and waste water (for example, about 40 ° C.) whose temperature has been raised by heat exchange is supplied to the pressure levitation tank 4.

気液混合槽2においては、排水に燃焼排気ガスが混合され、かく混合することによって、排水に炭酸ガスを含む燃焼排気ガスが溶解される。気液混合槽2に供給される燃焼排気ガスは熱交換によって冷却されており、それ故に、気液混合槽2内の排水の温度が大きく上昇することがなく、これによって、所定圧力状態における燃焼排気ガスの溶解度を大きくすることができ、圧力状態を高めることなくより多くの燃焼排気ガスを溶解させることができる。   In the gas-liquid mixing tank 2, the combustion exhaust gas is mixed with the waste water, and the combustion exhaust gas containing carbon dioxide gas is dissolved in the waste water by mixing in this way. The combustion exhaust gas supplied to the gas-liquid mixing tank 2 is cooled by heat exchange, and therefore, the temperature of the waste water in the gas-liquid mixing tank 2 does not rise greatly, and thereby combustion in a predetermined pressure state The solubility of the exhaust gas can be increased, and more combustion exhaust gas can be dissolved without increasing the pressure state.

気液混合槽2にて燃焼排気ガスが溶解された排水は、排水供給ライン22を通し、減圧弁24により減圧されて加圧浮上槽4に供給され、この加圧浮上槽4の放出部26から加圧浮上槽4内に放出される。放出部26から排水が放出される際にその加圧状態が開放されるので、排水に溶解していた燃焼排気ガスが気泡となって放出され、発生した気泡が排水に含まれた汚泥に付着してこの汚泥が浮上分離される。この実施形態では、気液混合槽2における圧力状態を低く保つことができるので、加圧浮上槽4にて圧力状態が開放されると、発生する気泡が微細となり、これによって、汚泥の加圧浮上特性を向上させることができる。また、第2供給ライン12を通して加圧浮上槽4に供給される排水は熱交換によって加温されており、それ故に、加圧浮上槽4内の排水が加温され(例えば、40℃程度に加温される)、これによって、燃焼排気ガスの溶解度が小さくなり、溶解した燃焼排気ガスが気泡として放出され、これによっても加圧浮上性能を向上させることができる。   The waste water in which the combustion exhaust gas is dissolved in the gas-liquid mixing tank 2 passes through the waste water supply line 22, is decompressed by the pressure reducing valve 24, and is supplied to the pressurized floating tank 4. Are released into the pressure levitation tank 4. Since the pressurized state is released when the wastewater is discharged from the discharge part 26, the combustion exhaust gas dissolved in the wastewater is discharged as bubbles, and the generated bubbles adhere to the sludge contained in the wastewater. Then this sludge is floated and separated. In this embodiment, since the pressure state in the gas-liquid mixing tank 2 can be kept low, when the pressure state is released in the pressurized levitation tank 4, the generated bubbles become fine, and thus the pressure of the sludge is increased. The flying characteristics can be improved. In addition, the wastewater supplied to the pressurized levitation tank 4 through the second supply line 12 is heated by heat exchange. Therefore, the wastewater in the pressurized levitation tank 4 is heated (for example, about 40 ° C.). As a result, the solubility of the combustion exhaust gas is reduced, and the dissolved combustion exhaust gas is released as bubbles, which can improve the pressurized levitation performance.

この加圧浮上槽4において、発生する気泡によって上方に浮上した汚泥は、掻寄せ回収機28によって掻き寄せられて回収され、回収された浮上汚泥は所要の通りに脱水・乾燥処理され、また加圧浮上槽4から排出された分離水は所要の通りに排水処理され、このようにして排水が所要の通りに処理される。   In the pressurized levitation tank 4, the sludge that has floated upward due to the generated bubbles is scraped and collected by the scraping and collecting machine 28, and the collected floating sludge is dehydrated and dried as required, and added. The separated water discharged from the pressure levitation tank 4 is drained as required, and the wastewater is thus treated as required.

