JPH04290425A - Formation of heat-resisting wiring - Google Patents

Formation of heat-resisting wiring

Info

Publication number
JPH04290425A
JPH04290425A JP5502891A JP5502891A JPH04290425A JP H04290425 A JPH04290425 A JP H04290425A JP 5502891 A JP5502891 A JP 5502891A JP 5502891 A JP5502891 A JP 5502891A JP H04290425 A JPH04290425 A JP H04290425A
Authority
JP
Japan
Prior art keywords
layer
contact hole
wiring
forming
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5502891A
Other languages
Japanese (ja)
Inventor
Takaaki Miyamoto
孝章 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5502891A priority Critical patent/JPH04290425A/en
Publication of JPH04290425A publication Critical patent/JPH04290425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form a heat-resisting wiring able to easily form a barrier layer inside a contact hole in order to prevent siliciding of a high melting point metal such as tungsten (W) and Si. CONSTITUTION:An insulating layer 2 is formed on a silicon substrate 1, a contact hole 3 to expose the surface of the silicon substrate 1 is formed on the insulating layer 2, a titanium silicide buried layer 4 is selectively formed inside the contact hole 3 and a titanium nitride layer 5 is allover formed followed by forming a high melting point layer 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、耐熱性配線の形成方法
に係り、特に超LSI等のように高集積化を図るために
必要な電気抵抗が低い耐熱性配線の形成方法に関するも
のである。
[Field of Industrial Application] The present invention relates to a method for forming heat-resistant wiring, and more particularly to a method for forming heat-resistant wiring with low electrical resistance, which is necessary for achieving high integration such as in ultra-LSIs. .

【0002】0002

【従来の技術】サブミクロン以下の寸法の微細化が設計
上必要とされる超LSIでは、第1層の配線よりも上層
に負荷トランジスタ(Tr)等を形成することが考えら
れている。このために第1層の配線およびこの配線とそ
の近傍の拡散層とのコンタクトが、少なくともTr形成
のプロセスに耐える耐熱性(例えば900℃以上)を有
し、しかも電気抵抗が低いことを要する。
2. Description of the Related Art In ultra-LSIs whose design requires miniaturization of submicron dimensions or less, it has been considered to form load transistors (Tr) and the like in a layer above the first layer wiring. For this purpose, it is necessary that the first layer wiring and the contact between the wiring and the diffusion layer in the vicinity have heat resistance (for example, 900° C. or higher) that can at least withstand the process of forming the Tr, and have low electrical resistance.

【0003】0003

【発明が解決しようとする課題】900℃以上の耐熱性
を有し、電気抵抗が低い配線としては、高融点金属、特
にタングステン(W)を用いた配線が注目される。しか
し、LSIプロセスではWを例えば拡散層のシリコン(
Si)に直接被着させると、600℃以上の熱処理によ
りシリサイド化(WSi2)反応を生じ耐熱性コンタク
トが得られない。そこで、Wと拡散層との間に窒化チタ
ン(TiN)等のバリアメタル層を形成して、WとSi
のシリサイド化を防止する方法が考えられている。
Problems to be Solved by the Invention As wiring having heat resistance of 900° C. or higher and low electrical resistance, wiring using a high melting point metal, particularly tungsten (W), is attracting attention. However, in the LSI process, W is used, for example, in the silicon of the diffusion layer (
If it is directly deposited on Si), a silicidation (WSi2) reaction occurs due to heat treatment at 600° C. or higher, making it impossible to obtain a heat-resistant contact. Therefore, a barrier metal layer such as titanium nitride (TiN) is formed between W and the diffusion layer to
Methods are being considered to prevent silicide formation.

【0004】しかしながら、TiNをWとSi層に介在
させる方法も以下の如き問題があった。
However, the method of interposing TiN between the W and Si layers also has the following problems.

【0005】第1の問題は、バリアメタルとしてのTi
Nは、通常スパッタ法で形成されるために、W配線用コ
ンタクトホール開口の径が微細化し、なおかつその深さ
が深くなると、図4(a)に示すように、TiN14が
Si基板11上のSiO2層間絶縁膜12のコンタクト
ホール13下部では薄く被着し、上部ではオーバーハン
グ(上方になるにしたがって開口部が狭くなる)が生じ
るので、その後の全面W15被着がTiN14の被着形
成状態により図4(b)に示すようにコンタクトホール
底部でボイド等の空隙部16を形成することがある。
The first problem is that Ti as a barrier metal
Since N is usually formed by a sputtering method, as the diameter of the contact hole opening for W wiring becomes finer and its depth becomes deeper, TiN 14 is formed on the Si substrate 11 as shown in FIG. 4(a). The SiO2 interlayer insulating film 12 is thinly deposited at the bottom of the contact hole 13, and an overhang occurs at the top (the opening becomes narrower as it goes upward). As shown in FIG. 4(b), a void 16 such as a void may be formed at the bottom of the contact hole.

