JPH04291018A - Magnetic recording medium and production thereof - Google Patents

Magnetic recording medium and production thereof

Info

Publication number
JPH04291018A
JPH04291018A JP5703091A JP5703091A JPH04291018A JP H04291018 A JPH04291018 A JP H04291018A JP 5703091 A JP5703091 A JP 5703091A JP 5703091 A JP5703091 A JP 5703091A JP H04291018 A JPH04291018 A JP H04291018A
Authority
JP
Japan
Prior art keywords
layer
electroless plating
glass substrate
recording medium
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5703091A
Other languages
Japanese (ja)
Inventor
Fumiaki Yokoyama
横山 文明
Mamoru Kaneko
金子 衛
Yukihiro Miyamoto
幸博 宮元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP5703091A priority Critical patent/JPH04291018A/en
Publication of JPH04291018A publication Critical patent/JPH04291018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To inexpensively obtain the magnetic recording medium formed by using a glass substrate having excellent weatherability and good magnetic characteristics. CONSTITUTION:This magnetic recording medium is obtd. by providing a magnetic layer on the glass substrate laminated with an electroless plating layer at >=1000Angstrom thickness and by first providing an electroless plating layer of <=300Angstrom on the glass substrate having specific surface roughness and heat treating this layer at a specific temp., then forming the electroless plating layer, heat treating the layer at a specific temp. to laminate the electroless plating layer of >=1000Angstrom total thickness, and providing the magnetic layer.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、耐候性の著しく向上さ
れたガラス基板を用いた磁気記録媒体及びその製造法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium using a glass substrate with significantly improved weather resistance and a method for manufacturing the same.

【0002】0002

【従来の技術】磁気ディスク用基板としてガラス基板を
用いることは公知であり、例えば、特公昭43−462
1号にてメッキ法にて磁性膜を作製することが提案され
ており、また、特開昭59−171031号に於いては
ガラス基板にスパッタ法にてCo−Pt磁性膜を形成し
た磁気記録媒体が提案されている。
BACKGROUND OF THE INVENTION It is known to use a glass substrate as a substrate for a magnetic disk.
No. 1 proposed the production of a magnetic film by a plating method, and JP-A-59-171031 proposed a method for magnetic recording in which a Co-Pt magnetic film was formed on a glass substrate by a sputtering method. medium is proposed.

【0003】しかし、実用的にはいくつかの問題があり
、汎用的に用いられていない。その一つの問題として、
以下に記載する如く耐候性が劣る問題がある。つまり、
ガラス基板は通常のアルミニウム基板にNi−P無電解
メッキを施した基板と異なり、耐水性が劣り、水により
侵食され易く、かつ、ガラス基板のアルカリ成分が表面
に溶出して来ることが例えば「ガラス表面設計」(近代
編集社)P.43およびP.156に記載されている。
[0003] However, there are some problems in practical use, and this method is not widely used. One of the issues is that
As described below, there is a problem of poor weather resistance. In other words,
Glass substrates are different from ordinary aluminum substrates with Ni-P electroless plating, and have poor water resistance and are easily eroded by water.Also, the alkaline components of the glass substrates may be eluted to the surface, for example. "Glass Surface Design" (Kaidai Editsha) P. 43 and P. 156.

【0004】実用面での対策として液晶用のガラス基板
にはアルカリ成分の溶出防止のため、有機シリコン溶液
を塗布してシリコン酸化膜の薄膜層を形成することを工
業的に実施したり、アルカリ成分の溶出量がソーダライ
ムシリケートガラスに比べ少ないホウケイ酸ガラスが使
用されている。但し、コスト的に問題があり、ホウケイ
酸ガラスの価格は高い。
As a practical countermeasure, in order to prevent the elution of alkali components on glass substrates for liquid crystals, it is industrially carried out to form a thin layer of silicon oxide film by applying an organic silicon solution. Borosilicate glass is used because the amount of components eluted is smaller than that of soda lime silicate glass. However, there is a cost problem, and the price of borosilicate glass is high.

【0005】ガラス基板を磁気記録媒体用基板として用
いた場合も例外でなく、多湿環境下で磁気ディスクの内
外周等に腐食が発生し、その改善のために多くの提案が
されている。例えば、特開昭63−269319号では
、磁気ディスク周縁部の磁気記録層とガラス露出部分に
エポキシ樹脂等を塗布することが提案され、また、特開
昭64−42025号では、ガラス基板の組成を特定の
組成に変更することが提案されている。しかし、組成変
更は製造条件の変更であり、溶解温度が高くなる等製造
上の問題が発生すると共に、コスト的にも高くなる。 また、樹脂や有機シリコン溶液の塗布は磁気ディスクの
平坦度に悪影響を与える。最近は磁気ディスクの高容量
化のためヘッドが低浮上化しており、かつ、磁気ディス
クの最外周まで飛行するため、ヘッドクラッシユの原因
ともなり、好ましくない。
[0005] When a glass substrate is used as a substrate for a magnetic recording medium, corrosion occurs on the inner and outer peripheries of the magnetic disk in a humid environment, and many proposals have been made to improve this problem. For example, JP-A No. 63-269319 proposes applying epoxy resin or the like to the magnetic recording layer and the exposed portion of the glass at the periphery of the magnetic disk, and JP-A No. 64-42025 proposes the composition of the glass substrate. It has been proposed to change the composition of However, changing the composition is a change in manufacturing conditions, which causes manufacturing problems such as an increase in melting temperature, and also increases costs. Furthermore, the application of resin or organic silicon solution adversely affects the flatness of the magnetic disk. Recently, the flying height of the head has become lower due to the increase in the capacity of magnetic disks, and since the head flies to the outermost periphery of the magnetic disk, this is undesirable as it may cause a head crash.