この実施形態では、排水に燃焼排気ガスを溶解させているが、燃焼排気ガスを溶解させることによって、次の通りの利点が生じる。汚泥を加圧浮上により分離するときには、必要に応じて、固液分離を促進するために、加圧浮上槽4に凝集剤が添加される。この凝集剤を用いると、帯電した排水中の汚泥粒子の電荷が中和され、フロックが形成されて固液分離が促進され、汚泥の分離回収を効率よく行うことができる。この電荷を示す指標としてゼータ電位が用いられるが、一般的に電荷が中和された状態、即ちゼータ電位が最もゼロに近い状態ではpHが「7」よりわずかに低いことが知られている。アルカリ性排水を加圧浮上により処理する場合、燃焼排気ガス中の炭酸ガスを排水に溶解させることによって、排水の性状は、アルカリ性から中性又はわずかに酸性に移行するようになり、これによって、固液分離の促進のための凝集剤の投入量を削減することが可能となる。   In this embodiment, the combustion exhaust gas is dissolved in the waste water. However, the following advantages are obtained by dissolving the combustion exhaust gas. When the sludge is separated by pressurized flotation, a flocculant is added to the pressurized flotation tank 4 as necessary to promote solid-liquid separation. When this flocculant is used, the charge of the sludge particles in the charged waste water is neutralized, flocs are formed, solid-liquid separation is promoted, and sludge can be separated and recovered efficiently. A zeta potential is used as an indicator of this charge, but it is generally known that the pH is slightly lower than “7” in a state where the charge is neutralized, that is, in a state where the zeta potential is closest to zero. When treating alkaline wastewater by pressurized flotation, the carbon dioxide gas in the combustion exhaust gas is dissolved in the wastewater, so that the property of the wastewater changes from alkaline to neutral or slightly acidic. It is possible to reduce the amount of flocculant input for promoting liquid separation.

次に、図2を参照して、本発明に従う排水の処理システムの他の実施形態について説明する。図2は、第2の実施形態の排水の処理システムを簡略的に示す簡略図である。尚、この実施形態において、図1に示す実施形態と実質上同一のものには同一の参照番号を付し、その説明を省略する。   Next, another embodiment of the wastewater treatment system according to the present invention will be described with reference to FIG. FIG. 2 is a simplified diagram schematically illustrating the wastewater treatment system according to the second embodiment. In this embodiment, components that are substantially the same as those in the embodiment shown in FIG.

図2において、第2の実施形態では、排水供給ライン6Aが気液混合槽2に接続され、排水が全て気液混合槽2に供給されるように構成されている。また、加圧浮上槽4の内部を通して加温循環ライン42が設けられ、この加温循環ライン42に熱交換器44が配設され、この加温循環ライン42を通して熱媒体となる流体、例えば温水などが循環される。この熱交換器44には、図2から理解されるように、排気ガス供給ライン16を通して供給される燃焼排気ガスが流れ、加温循環ライン42を通して循環される流体と排気ガス供給ライン16を流れる燃焼排気ガスとの間で熱交換が行なわれる。この実施形態のその他の構成は、上述した実施形態と実質上同一である。   In FIG. 2, in the second embodiment, the waste water supply line 6 </ b> A is connected to the gas-liquid mixing tank 2, and all the waste water is supplied to the gas-liquid mixing tank 2. Further, a heating circulation line 42 is provided through the inside of the pressurized levitation tank 4, and a heat exchanger 44 is disposed in the heating circulation line 42, and a fluid serving as a heat medium, such as hot water, is provided through the heating circulation line 42. Etc. are circulated. As understood from FIG. 2, the combustion exhaust gas supplied through the exhaust gas supply line 16 flows through the heat exchanger 44, and flows through the fluid circulated through the heating circulation line 42 and the exhaust gas supply line 16. Heat exchange is performed with the combustion exhaust gas. The other configuration of this embodiment is substantially the same as that of the above-described embodiment.