【0006】第2の問題は、TiNは上記スパッタ法の
他、CVD(化学気相成長)法で形成するプロセスが知
られている。しかし、まだ開発の段階であり、例えば塩
素(Cl)等の不純物をTiN内に取り込み、要求され
るバリア性を低下させることである。
[0006] The second problem is that, in addition to the above-mentioned sputtering method, a process for forming TiN using a CVD (chemical vapor deposition) method is known. However, it is still in the development stage, and the challenge is to introduce impurities, such as chlorine (Cl), into TiN and reduce the required barrier properties.

【0007】本発明は、タングステン(W)等の高融点
金属と、Siとのシリサイド化を防止するためコンタク
トホール内にバリア層を容易に形成しうる耐熱性配線の
形成方法を提供することを目的とする。
An object of the present invention is to provide a method for forming a heat-resistant wiring that can easily form a barrier layer in a contact hole to prevent silicidation between a high-melting point metal such as tungsten (W) and Si. purpose.

【0008】[0008]

【課題を解決するための手段】上記課題は本発明によれ
ば、シリコン基板上に絶縁層を形成し、前記シリコン基
板表面を露出させるコンタクトホールを前記絶縁層に形
成し、前記コンタクトホール内に前記シリコン基板とコ
ンタクトするチタンシリサイド埋込み層を選択的に形成
し、バリア層および密着層としての窒化チタン層を全面
に形成した後、高融点金属層を全面に形成して前記チタ
ンシリサイド埋込み層とコンタクトする配線を形成する
ことを特徴とする耐熱性配線の形成方法によって解決さ
れる。
[Means for Solving the Problems] According to the present invention, an insulating layer is formed on a silicon substrate, a contact hole exposing the surface of the silicon substrate is formed in the insulating layer, and a contact hole is formed in the contact hole. After selectively forming a titanium silicide buried layer in contact with the silicon substrate, and forming a titanium nitride layer as a barrier layer and an adhesion layer on the entire surface, a high melting point metal layer is formed on the entire surface to connect with the titanium silicide buried layer. The problem is solved by a method for forming heat-resistant wiring, which is characterized by forming contact wiring.

【0009】更に、上記課題は本発明によれば、上記方
法におけるチタンシリサイド埋込み層を形成した後、該
チタンシリサイド埋込み層上にのみ自己整合的にバリア
層としての窒化チタン層を予め形成することによっても
解決される。
Furthermore, according to the present invention, the above problem is solved by forming a titanium nitride layer as a barrier layer in advance in a self-aligned manner only on the titanium silicide buried layer after forming the titanium silicide buried layer in the above method. It is also solved by

【0010】本発明では、コンタクトホールは開口幅が
サブミクロンの微細な場合で特に開口径より深さが大き
な(アスペクト比が大)場合に有効である。また、本発
明ではチタンシリサイド埋込み層の厚さがコンタクトホ
ール深さの1/2以上であればアスペクト比を小にする
上で好ましい。本発明では、高融点金属としてタングス
テン、モリブデン等が好ましく用いられる。また本発明
ではチタンシリサイド埋込み層上にのみ自己整合的にバ
リア層として窒化チタン層を形成する方法として、NH
3等の窒素雰囲気中でTiSi2を熱処理することによ
り容易に得られる。
[0010] The present invention is effective when the contact hole has a submicron opening width and is particularly effective when the depth is larger than the opening diameter (large aspect ratio). Further, in the present invention, it is preferable that the thickness of the titanium silicide buried layer is 1/2 or more of the contact hole depth in order to reduce the aspect ratio. In the present invention, tungsten, molybdenum, etc. are preferably used as the high melting point metal. In addition, in the present invention, as a method for forming a titanium nitride layer as a barrier layer only on a titanium silicide buried layer in a self-aligned manner, NH
It can be easily obtained by heat treating TiSi2 in a nitrogen atmosphere such as No. 3.