【0006】[0006]

【発明が解決しようとする課題】前述のように、通常の
ガラス基板、ソーダライムシリケートガラス、アルミノ
シリケートガラス等を磁気記録媒体基板として用いる場
合、基板から溶出するアルカリ成分による磁性膜の腐食
が問題となる。アルカリ成分の溶出は単に、磁気ディス
クの周辺部のガラス基板露出部のみならず製造工程で発
生した磁気ディスク記録領域での微小な膜未形成部でも
発生するため、ガラス基板全面を均一に被覆することが
望ましい。
[Problems to be Solved by the Invention] As mentioned above, when a normal glass substrate, soda lime silicate glass, aluminosilicate glass, etc. is used as a magnetic recording medium substrate, corrosion of the magnetic film due to alkali components eluted from the substrate is a problem. becomes. The elution of alkaline components occurs not only in the exposed areas of the glass substrate at the periphery of the magnetic disk, but also in minute areas where no film is formed in the recording area of the magnetic disk that occurs during the manufacturing process, so the entire surface of the glass substrate must be uniformly coated. This is desirable.

【0007】本発明者らは、アルミニウム基板と同様に
ガラス基板全面に無電解Ni−Pメッキ層を形成するこ
とを試みたが、従来の手法ではガラス基板は無電解メッ
キ層と密着性が悪く、鏡面研磨したガラス基板には、無
電解Ni−Pメッキ層は高々300Åの厚さしかメッキ
出来ず、それ以上の厚さではメッキ中や水洗中にメッキ
膜の▲剥▼離が生じた。高々300Åでは、アルカリ成
分の溶出防止膜としては不十分であった。
[0007] The present inventors attempted to form an electroless Ni-P plating layer on the entire surface of a glass substrate in the same way as an aluminum substrate, but with the conventional method, the adhesion of the glass substrate to the electroless plating layer was poor. On a mirror-polished glass substrate, an electroless Ni--P plating layer could only be plated to a thickness of 300 Å at most, and if the thickness was greater than that, the plating film would peel off during plating or washing with water. A thickness of at most 300 Å was insufficient as a film for preventing elution of alkaline components.

【0008】ガラス基板との密着性を改善するために、
例えば、特開昭48−94403号、特開昭49−12
2707号でガラス基板に金属粉を混ぜたりした特殊ガ
ラスが提案されている。しかし、この提案は、製造上の
問題、コスト及びガラス基板の平坦度の観点から実用的
ではない。また、特開昭61−54018号では特定の
Ni−P無電解メッキ浴にて内部ひずみの小さいNi−
Pメッキ膜をガラス基板の上に設けることが提案されて
いる。しかし、この場合も高々200〜300Åの膜厚
が密着性よく形成されているだけであり、アルカリ成分
の溶出を防止するためには、膜厚が不十分である。
[0008] In order to improve the adhesion with the glass substrate,
For example, JP-A-48-94403, JP-A-49-12
No. 2707 proposes a special glass in which metal powder is mixed into a glass substrate. However, this proposal is not practical from the viewpoint of manufacturing problems, cost, and flatness of the glass substrate. In addition, in JP-A No. 61-54018, Ni-P has a small internal strain in a specific Ni-P electroless plating bath.
It has been proposed to provide a P plating film on a glass substrate. However, in this case as well, a film thickness of 200 to 300 Å at most is formed with good adhesion, and the film thickness is insufficient to prevent elution of alkaline components.

【0009】[0009]

【課題を解決するための手段】本発明は、所定の膜厚の
無電解メッキ層を密着性よくしかも安価に実用的な方法
で形成しアルカリ成分の溶出による腐食問題を解決し耐
候性を改善した、ガラス基板を用いた磁気記録媒体及び
その製造方法を提供することを目的とする。
[Means for Solving the Problems] The present invention solves the problem of corrosion due to the elution of alkaline components and improves weather resistance by forming an electroless plating layer of a predetermined thickness with good adhesion, at low cost, and in a practical manner. An object of the present invention is to provide a magnetic recording medium using a glass substrate and a manufacturing method thereof.