この形態においては、熱交換器44にて熱交換されて温度が低下した燃焼排気ガスは排気ガス供給ライン16を通して気液混合槽2に供給され、気液混合槽2において、排水供給ライン6Aを通して供給された排水に、排気ガス供給ライン16を通して供給された炭酸ガスを含む燃焼排気ガスが溶解され、上述したと同様に、燃焼排気ガスの圧力状態を高めることなくより多くの燃焼排気ガスを溶解させることができる。   In this embodiment, the combustion exhaust gas whose temperature has been reduced by heat exchange in the heat exchanger 44 is supplied to the gas-liquid mixing tank 2 through the exhaust gas supply line 16, and in the gas-liquid mixing tank 2, the exhaust gas supply line 6A is used. Combustion exhaust gas containing carbon dioxide gas supplied through the exhaust gas supply line 16 is dissolved in the supplied waste water, and as described above, more combustion exhaust gas is dissolved without increasing the pressure state of the combustion exhaust gas. Can be made.

また、熱交換器44にて熱交換されて温度が上昇した流体は加温循環ライン42の往きライン46を通して加圧浮上槽4内に配置された熱交換部位48に流れ、この熱交換部位48にて流体と加圧浮上槽4内の排水との間で熱交換が行われ、この熱交換によって加圧浮上槽4内の排水が加温される。従って、上述した実施形態と同様に、加圧浮上槽4内の排水が加温され、これによって、溶解した燃焼排気ガスが気泡としてより多く放出され、この実施形態においても加圧浮上性能を向上させることができる。   Further, the fluid whose temperature has been raised by heat exchange in the heat exchanger 44 flows to the heat exchange portion 48 disposed in the pressurized floating tank 4 through the forward line 46 of the heating circulation line 42, and this heat exchange portion 48. The heat exchange is performed between the fluid and the wastewater in the pressurized levitation tank 4, and the wastewater in the pressurized levitation tank 4 is heated by this heat exchange. Therefore, as in the above-described embodiment, the waste water in the pressurized levitation tank 4 is heated, and thereby, more dissolved combustion exhaust gas is released as bubbles, and also in this embodiment, the pressurized levitation performance is improved. Can be made.

以上、本発明に従う汚泥の処理システムの実施形態について説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形乃至修正が可能である。   As mentioned above, although embodiment of the sludge processing system according to this invention was described, this invention is not limited to this embodiment, A various deformation | transformation thru | or correction | amendment are possible without deviating from the scope of this invention.

例えば、上述した実施形態においては、排水に溶解させる気体として発電設備から排出される燃焼排気ガスを利用しているが、燃焼設備(例えば、ボイラー)から排出される燃焼排気ガスなどを用いるようにしてもよい。   For example, in the above-described embodiment, the combustion exhaust gas discharged from the power generation facility is used as the gas dissolved in the waste water, but the combustion exhaust gas discharged from the combustion facility (for example, a boiler) is used. May be.

また、第2実施形態において、必要に応じて、加温循環ライン42の戻りライン50に第2熱交換器(図示せず)を設け、この第2熱交換器において、戻りライン50を流れる流体と排水供給ライン6Aを通して供給される排水との間で熱交換を行うようにしてもよい。   In the second embodiment, if necessary, a second heat exchanger (not shown) is provided in the return line 50 of the heating circulation line 42, and the fluid flowing through the return line 50 in the second heat exchanger. May be exchanged with the wastewater supplied through the wastewater supply line 6A.

次いで、浮上媒体として燃焼排気ガス及び空気を用いた場合における加圧動力を試算すると、次の通りである。例えば、燃焼排気ガス及び空気の組成を表1に示す通りとし、加圧ポンプ(上述した実施形態では、排気ガス供給ポンプ)の圧力を0.3MPa、浮上汚泥(加圧浮上による濃縮汚泥)の固形物濃度を3%、浮上媒体と排水との比を0.08とすると、このときの加圧ポンプの加圧動力は、表2で示す通りとなる。   Next, the calculation of the pressurizing power when combustion exhaust gas and air are used as the levitation medium is as follows. For example, the composition of the combustion exhaust gas and air is as shown in Table 1, the pressure of the pressurizing pump (in the above-described embodiment, the exhaust gas supply pump) is 0.3 MPa, and floating sludge (concentrated sludge by pressurized flotation) When the solid matter concentration is 3% and the ratio of the floating medium and waste water is 0.08, the pressurizing power of the pressurizing pump at this time is as shown in Table 2.