【0011】[0011]

【作用】本発明によれば、アスペクト比が大きなコンタ
クトホール内に予めチタンシリサイドを埋込みアスペク
ト比を小にしているため、バリア層、密着層としてのT
iN膜を良好に、しかも容易に形成できる。そのため、
耐熱性配線も確実に形成される。
[Operation] According to the present invention, since titanium silicide is buried in advance in a contact hole with a large aspect ratio to reduce the aspect ratio, T.
An iN film can be formed easily and favorably. Therefore,
Heat-resistant wiring can also be reliably formed.

【0012】0012

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings.

【0013】図1および図2は本発明の第1実施例を示
す工程断面図であり、特に図1は前半の工程、図2は後
半の工程を示す。
FIGS. 1 and 2 are process cross-sectional views showing a first embodiment of the present invention. In particular, FIG. 1 shows the first half of the process, and FIG. 2 shows the second half of the process.

【0014】まず、図1(a)に示すように、Si基板
1上の、例えば層間絶縁膜である厚さ8000オングス
トロームのSiO2膜2に径0.4μmのコンタクトホ
ール3を形成した後、SiH4とTiCl4を反応ガス
としてTiSi2をコンタクトホール内に約6400オ
ングストローム(コンタクトホール深さの80%)の厚
さに選択的に埋込み、TiSi2埋込み層4を形成する
First, as shown in FIG. 1(a), a contact hole 3 with a diameter of 0.4 μm is formed in a SiO2 film 2 with a thickness of 8000 angstroms, which is an interlayer insulating film, for example, on a Si substrate 1, and then SiH4 A TiSi2 buried layer 4 is formed by selectively burying TiSi2 into the contact hole to a thickness of about 6400 angstroms (80% of the contact hole depth) using and TiCl4 as a reactive gas.

【0015】TiSi2埋込み層4の成長条件は、反応
ガスTiCl4とSiH4の流量をそれぞれ0.15S
CCM、50SCCMとし、成長温度を720〜740
℃、圧力を1×10−3〜5×10−5Torrとした
The growth conditions for the TiSi2 buried layer 4 are such that the flow rates of the reactive gases TiCl4 and SiH4 are each 0.15S.
CCM, 50SCCM, growth temperature 720-740
℃ and the pressure was 1×10 −3 to 5×10 −5 Torr.

【0016】次に、図1(b)に示すように、NH3雰
囲気中でTiSi2埋込み層4をアニールし、その表面
を窒化し、厚さ約300オングストロームのTiN膜5
を形成する。アニール条件は熱処理温度を700〜10
00℃で20秒間行なった。
Next, as shown in FIG. 1(b), the TiSi2 buried layer 4 is annealed in an NH3 atmosphere, its surface is nitrided, and a TiN film 5 with a thickness of approximately 300 angstroms is formed.
form. Annealing conditions include heat treatment temperature of 700 to 10
The test was carried out at 00°C for 20 seconds.

【0017】次に、図1(c)に示すように、ブランケ
ットタングステン(全面被着W)の密着層としてスパッ
タ法を用いてスパッタTiNを堆積し、厚さ約1000
オングストロームスパッタTiN膜6を形成する。この
スパッタTiN膜6の形成ではコンタクトホール3が予
めTiSi2で埋め込まれ浅くなっているため、いわゆ
るアスペクト比が小となり、従来問題であったTiNの
オーバーハングも緩和され、図2で示す後工程の配線形
成にも悪影響を及ぼさない。
Next, as shown in FIG. 1(c), sputtered TiN was deposited using a sputtering method as an adhesion layer for blanket tungsten (W coated on the entire surface) to a thickness of approximately 1000 mm.
An angstrom sputtered TiN film 6 is formed. In the formation of this sputtered TiN film 6, the contact hole 3 is filled with TiSi2 in advance and becomes shallow, so the so-called aspect ratio becomes small, and the overhang of TiN, which was a conventional problem, is alleviated, and the post-process shown in FIG. It does not adversely affect wiring formation.

【0018】すなわち、スパッタTiN膜6を形成後、
図2(a)で示すように、コンタクトホールを埋め込む
ように全面にタングステン(W)をCVD法により被着
してW層7を形成する。このW層7のCVD条件は40
0℃の温度、30Torrの気圧及びキャリアガスH2
と原料ガスWF6の流量比(H2/WF6)を17.0
とした。
That is, after forming the sputtered TiN film 6,
As shown in FIG. 2A, a W layer 7 is formed by depositing tungsten (W) on the entire surface by CVD so as to fill the contact hole. The CVD conditions for this W layer 7 are 40
Temperature of 0°C, pressure of 30 Torr and carrier gas H2
and the flow rate ratio of raw material gas WF6 (H2/WF6) to 17.0.
And so.

【0019】次に、図2(b)に示すように、図2(a
)の状態からエッチバックによりW層7およびスパッタ
TiN層6を順次除去することによって、W埋込み配線
8が得られる。W層7のエッチバックの際のエッチング
では、SF6とO2(20%)の混合ガスを用いたRI
E(反応性イオンエッチング)を使用した。一方、スパ
ッタTiN膜6のエッチバックの際のエッチングではC
l2ガスを用いたRIEを使用した。また、W層7をエ
ッチバックせずに、そのまま配線として用いてもよい。
Next, as shown in FIG. 2(b), FIG.
), by sequentially removing the W layer 7 and the sputtered TiN layer 6 by etching back, the W buried wiring 8 is obtained. During the etch-back of the W layer 7, RI using a mixed gas of SF6 and O2 (20%) was performed.
E (reactive ion etching) was used. On the other hand, during etching back of the sputtered TiN film 6, C
RIE with l2 gas was used. Further, the W layer 7 may be used as a wiring without being etched back.

【0020】図3は本発明の第2実施例を示す工程断面
図であり、図から明らかなように、図1,2で示した第
1実施例において、TiSi2埋込み層4とスパッタT
iN膜6間の薄いTiN膜5が形成されていない実施例
である。すなわち、図1(a)の状態から直接図1(c
)以下で説明したと同様にスパッタTiN膜6を形成(
図3(a))し、W層7をCVD法で形成し(図3(b
))、更にW層7をエッチバックすることによってW埋
込み配線8が得られた。また、W層7をエッチバックせ
ずに、そのまま配線として用いてもよい。
FIG. 3 is a process sectional view showing a second embodiment of the present invention. As is clear from the figure, in the first embodiment shown in FIGS. 1 and 2, the TiSi2 buried layer 4 and the sputtered T
This is an example in which the thin TiN film 5 between the iN films 6 is not formed. In other words, directly from the state of FIG. 1(a) to FIG. 1(c)
) A sputtered TiN film 6 is formed in the same manner as explained below (
3(a)), and a W layer 7 is formed by CVD method (FIG. 3(b)).
)), and by further etching back the W layer 7, a W buried wiring 8 was obtained. Further, the W layer 7 may be used as a wiring without being etched back.

【0021】[0021]

【発明の効果】以上説明したように、この発明によれば
コンタクトホール底部にTiN/TiSi2構造を得て
コンタクトホールを予め浅くすることによって、アスペ
クト比を小にし、ブランケットタングステン(全面被着
W)の密着層バリア層であるスパッタTiNのオーバー
ハングを防止できると共に、例えばW配線ではチタンシ
リサイドと原料WF6とが直接接触されないため絶縁物
TiF3が形成されず低コンタクト抵抗も実現できる。
As explained above, according to the present invention, the TiN/TiSi2 structure is obtained at the bottom of the contact hole and the contact hole is made shallow in advance, thereby reducing the aspect ratio and reducing the blanket tungsten (full surface deposition). Overhang of sputtered TiN, which is the adhesion layer barrier layer, can be prevented, and, for example, in W wiring, the titanium silicide and the raw material WF6 are not in direct contact, so the insulator TiF3 is not formed, and low contact resistance can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の方法の第1実施例における前半の工程
断面図である。
FIG. 1 is a sectional view of the first half of the process in a first embodiment of the method of the present invention.

【図2】本発明の方法の第1実施例における後半の工程
断面図である。
FIG. 2 is a sectional view of the second half of the process in the first embodiment of the method of the present invention.

【図3】本発明の第2実施例を示す工程断面図である。FIG. 3 is a process sectional view showing a second embodiment of the present invention.

【図4】従来の技術を説明するための工程断面図である
FIG. 4 is a process sectional view for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

1,11  Si基板 2  SiO2膜 3,13  コンタクトホール 4  TiSi2埋込み層 5  TiN膜 6  スパッタTiN膜 7  W層 8  W埋め込み配線 12  SiO2層間絶縁膜 14  TiN 15  W 16  空隙部 1,11 Si substrate 2 SiO2 film 3,13 Contact hole 4 TiSi2 buried layer 5 TiN film 6 Sputtered TiN film 7 W layer 8 W embedded wiring 12 SiO2 interlayer insulation film 14 TiN 15 W 16 Void part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  シリコン基板上に絶縁層を形成し、前
記シリコン基板表面を露出させるコンタクトホールを前
記絶縁層に形成し、前記コンタクトホール内に前記シリ
コン基板とコンタクトするチタンシリサイド埋込み層を
選択的に形成し、バリア層および密着層としての窒化チ
タン層を全面に形成した後、高融点金属層を全面に形成
して前記チタンシリサイド埋込み層とコンタクトする配
線を形成することを特徴とする耐熱性配線の形成方法。
1. An insulating layer is formed on a silicon substrate, a contact hole is formed in the insulating layer to expose a surface of the silicon substrate, and a titanium silicide buried layer is selectively provided in the contact hole in contact with the silicon substrate. After forming a titanium nitride layer as a barrier layer and an adhesion layer on the entire surface, a high melting point metal layer is formed on the entire surface to form wiring in contact with the titanium silicide buried layer. How to form wiring.
【請求項2】  前記チタンシリサイド埋込み層を形成
した後、該チタンシリサイド埋込み層上にのみ自己整合
的にバリア層としての窒化チタン層を予め形成すること
を特徴とする請求項1記載の方法。
2. The method according to claim 1, wherein after forming the titanium silicide buried layer, a titanium nitride layer as a barrier layer is previously formed in a self-aligned manner only on the titanium silicide buried layer.
JP5502891A 1991-03-19 1991-03-19 Formation of heat-resisting wiring Pending JPH04290425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5502891A JPH04290425A (en) 1991-03-19 1991-03-19 Formation of heat-resisting wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5502891A JPH04290425A (en) 1991-03-19 1991-03-19 Formation of heat-resisting wiring

Publications (1)

Publication Number Publication Date
JPH04290425A true JPH04290425A (en) 1992-10-15

Family

ID=12987217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5502891A Pending JPH04290425A (en) 1991-03-19 1991-03-19 Formation of heat-resisting wiring

Country Status (1)

Country Link
JP (1) JPH04290425A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486874B1 (en) * 1998-06-30 2005-08-01 주식회사 하이닉스반도체 Bit line formation method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486874B1 (en) * 1998-06-30 2005-08-01 주식회사 하이닉스반도체 Bit line formation method of semiconductor device

Similar Documents

Publication Publication Date Title
US5877074A (en) Method for improving the electrical property of gate in polycide structure
US5397744A (en) Aluminum metallization method
US5635765A (en) Multi-layer gate structure
EP0898308A2 (en) A method for forming a metal interconnection in a semiconductor device
JPH0529254A (en) Forming method of wiring
US20010053586A1 (en) Methods for forming metal wiring layers and metal interconnects and metal interconnects formed thereby
US6461960B2 (en) Method of manufacturing a semiconductor device
KR100281887B1 (en) Manufacturing Method of Semiconductor Device
US6879043B2 (en) Electrode structure and method for fabricating the same
US6432805B1 (en) Co-deposition of nitrogen and metal for metal silicide formation
US6121139A (en) Ti-rich TiN insertion layer for suppression of bridging during a salicide procedure
JPH07254574A (en) Formation of electrode
JPH05129231A (en) Electrode wiring
JP4347479B2 (en) Field effect transistor
JPH0653165A (en) Method of forming metal plug
KR100480582B1 (en) Fabricating method of barrier film of semiconductor device and fabricating method of metal wiring using the same
KR0174878B1 (en) Diffusion Barrier Layer Formation Method
JP2542617B2 (en) Method for manufacturing semiconductor device
US6087259A (en) Method for forming bit lines of semiconductor devices
JPH1167688A (en) Silicide material, its thin-film and manufacture of silicide thin-film
JPH04290425A (en) Formation of heat-resisting wiring
JP3361971B2 (en) Metal nitride conversion method and semiconductor device manufacturing method
JP3246046B2 (en) Deposition method of refractory metal film
JPH09102469A (en) Manufacture of semiconductor device
JP2871943B2 (en) Method for manufacturing semiconductor device