【0010】即ち、本発明の要旨は、無電解メッキ法に
より厚さ1000Å以上の無電解メッキ層を積層したガ
ラス基板の上に、磁性層を設けたことを特徴とする磁気
記録媒体、及び、中心線平均粗さRa10Å以下で最大
高さRmax150Å以下の表面粗さのガラス基板に、
初めに無電解メッキ法により厚さ300Å以下の無電解
メッキ層を設けた後に150〜400℃の温度で熱処理
を施し、更にその上に無電解メッキ法により無電解メッ
キ層を形成した後、150〜400℃の温度で熱処理を
施すことによって総厚み1000Å以上の無電解メッキ
層を設けたガラス基板の上に、磁性層を設けることを特
徴とする磁気記録媒体の製造法、に存する。
That is, the gist of the present invention is to provide a magnetic recording medium characterized in that a magnetic layer is provided on a glass substrate on which an electroless plating layer with a thickness of 1000 Å or more is laminated by an electroless plating method, and A glass substrate with a surface roughness of center line average roughness Ra of 10 Å or less and maximum height Rmax of 150 Å or less,
First, an electroless plating layer with a thickness of 300 Å or less is provided by an electroless plating method, and then heat treatment is performed at a temperature of 150 to 400°C. The present invention relates to a method for manufacturing a magnetic recording medium, characterized in that a magnetic layer is provided on a glass substrate provided with an electroless plating layer having a total thickness of 1000 Å or more by heat treatment at a temperature of ~400°C.

【0011】以下に本発明について更に詳細に説明する
。本発明の磁気記録媒体は、無電解メッキ法により厚さ
1000Å以上の無電解メッキ層を設けたガラス基板の
上に、磁性層を設けたことを特徴とする。
The present invention will be explained in more detail below. The magnetic recording medium of the present invention is characterized in that a magnetic layer is provided on a glass substrate on which an electroless plating layer with a thickness of 1000 Å or more is provided by an electroless plating method.

【0012】本発明の磁気記録媒体は、例えば、中心線
平均粗さRa10Å以下で最大高さRmax150Å以
下の表面粗さのガラス基板に、初めに無電解メッキ法に
より厚さ300Å以下の無電解メッキ層を設けた後に1
50〜400℃の温度で熱処理を施し、更にその上に無
電解メッキ法により無電解メッキ層を形成した後150
〜400℃の温度で熱処理を施すことによって総厚み1
000Å以上の無電解メッキ層を設けたガラス基板の上
に磁性層を設けることにより得ることができる。
In the magnetic recording medium of the present invention, for example, a glass substrate having a surface roughness of center line average roughness Ra of 10 Å or less and maximum height Rmax of 150 Å or less is first electrolessly plated to a thickness of 300 Å or less by an electroless plating method. 1 after applying the layer
After heat treatment at a temperature of 50 to 400°C, and further forming an electroless plating layer on top of it by an electroless plating method,
The total thickness is 1 by heat treatment at a temperature of ~400℃.
It can be obtained by providing a magnetic layer on a glass substrate provided with an electroless plating layer of 000 Å or more.

【0013】ガラス基板の種類としては、特に制限はな
いが通常のソーダライムガラス、アルミノシリケートガ
ラス、また、結晶化ガラスとしてリチウム系ガラス(例
えば日本電気硝子社製「ML−5」)等を用いることが
できる。通常はコストの面から化学強化した安価なソー
ダライムガラス、アルミノシリケートガラスを鏡面研磨
して用いる。
The type of glass substrate is not particularly limited, but ordinary soda lime glass, aluminosilicate glass, and lithium-based glass (for example, "ML-5" manufactured by Nippon Electric Glass Co., Ltd.) as crystallized glass may be used. be able to. Usually, from a cost perspective, inexpensive chemically strengthened soda lime glass or aluminosilicate glass is mirror-polished.

【0014】鏡面研磨したガラス基板の表面粗さは、接
触式粗さ計の測定で中心線平均粗さRa10Å以下、最
大高さRmax150Å以下に仕上げられているものが
好ましい。本発明の磁気記録媒体は上記したようなガラ
ス基板を用いて例えば次のようにして作製される。
The surface roughness of the mirror-polished glass substrate is preferably such that the center line average roughness Ra is 10 Å or less and the maximum height Rmax is 150 Å or less as measured by a contact roughness meter. The magnetic recording medium of the present invention is manufactured using the glass substrate as described above, for example, in the following manner.

【0015】上記したガラス基板を通常の中性洗剤脱脂
を行い、次に常法のSnCl2 浴、PdCl2 浴に
て活性化処理を行なった後で、通常の無電解メッキ浴に
て厚さ300Å以下の第一層目の無電解メッキ膜を形成
後、クリーンな乾燥器にて150〜400℃の温度にて
熱処理を行う。
The above-mentioned glass substrate is degreased with a normal neutral detergent, then activated in a normal SnCl2 bath or PdCl2 bath, and then processed to a thickness of 300 Å or less in a normal electroless plating bath. After forming the first layer of electroless plating film, heat treatment is performed at a temperature of 150 to 400° C. in a clean dryer.

【0016】この熱処理後再度、中性洗剤脱脂を行った
後、無電解メッキ浴にて第二層目の無電解メッキ膜を総
膜厚み1000Å以上の膜厚まで形成し、また150〜
400℃の温度にて熱処理を行う。なお、上記第二層目
の無電解メッキ膜の形成においては、これを中断して上
記した150〜400℃での熱処理を適宜行なってもよ
い。
After this heat treatment, degreasing with a neutral detergent is performed again, and then a second layer of electroless plating film is formed in an electroless plating bath to a total film thickness of 1000 Å or more.
Heat treatment is performed at a temperature of 400°C. In addition, in the formation of the second-layer electroless plating film, this may be interrupted and the above-described heat treatment at 150 to 400° C. may be performed as appropriate.

【0017】無電解メッキは従来のアルミニウム基板と
同様な非磁性のNi−Pメッキでも良いし、銅メッキで
もよい。また、各メッキ層の種類を変えてもよい。但し
、非磁性膜がよい。一層目の膜厚が300Åを越えると
メッキ途中や水洗中に部分的に膜▲剥▼離が生じてくる
。一層目の膜厚は約200〜300Åとすることが好ま
しい。総メッキ膜厚としては耐候性上1000Å以上が
必要である。膜厚の上限は特にないが1μm以下が密着
性の点から好ましい。中でも1500Å以上5000Å
以下がより好ましい。
The electroless plating may be non-magnetic Ni--P plating similar to conventional aluminum substrates, or copper plating. Further, the type of each plating layer may be changed. However, a non-magnetic film is preferable. If the thickness of the first layer exceeds 300 Å, partial peeling of the film will occur during plating or during water washing. The thickness of the first layer is preferably about 200 to 300 Å. The total plating film thickness must be 1000 Å or more for weather resistance. Although there is no particular upper limit to the film thickness, it is preferably 1 μm or less from the viewpoint of adhesion. Among them, 1500 Å or more and 5000 Å
The following are more preferable.

【0018】熱処理温度は150〜400℃、好ましく
は150〜300℃の範囲である。150℃未満では効
果が少なく、400℃を越えると化学強化層のカリウム
イオンの拡散が生じて強度低下が起こる。熱処理時間は
30分以上、中でも30〜60分が好ましい。なお、無
電解メッキは例えばディスク内周等でディスクを保持し
、回転させながら無電解メッキ浴に浸漬させること等に
よって全面に均一に無電解メッキ膜が形成されるように
するのが好ましい。
[0018] The heat treatment temperature is in the range of 150 to 400°C, preferably 150 to 300°C. If the temperature is lower than 150°C, the effect will be small, and if the temperature exceeds 400°C, diffusion of potassium ions in the chemically strengthened layer will occur, resulting in a decrease in strength. The heat treatment time is preferably 30 minutes or more, preferably 30 to 60 minutes. In electroless plating, it is preferable to hold the disk by its inner periphery, for example, and immerse it in an electroless plating bath while rotating, so that an electroless plating film is uniformly formed over the entire surface.

【0019】このようにして1000Å以上の無電解メ
ッキ層を設けたガラス基板を、スパッタ装置に入れ、必
要に応じて下引き層をスパッタ成膜した後磁性層を設け
る。また、磁性層の上に、更に必要に応じて、保護層及
び/又は潤滑層を設けることができる。スパッタ成膜さ
れる下引き層はCr層、Ti層等で、磁性層の磁気特性
を良好にするために用いる。
The glass substrate thus provided with an electroless plating layer of 1000 Å or more is placed in a sputtering apparatus, and if necessary, an undercoat layer is formed by sputtering, and then a magnetic layer is provided. Moreover, a protective layer and/or a lubricating layer can be provided on the magnetic layer, if necessary. The undercoat layer formed by sputtering is a Cr layer, a Ti layer, etc., and is used to improve the magnetic properties of the magnetic layer.

【0020】下引き層の膜厚は通常、500〜3000
Å程度とする。磁性層組成としてはスパッタ法によるC
o−Cr、Co−Cr−X、Co−Ni−X、Co−W
−X等で表わされるCoを主成分とするCo系合金磁性
膜が使用できる。ここでXとしてはLi、Si、B、C
a、Ti、V、Cr、Ni、As、Y、Zr、Nb、M
o、Ru、Rh、Ag、Sb、Hf、Ta、W、Re、
Os、Ir、Pt、Au、La、Ce、Pr、Nd、P
m、Sm及びEuよりなる群から選ばれる1種又は2種
以上の元素が用いられる。磁性層の膜厚は通常300〜
1000Å程度である。
[0020] The thickness of the undercoat layer is usually 500 to 3000
It should be about Å. The magnetic layer composition is C by sputtering.
o-Cr, Co-Cr-X, Co-Ni-X, Co-W
A Co-based alloy magnetic film whose main component is Co represented by -X or the like can be used. Here, X is Li, Si, B, C
a, Ti, V, Cr, Ni, As, Y, Zr, Nb, M
o, Ru, Rh, Ag, Sb, Hf, Ta, W, Re,
Os, Ir, Pt, Au, La, Ce, Pr, Nd, P
One or more elements selected from the group consisting of m, Sm, and Eu are used. The thickness of the magnetic layer is usually 300~
It is about 1000 Å.

【0021】保護膜としてはスパッタ法による炭素質膜
、ジルコニア膜等や有機シリコン膜の塗布でもよい。 潤滑層としては弗素系のパーフロロポリエーテル等の液
体潤滑膜や脂肪酸などの固体潤滑膜が用いられる。
As the protective film, a carbonaceous film, a zirconia film, or an organic silicon film may be applied by sputtering. As the lubricant layer, a liquid lubricant film such as fluorine-based perfluoropolyether or a solid lubricant film such as fatty acid is used.

【0022】なお、ガラス基板そのままにスパッタ成膜
で下引き層、磁性膜を成膜すると、ガラス基板の水分の
影響で磁気特性が低下し、保磁力が小さくなることが、
J.Appl.Phys.67(9),1,1990,
P.4701等で報告されているが、本発明の磁気記録
媒体によれば、無電解メッキ層の積層によりガラス基板
の水分の影響が防止でき、保磁力の低下が防止できる。 また、ガラス基板に導電性の無電解メッキ膜を形成する
ことにより、従来のNi−P無電解メッキ層を被覆した
アルミニウム基板とほぼ同様な電気抵抗となることから
、通常のスパッタ条件での成膜だけでなく、基板に負の
バイアス電位を印加する基板バイアス法によるスパッタ
成膜が可能となり、負のバイアス電位を印加した状態で
スパッタ法により下引きCr層及び/又は磁性層が成膜
でき、高保磁力を得ることが可能になる。
[0022] It should be noted that if an undercoat layer and a magnetic film are formed by sputtering on the glass substrate as it is, the magnetic properties will deteriorate due to the influence of moisture on the glass substrate, and the coercive force will become smaller.
J. Appl. Phys. 67(9), 1, 1990,
P. 4701, etc., according to the magnetic recording medium of the present invention, the influence of moisture on the glass substrate can be prevented by laminating electroless plating layers, and a decrease in coercive force can be prevented. In addition, by forming a conductive electroless plating film on a glass substrate, the electrical resistance is almost the same as that of an aluminum substrate coated with a conventional Ni-P electroless plating layer, so it can be formed under normal sputtering conditions. In addition to the film, it is now possible to perform sputter deposition using a substrate bias method in which a negative bias potential is applied to the substrate, and the undercoating Cr layer and/or magnetic layer can be deposited by sputtering with a negative bias potential applied. , it becomes possible to obtain high coercive force.

【0023】また、ガラス基板として鏡面研磨した基板
でなく、例えば化学エッチングあるいは結晶化処理等に
より基板表面を粗くした場合は、無電解メッキ層の密着
性が向上することから一段目の無電解メッキにより、1
000Å以上の膜厚が得られる。また、これに上記した
熱処理を施すことにより密着性を更に向上させることが
できる。
In addition, if the glass substrate is not a mirror-polished substrate but has a roughened substrate surface, for example by chemical etching or crystallization treatment, the adhesion of the electroless plating layer will improve, so the first step electroless plating will improve the adhesion of the electroless plating layer. Accordingly, 1
A film thickness of 000 Å or more can be obtained. Furthermore, by subjecting this to the above-described heat treatment, the adhesion can be further improved.

【0024】[0024]

【実施例】以下に実施例により本発明をより具体的に説
明するが、本発明は、その要旨を越えない限り、以下の
実施例に限定されるものではない。
[Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

【0025】実施例1 化学強化した後、その表面を中心線平均粗さRa8Å、
最大高さRmax100Åに鏡面加工した、外径95φ
mm、内径25φmm、板厚1.27mmのソーダライ
ムガラス基板を、中性洗剤で脱脂、イオン交換水で水洗
後、0.3g/lのSnCl2 水溶液(浴温50℃)
に1分浸漬し、水洗後、0.1g/lのPdCl2 水
溶液(浴温50℃)に1分浸漬し活性化処理を行い水洗
後、市販の無電解Ni−Pメッキ浴(メルテックス(株
)、エンプレートNI−4828)にて、pH4.5、
浴温77℃で無電解Ni−Pメッキ膜を300Å形成し
た(第一段無電解メッキ)。水洗後、クリーン乾燥器で
200℃、1時間熱処理を実施した。その後、再び中性
洗剤で脱脂を行い、イオン交換水で水洗後、再度上記無
電解Ni−Pメッキ浴に浸漬し、総膜厚1500Åの無
電解Ni−Pメッキ膜を形成した(第二段無電解メッキ
)。水洗後、クリーン乾燥器で200℃、1時間熱処理
を実施した。無電解メッキ処理は基板を回転しながら行
い、基板全面にメッキ皮膜が形成されるようにした。
Example 1 After chemical strengthening, the surface had a center line average roughness of Ra8 Å,
Mirror-finished to maximum height Rmax 100Å, outer diameter 95φ
After degreasing a soda lime glass substrate with a diameter of 25 mm and a thickness of 1.27 mm using a neutral detergent and washing it with ion-exchanged water, a 0.3 g/l SnCl2 aqueous solution (bath temperature 50°C) was prepared.
After rinsing with water, immersing for 1 minute in a 0.1 g/l PdCl2 aqueous solution (bath temperature 50°C) for activation treatment. ), Enplate NI-4828), pH 4.5,
An electroless Ni-P plating film of 300 Å was formed at a bath temperature of 77° C. (first stage electroless plating). After washing with water, heat treatment was performed at 200° C. for 1 hour in a clean dryer. Thereafter, degreasing was performed again with a neutral detergent, and after washing with ion-exchanged water, the electroless Ni-P plating film was again immersed in the above electroless Ni-P plating bath to form an electroless Ni-P plating film with a total film thickness of 1500 Å (second stage). electroless plating). After washing with water, heat treatment was performed at 200° C. for 1 hour in a clean dryer. The electroless plating process was performed while rotating the substrate so that a plating film was formed on the entire surface of the substrate.

【0026】この基板をDCマグネトロンスパッタ装置
に装入し、1×10−6Torrまで真空排気した後、
基板温度を200℃まで昇温し、アルゴン分圧5×10
−3Torrにて、Cr下引き層を1700Å、CoN
i30Cr7 at%の磁性層を600Å、カーボン保
護層を300Åスパッタ法にて連続して成膜し磁気記録
媒体を作製した。
After loading this substrate into a DC magnetron sputtering device and evacuation to 1×10 −6 Torr,
Raise the substrate temperature to 200℃, and increase the argon partial pressure to 5×10
At -3 Torr, the Cr undercoat layer was 1700 Å, CoN
A magnetic recording medium was fabricated by successively forming a magnetic layer of 600 Å of i30Cr7 at% and a carbon protective layer of 300 Å by sputtering.

【0027】該磁気記録媒体の保磁力を試料振動式磁力
計(VSM)にて測定したところ1100Oeであった
。得られた磁気記録媒体をクリーンな恒温恒湿槽に入れ
、85℃、相対湿度80%で504時間保持する耐候性
テストを実施したところ、何等変化が認められなかった
The coercive force of the magnetic recording medium was measured using a vibrating sample magnetometer (VSM) and was found to be 1100 Oe. A weather resistance test was conducted in which the obtained magnetic recording medium was placed in a clean constant temperature and humidity chamber and maintained at 85° C. and 80% relative humidity for 504 hours, and no change was observed.

【0028】また、得られた磁気記録媒体に剃刀で切り
入みを入れ当該箇所にセロテープを貼着し、はがすこと
で、メッキ膜の▲剥▼離の有無を調べるメッキ膜の密着
性テストを行なったところ、メッキ膜の▲剥▼離は見ら
れなかった。
[0028] In addition, an adhesion test of the plating film was carried out to check for peeling of the plating film by making a cut in the obtained magnetic recording medium with a razor, pasting cellophane tape on the relevant part, and peeling it off. As a result, no peeling of the plating film was observed.

【0029】比較例1 実施例1におけるのと同様な基板を、活性化処理、無電
解メッキ処理、熱処理を実施することなく脱脂、水洗後
、直ちに実施例1におけるのと同様にスパッタ装置でC
r下引き層、磁性層及びカーボン保護層を成膜し、磁気
記録媒体を作製した。
Comparative Example 1 A substrate similar to that in Example 1 was degreased without performing activation treatment, electroless plating treatment, or heat treatment, and after washing with water, it was immediately subjected to carbon dioxide using a sputtering apparatus in the same manner as in Example 1.
An undercoat layer, a magnetic layer, and a carbon protective layer were formed to produce a magnetic recording medium.

【0030】得られた磁気記録媒体の保磁力を試料振動
式磁力計(VSM)にて測定したところ、800Oeで
あった。また、得られた磁気記録媒体を実施例1におけ
るのと同様に耐候性テストを行なったところ、磁気記録
媒体の内外周縁全周に約幅1.5mmの腐食による変色
が認められた。
The coercive force of the obtained magnetic recording medium was measured using a vibrating sample magnetometer (VSM) and was found to be 800 Oe. Further, when the obtained magnetic recording medium was subjected to a weather resistance test in the same manner as in Example 1, discoloration due to corrosion with a width of about 1.5 mm was observed all around the inner and outer peripheries of the magnetic recording medium.

【0031】比較例2 実施例1において、第二段無電解メッキにおいて、無電
解Ni−Pメッキの総膜厚を800Åとした以外は、同
様にした。耐候性テストの結果、磁気記録媒体の内外周
縁全周に約幅0.5mmの腐食による変色が認められた
Comparative Example 2 The same procedure as in Example 1 was carried out except that in the second stage electroless plating, the total film thickness of the electroless Ni--P plating was 800 Å. As a result of the weather resistance test, discoloration due to corrosion with a width of about 0.5 mm was observed all around the inner and outer peripheries of the magnetic recording medium.

【0032】比較例3 実施例1において、第一段無電解メッキ後、熱処理する
ことなく連続して第二段無電解メッキを行なった。水洗
したところ、無電解メッキ膜がガラス基板より▲剥▼離
した。
Comparative Example 3 In Example 1, after the first electroless plating, the second electroless plating was performed continuously without heat treatment. When washed with water, the electroless plating film peeled off from the glass substrate.

【0033】比較例4 実施例1において、第二段無電解メッキ後に熱処理をし
なかった以外は同様にして磁気記録媒体を作製した。得
られた磁気記録媒体について、実施例1におけるのと同
様の密着性テストを行なったところ、無電解Ni−Pメ
ッキ膜が▲剥▼離した。
Comparative Example 4 A magnetic recording medium was produced in the same manner as in Example 1, except that no heat treatment was performed after the second electroless plating. When the obtained magnetic recording medium was subjected to the same adhesion test as in Example 1, the electroless Ni--P plating film was found to have peeled off.

【0034】実施例2 第二段無電解メッキのメッキ浴を銅メッキ浴(奥野製薬
(株)、OPC−750)とし、浴温度23℃、pH1
2.9で無電解銅メッキ膜を形成し、総膜厚2000Å
とし、続く熱処理を300℃、1時間の熱処理とした以
外は実施例1と同様にした。密着性テストで▲剥▼離は
なく、また耐候性テストでも腐食が認められなかった。
Example 2 The plating bath for the second stage electroless plating was a copper plating bath (Okuno Pharmaceutical Co., Ltd., OPC-750), and the bath temperature was 23°C and the pH was 1.
In step 2.9, an electroless copper plating film is formed, with a total film thickness of 2000 Å.
The procedure was the same as in Example 1 except that the subsequent heat treatment was performed at 300° C. for 1 hour. There was no peeling in the adhesion test, and no corrosion was observed in the weather resistance test.

【0035】実施例3 Cr下引き層及び磁性層のスパッタ成膜をスパッタ装置
の基板ホルダーに−200Vの負の電位を印加しながら
、行なった以外は、実施例1と同様にして磁気記録媒体
を作製した。この磁気記録媒体の保磁力を、試料振動式
磁力計VSMにて測定したところ1400Oe(エルス
テッド)あった。密着性テストで▲剥▼離はなく、耐候
性テストでも腐食は認められなかった。
Example 3 A magnetic recording medium was fabricated in the same manner as in Example 1, except that the Cr undercoat layer and magnetic layer were formed by sputtering while applying a negative potential of -200V to the substrate holder of the sputtering device. was created. The coercive force of this magnetic recording medium was measured using a vibrating sample magnetometer VSM and was found to be 1400 Oe (Oersted). There was no peeling in the adhesion test, and no corrosion was observed in the weather resistance test.

【0036】比較例5 比較例1において、実施例3におけるのと同様にしてC
r下引き層、磁性層及びカーボン保護層のスパッタ成膜
を行って磁気記録媒体を作製した。得られた磁気記録媒
体について実施例1におけるのと同様の保磁力の測定を
行なったところ、800Oeであった。
Comparative Example 5 In Comparative Example 1, C
A magnetic recording medium was manufactured by sputtering a subbing layer, a magnetic layer, and a carbon protective layer. When the coercive force of the obtained magnetic recording medium was measured in the same manner as in Example 1, it was found to be 800 Oe.

【0037】[0037]

【発明の効果】本発明によれば、ガラス基板からのアル
カリ分の溶出及び水分の影響を防止でき、更にガラス基
板に導電性を付与することができることから、耐候性に
優れ、かつ、磁気特性が良好な、ガラス基板を用いた磁
気記録媒体が得られる。また、アルカリ成分の溶出量の
すくない特殊組成のガラスを使用せず、安価にガラス基
板を用いた磁気記録媒体が得られる。
Effects of the Invention According to the present invention, it is possible to prevent the elution of alkaline components from the glass substrate and the influence of moisture, and it is also possible to impart conductivity to the glass substrate, so it has excellent weather resistance and magnetic properties. A magnetic recording medium using a glass substrate with good properties can be obtained. Furthermore, a magnetic recording medium using a glass substrate can be obtained at low cost without using a glass having a special composition in which the amount of alkaline components eluted is small.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  無電解メッキ法により厚さ1000Å
以上の無電解メッキ層を積層したガラス基板の上に、磁
性層を設けたことを特徴とする磁気記録媒体。
[Claim 1] Thickness: 1000 Å by electroless plating method
A magnetic recording medium characterized in that a magnetic layer is provided on a glass substrate on which the electroless plating layer described above is laminated.
【請求項2】  中心線平均粗さRa10Å以下で最大
高さRmax150Å以下の表面粗さのガラス基板に、
初めに無電解メッキ法により厚さ300Å以下の無電解
メッキ層を設けた後に150〜400℃の温度で熱処理
を施し、更にその上に無電解メッキ法により無電解メッ
キ層を形成した後、150〜400℃の温度で熱処理を
施すことによって総厚み1000Å以上の無電解メッキ
層を設けたガラス基板の上に、磁性層を設けることを特
徴とする磁気記録媒体の製造法。
2. A glass substrate having a surface roughness with a center line average roughness Ra of 10 Å or less and a maximum height Rmax of 150 Å or less,
First, an electroless plating layer with a thickness of 300 Å or less is provided by an electroless plating method, and then heat treatment is performed at a temperature of 150 to 400°C. A method for manufacturing a magnetic recording medium, comprising providing a magnetic layer on a glass substrate provided with an electroless plating layer having a total thickness of 1000 Å or more by heat treatment at a temperature of ~400°C.
JP5703091A 1991-03-20 1991-03-20 Magnetic recording medium and production thereof Pending JPH04291018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5703091A JPH04291018A (en) 1991-03-20 1991-03-20 Magnetic recording medium and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5703091A JPH04291018A (en) 1991-03-20 1991-03-20 Magnetic recording medium and production thereof

Publications (1)

Publication Number Publication Date
JPH04291018A true JPH04291018A (en) 1992-10-15

Family

ID=13044045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5703091A Pending JPH04291018A (en) 1991-03-20 1991-03-20 Magnetic recording medium and production thereof

Country Status (1)

Country Link
JP (1) JPH04291018A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6378338B1 (en) * 1998-08-31 2002-04-30 Showa Denko K.K. Method for producing magnetic disk substrates
WO2012046712A1 (en) * 2010-10-07 2012-04-12 東洋鋼鈑株式会社 Method for producing substrate for hard disk, and substrate for hard disk

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6378338B1 (en) * 1998-08-31 2002-04-30 Showa Denko K.K. Method for producing magnetic disk substrates
WO2012046712A1 (en) * 2010-10-07 2012-04-12 東洋鋼鈑株式会社 Method for producing substrate for hard disk, and substrate for hard disk
US8940419B2 (en) 2010-10-07 2015-01-27 Toyo Kohan Co., Ltd. Method for production of hard disk substrate and hard disk substrate
JP5705230B2 (en) * 2010-10-07 2015-04-22 東洋鋼鈑株式会社 Hard disk substrate manufacturing method and hard disk substrate

Similar Documents

Publication Publication Date Title
US6120890A (en) Magnetic thin film medium comprising amorphous sealing layer for reduced lithium migration
US3212918A (en) Electroless plating process
US5405646A (en) Method of manufacture thin film magnetic disk
US6316097B1 (en) Electroless plating process for alternative memory disk substrates
US7514118B2 (en) Method of electroless plating on a glass substrate and method of manufacturing a magnetic recording medium using the method of electroless plating
JPH0258729A (en) Magnetic disk substrate and its production
US5437887A (en) Method of preparing aluminum memory disks
US3953654A (en) Temperature-stable non-magnetic alloy
US3321328A (en) Coating of aluminum substrates with a magnetic material
JP2006291269A (en) Plating method on glass base, and magnetic recording medium manufacturing method using the same
JPH04291018A (en) Magnetic recording medium and production thereof
JPH02285508A (en) Magnetic recording medium
US4042382A (en) Temperature-stable non-magnetic alloy
US3595630A (en) Magnetic storage medium
US3970433A (en) Recording surface substrate
JPH04295614A (en) Magnetic recording medium
JPH05314471A (en) Substrate for magnetic recording medium and manufacture of the same and magnetic recording medium
JP2819839B2 (en) Magnetic disk substrate and magnetic recording medium using the same
JPH04255908A (en) Substrate for magnetic disk
JP2615804B2 (en) Manufacturing method of magnetic recording medium
JP2811167B2 (en) Substrate for magnetic disk
JPS5837616B2 (en) Manufacturing method for magnetic recording media
JP3310563B2 (en) Magnetic recording medium and method of manufacturing the same
JPH0310085A (en) Surface treatment for substrate
KR920001571B1 (en) Magnetic disc and its manufacturing method