Figure 0004726816
Figure 0004726816
この試算結果から、浮上媒体として空気を用いて100m/hの排水を加圧浮上により処理する場合、加圧ポンプの加圧動力は30kWとなるが、浮上媒体として燃焼排気ガスを用いて同様の溶解度を得ようとすると、加圧ポンプの加圧動力は10kWとなり、浮上媒体として燃焼排気ガスを用いることにより、加圧ポンプ(排気ガス供給ポンプ)の加圧動力を空気を用いた場合に比して大幅に削減することが判る。このように加圧圧力を低く抑えることで、加圧浮上槽において発生する気泡の径が大きくなるのを防ぐことができ、これによって、加圧浮上能力の向上が期待できる。
Figure 0004726816
Figure 0004726816
From this calculation result, when 100 m 3 / h wastewater is treated by pressure levitation using air as the levitation medium, the pressurization power of the pressure pump is 30 kW, but the same applies using combustion exhaust gas as the levitation medium When the pressure of the pressurizing pump (exhaust gas supply pump) is using air, the pressurizing power of the pressurizing pump is 10 kW, and combustion exhaust gas is used as the levitation medium. It can be seen that this is a significant reduction. By keeping the pressurization pressure low in this way, it is possible to prevent the bubble diameter generated in the pressurization levitation tank from becoming large, and this can be expected to improve the pressurization floating ability.

第1の実施形態の排水の処理システムを簡略的に示す簡略図。BRIEF DESCRIPTION OF THE DRAWINGS The simplified diagram which shows simply the wastewater treatment system of the first embodiment. 第2の実施形態の排水の処理システムを簡略的に示す簡略図。The simplification figure which shows simply the wastewater treatment system of 2nd Embodiment.

符号の説明Explanation of symbols

2 気液混合槽
4 加圧浮上槽
6,6A 排水供給ライン
10 第1供給ライン
12 第2供給ライン
14 発電設備
20,44 熱交換器
22 排水供給ライン
28 掻寄せ回収機
42 加温循環ライン
2 Gas-Liquid Mixing Tank 4 Pressurized Flotation Tank 6,6A Drainage Supply Line 10 First Supply Line 12 Second Supply Line 14 Power Generation Equipment 20,44 Heat Exchanger 22 Drainage Supply Line 28 Scraping and Recovery Machine 42 Heating Circulation Line

Claims (1)

処理すべき排水と気体とを加圧状態で混合してこの気体を排水に溶解させる気液混合槽と、加圧状態を解除した際に発生する気泡により排水に含まれた汚泥を浮上させる加圧浮上槽とを備えた排水の処理システムであって、
排水の一部を前記気液混合槽に供給するための第1供給ラインと、排水の残部を前記加圧浮上槽に供給するための第2供給ラインとが設けられ、前記前記第2供給ラインに熱交換器が設けられており、
また、前記気液混合槽にて混合される気体として燃焼設備又は発電設備の燃焼排気ガスが用いられ、この燃焼排気ガスが前記気液混合槽において排水と混合されるとともに、前記熱交換器において前記加圧浮上槽に供給される排水と前記気液混合槽に供給される燃焼排気ガスとの間で熱交換が行われ、この熱交換により加温された排水が前記加圧浮上槽に供給されて加温されることを特徴とする排水の処理システム。
A gas-liquid mixing tank that mixes the wastewater to be treated and gas under pressure and dissolves this gas in the wastewater, and an addition that floats sludge contained in the wastewater by bubbles generated when the pressure is released. A wastewater treatment system comprising a pressure levitation tank,
A first supply line for supplying a part of the wastewater to the gas-liquid mixing tank and a second supply line for supplying the remaining part of the wastewater to the pressurized flotation tank are provided, and the second supply line Is equipped with a heat exchanger,
Further, combustion gas of combustion equipment or power generation equipment is used as gas mixed in the gas-liquid mixing tank, and this combustion exhaust gas is mixed with waste water in the gas-liquid mixing tank, and in the heat exchanger Heat exchange is performed between the wastewater supplied to the pressurized levitation tank and the combustion exhaust gas supplied to the gas-liquid mixing tank, and the wastewater heated by this heat exchange is supplied to the pressurized levitation tank. Waste water treatment system characterized by being heated .
JP2007017479A 2007-01-29 2007-01-29 Wastewater treatment system Expired - Fee Related JP4726816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007017479A JP4726816B2 (en) 2007-01-29 2007-01-29 Wastewater treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007017479A JP4726816B2 (en) 2007-01-29 2007-01-29 Wastewater treatment system

Publications (2)

Publication Number Publication Date
JP2008183494A JP2008183494A (en) 2008-08-14
JP4726816B2 true JP4726816B2 (en) 2011-07-20

Family

ID=39726876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007017479A Expired - Fee Related JP4726816B2 (en) 2007-01-29 2007-01-29 Wastewater treatment system

Country Status (1)

Country Link
JP (1) JP4726816B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2898627C (en) * 2013-02-06 2023-08-22 Energysolutions, Inc. Fluid treatment methods and systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884463A (en) * 1972-02-14 1973-11-09
JPS55119486A (en) * 1979-03-05 1980-09-13 Kubota Ltd Treating apparatus for contaminated water
JPH04293598A (en) * 1991-03-20 1992-10-19 Kyodo Kumiai Inbaiomento Solid-liquid separation method for fermentable organic liquid matter and sludge treatment apparatus using the same method
JPH09155400A (en) * 1995-12-07 1997-06-17 Kitakiyuushiyuushi Heating floatation condensing process for sewage sludge by carbon dioxide gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884463A (en) * 1972-02-14 1973-11-09
JPS55119486A (en) * 1979-03-05 1980-09-13 Kubota Ltd Treating apparatus for contaminated water
JPH04293598A (en) * 1991-03-20 1992-10-19 Kyodo Kumiai Inbaiomento Solid-liquid separation method for fermentable organic liquid matter and sludge treatment apparatus using the same method
JPH09155400A (en) * 1995-12-07 1997-06-17 Kitakiyuushiyuushi Heating floatation condensing process for sewage sludge by carbon dioxide gas

Also Published As

Publication number Publication date
JP2008183494A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP2008036518A (en) Water treatment method and apparatus
CN110028186B (en) High-efficiency treatment process for high-concentration emulsion
CN204569599U (en) A kind of novel no pollution sewage effluent total system
US9073063B2 (en) Liquid treatment system
CN105858944A (en) Novel comprehensive treatment system and method for sewage with zero-pollution discharge
JP2010017616A (en) Method device of removing unburned carbon in fly ash
JP2009279537A (en) Pressurized floating apparatus and pressurized floating method
JP4726816B2 (en) Wastewater treatment system
JP2008238032A (en) Water treatment system
JP6618612B2 (en) Method and apparatus for treating oil-containing waste liquid
JP2007038167A (en) Wastewater treatment method and apparatus
WO2015194573A1 (en) Sludge treatment method and sludge treatment system
CN105819534A (en) Integrated ultra-fine air flotation purifying system and method using same to purify landscape water body
JP2015212585A (en) Boiler having water-supplying and degasifying device
JP2003117526A (en) Biogasification treating method for organic waste
CN207811312U (en) A kind of mixer and dissolved air floatation device
JP6879867B2 (en) How to repair wastewater treatment equipment
US11440825B2 (en) Struvite recovery and phosphorus management techniques for wastewater treatment plants
JP2008190831A (en) Boiler system, power generation system and operation method of boiler system
CN214880964U (en) Treatment device for oilfield produced water
US20160208658A1 (en) Method for the recovery of process wastewaters of a fossil-fueled steam power plant and fossil-fueled steam power plant
WO2022241869A1 (en) Treatment method and treatment apparatus for oilfield produced water
JP2009034683A (en) Method and apparatus for treating water
JP2021154225A (en) Sludge treatment system and sludge treatment method
JP2011206667A (en) Method and apparatus for treating organic waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees