JPH0428958A - Operation control device for freezer - Google Patents

Operation control device for freezer

Info

Publication number
JPH0428958A
JPH0428958A JP2135075A JP13507590A JPH0428958A JP H0428958 A JPH0428958 A JP H0428958A JP 2135075 A JP2135075 A JP 2135075A JP 13507590 A JP13507590 A JP 13507590A JP H0428958 A JPH0428958 A JP H0428958A
Authority
JP
Japan
Prior art keywords
suction
compressor
pressure
valve
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2135075A
Other languages
Japanese (ja)
Inventor
Katsuyuki Sawai
沢井 克行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2135075A priority Critical patent/JPH0428958A/en
Publication of JPH0428958A publication Critical patent/JPH0428958A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To eliminate a dangerous state of a breakage of a valve under a low surrounding air temperature and improve a reliability of a compressor by a method wherein as a suction gas pressure of a compressor is less than a predetermined value, an amount of suction gas is increased. CONSTITUTION:When a low refrigerant pressure is lower than a set pressure, a suction increasing means 23 opens a suction solenoid valve SV and returns it to its original state. That is, under a condition in which the low refrigerant pressure at a suction side of a compressor 11 is decreased to a lower pressure limit value or the like, a cooling load is low and the compressor 11 is controlled to its minimum capacity and an electrical expansion valve EV is controlled toward its metering direction, and at the same time a suction solenoid valve SV is controlled to its closed state. As the low refrigerant pressure is decreased more than a required pressure, the suction solenoid valve SV is opened in place of a controlling of the suction control means 22, a suction gas amount of the compressor 11 is increased and the low refrigerant pressure is increased. As a result, since the suction valve of the compressor 11 is not struck against a valve seat, it is possible to eliminate a dangerous state of cracking of valve, it is possible to improve a reliability of the compressor 11.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷凍コンテナに設けられる冷凍装置の運転制
御装置に関し、特に、圧縮機の吸入ガス圧力の制御対策
に係るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an operation control device for a refrigeration system installed in a refrigerated container, and particularly relates to measures for controlling the suction gas pressure of a compressor.

(従来の技術) 一般に、この種の冷凍装置における運転制御装置には、
実開昭63−46360号公報に開示されているように
、容量の可変な圧縮機と、凝縮器と、感温式膨張弁と、
蒸発器とを順に接続して冷媒循環回路が形成されると共
に、上記凝縮器と膨張弁とをバイパスするホットガス量
(イ/(ス路が設けられて構成されているものがある。
(Prior art) Generally, the operation control device for this type of refrigeration equipment includes:
As disclosed in Japanese Utility Model Application Publication No. 63-46360, a variable capacity compressor, a condenser, a temperature-sensitive expansion valve,
Some refrigerant circuits are connected in sequence to the evaporator to form a refrigerant circulation circuit, and are also provided with a hot gas flow path that bypasses the condenser and expansion valve.

そして、冷却負荷が変動して庫内温度が所定温度範囲よ
り高くなると、圧縮機の容量を増大させる一方、庫内温
度が上記所定温度範囲内にあるときは、ホ・ントガスバ
イパス路を流れるホ・ソトガス量を制御して庫内温度が
設定値に収束するようにしている。
When the cooling load fluctuates and the temperature inside the refrigerator rises above a predetermined temperature range, the capacity of the compressor is increased, while when the temperature inside the refrigerator is within the predetermined temperature range, the gas flows through the bypass path. The amount of gas is controlled so that the internal temperature converges to the set value.

(発明が解決しようとする課題) 上述した冷凍装置の運転制御装置において、圧縮機の容
量を低下しようとすると、冷媒循環回路を流れる液冷媒
量と、ホ・ソトガスノくイノぐス路を流れるホットガス
量とを同時に検出しなければならず、制御が難しくなる
という問題があった。
(Problem to be Solved by the Invention) In the operation control device for the refrigeration equipment described above, when attempting to reduce the capacity of the compressor, the amount of liquid refrigerant flowing through the refrigerant circulation circuit and the amount of hot water flowing through the hot gas flow path are reduced. There was a problem in that the amount of gas had to be detected at the same time, making control difficult.

そこで、電動膨張弁を用いて冷媒循環量を制御すると共
に、圧縮機の吸入側に吸入電磁弁を設け、該吸入電磁弁
によって圧縮機の吸入ガス量を制御することか考えられ
ている。
Therefore, it has been considered to use an electric expansion valve to control the amount of refrigerant circulation, and to also provide a suction solenoid valve on the suction side of the compressor, and use the suction solenoid valve to control the amount of gas sucked into the compressor.

しかしながら、上記電動膨張弁と吸入電磁弁とによる制
御において、冷蔵モード時に外気温度力(低い場合、冷
却負荷が少ないので、電動膨張弁は絞り方向に制御され
ると共に、吸入電磁弁は閉状態になり、冷媒は吸入電磁
弁のブリードポートを流れて圧縮機に吸込まれることに
なる。従って、上記圧縮機の吸入ガス圧力が極端に低下
し、例えば、圧力がOkg / c−以下に低下するこ
とになる。
However, in the control using the electric expansion valve and the suction solenoid valve, in the refrigeration mode, if the outside temperature is low, the cooling load is small, so the electric expansion valve is controlled in the throttle direction, and the suction solenoid valve is closed. Therefore, the refrigerant will flow through the bleed port of the suction solenoid valve and be sucked into the compressor.Therefore, the suction gas pressure of the compressor will be extremely reduced, for example, the pressure will drop to below Okg/c- It turns out.

この結果、圧縮機の吸入弁が弁座に叩き付けられ、弁割
れが生ずる危険性があり、圧縮機の信頼性か低くなると
いう問題があった。
As a result, there is a risk that the suction valve of the compressor will be slammed against the valve seat, causing the valve to crack, resulting in a problem that the reliability of the compressor will be reduced.

本発明は、斯かる点に鑑みてなされたもので、低外気温
度時における弁割れの危険性を解消し、圧縮機の信頼性
を向上させることを目的とするものである。
The present invention has been made in view of the above, and aims to eliminate the risk of valve cracking at low outside temperatures and improve the reliability of the compressor.

(課題を解決するための手段) 上記目的を達成するために、本発明が講じた手段は、圧
縮機の吸入ガス圧力が所定値以下になると、吸入ガス量
を増大させるようにしたものである。
(Means for Solving the Problems) In order to achieve the above object, the means taken by the present invention is to increase the amount of suction gas when the suction gas pressure of the compressor falls below a predetermined value. .

具体的に、第1図に示すように、請求項(1)に係る発
明が講じた手段は、先ず、圧縮機(11)と凝縮器(1
2)と膨張機構(EV)と蒸発器(14)とが順に接続
されて成る冷媒循環回路(1)が設けられている。そし
て、該冷媒循環回路(1)における蒸発器(14)と圧
縮機(1)との間に設けられ、該圧縮機(1)の吸入ガ
ス量を調節する吸入調節機構(SV)と、上記圧縮機(
11)の吸入ガス量を冷却負荷に応じて変化させるよう
に上記吸入調節機構(SV)を制御する吸入制御手段(
22)とが設けられている。加えて、上記圧縮機(11
)の吸入ガス圧力に関連する信号を検出する圧力検出手
段(LPS)と、該圧力検出手段(LPS)の検出圧力
が予め設定した低圧値以下になると、上記吸入制御手段
(22)の制御を中止して強制的に圧縮機(11)の吸
入ガス量を増大させるように上記吸入調節機構(SV)
を制御する吸入増大手段(23)とが設けられた構成と
している。
Specifically, as shown in FIG. 1, the measures taken by the invention according to claim (1) are as follows:
2), an expansion mechanism (EV), and an evaporator (14) are connected in this order to a refrigerant circulation circuit (1). and a suction adjustment mechanism (SV) that is provided between the evaporator (14) and the compressor (1) in the refrigerant circulation circuit (1) and adjusts the intake gas amount of the compressor (1); Compressor (
11) Suction control means (
22) is provided. In addition, the compressor (11
) for detecting a signal related to the suction gas pressure of the pressure detecting means (LPS), and when the detected pressure of the pressure detecting means (LPS) becomes less than a preset low pressure value, the suction control means (22) is controlled. the suction adjustment mechanism (SV) so as to forcibly increase the suction gas amount of the compressor (11)
The structure includes an inhalation increasing means (23) for controlling the inhalation amount.

また、請求項(aに係る発明が講じた手段は、上記請求
項(1)記載の発明において、上記膨張機構(EV)は
開度の調節自在な膨張弁(EV)によって構成される一
方、該膨張弁(EV)の開度を冷却負荷に応じて制御す
る膨張弁制御手段(21)が設けられた構成としている
Further, the means taken by the invention according to claim (a) is that in the invention according to claim (1), the expansion mechanism (EV) is constituted by an expansion valve (EV) whose opening degree can be freely adjusted; The configuration includes an expansion valve control means (21) that controls the opening degree of the expansion valve (EV) according to the cooling load.

(作用) 上記の構成により、請求項(1)に係る発明では、冷媒
は冷媒循環回路(1)を循環し、蒸発器(14)におい
て吸込んだ庫内空気を冷却して該冷却空気を庫内に吹出
し、該庫内を空調制御している。
(Function) With the above configuration, in the invention according to claim (1), the refrigerant circulates through the refrigerant circulation circuit (1), cools the indoor air sucked into the evaporator (14), and converts the cooled air into the storage. Air is blown into the warehouse to control the air conditioning inside the warehouse.

そして、上記冷媒循環回路(1)における冷媒循環量は
膨張機構(EV)で制御され、具体的に、請求項(2)
に係る発明では、膨張弁制御手段(21)が冷却負荷に
応じて膨張弁(EV)の開度を制御している。更に、圧
縮機(11)の吸入ガス量は吸入調節機構(SV)によ
って制御され、冷却負荷が低下し、蒸発温度が低下する
と、吸入制御手段(22)により吸入調節機構(SV)
が圧縮機(11)の吸入ガス量を低下させる。
The amount of refrigerant circulated in the refrigerant circulation circuit (1) is controlled by an expansion mechanism (EV).
In the invention according to the above, the expansion valve control means (21) controls the opening degree of the expansion valve (EV) according to the cooling load. Further, the suction gas amount of the compressor (11) is controlled by the suction adjustment mechanism (SV), and when the cooling load decreases and the evaporation temperature decreases, the suction control mechanism (SV) is controlled by the suction control means (22).
reduces the amount of gas sucked into the compressor (11).

一方、上記圧縮機(11)の吸入ガス圧力は圧力検出手
段(L P S)によって検出されており、冷却負荷か
低く、上記吸入ガス圧力が所定の低圧値以下になると、
例えば、圧縮機(11)の低圧限界値になると、吸入増
大手段(23)が上記吸入制御手段(22)の制御を中
止すると共に、吸入調節機構(SV)を制御し、圧縮機
(11)の吸入ガス量を増大させ、吸入ガス圧力を増大
させる。
On the other hand, the suction gas pressure of the compressor (11) is detected by the pressure detection means (LPS), and when the cooling load is low and the suction gas pressure falls below a predetermined low pressure value,
For example, when the low pressure limit value of the compressor (11) is reached, the suction increasing means (23) stops controlling the suction control means (22) and controls the suction adjustment mechanism (SV), increases the suction gas amount and suction gas pressure.

(発明の効果) 従って、請求項(1)に係る発明によれば、圧縮機(1
1)の吸入ガス圧力が予め設定された低圧値以下になる
と、該圧縮機(11)の吸入ガス量を増大させるように
したために、該圧縮機(11)の吸入ガス圧力の低下を
防止することができる。
(Effect of the invention) Therefore, according to the invention according to claim (1), the compressor (1
When the suction gas pressure in 1) falls below a preset low pressure value, the amount of suction gas in the compressor (11) is increased, thereby preventing the suction gas pressure in the compressor (11) from decreasing. be able to.

この結果、上記圧縮機(11)の吸入弁が弁座に叩き付
けられることがないので、弁割れの危険性を除去するこ
とができることから、圧縮機(11)の信頼性を向上さ
せることができる。
As a result, the suction valve of the compressor (11) is not slammed against the valve seat, which eliminates the risk of valve cracking, thereby improving the reliability of the compressor (11). .

また、請求項(2)に係る発明によれば、膨張弁(EV
)と吸入調節機構(SV)とによって圧縮機(11)の
吸入ガス量を冷却負荷に応じて精度良く制御することが
できる。
Further, according to the invention according to claim (2), the expansion valve (EV
) and the suction adjustment mechanism (SV), the amount of suction gas of the compressor (11) can be precisely controlled according to the cooling load.

(実施例) 以下、本発明の実施例を図面に基づいて詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第2図に示すように、(1)は冷凍コンテナに設けられ
る冷凍装置の冷媒循環回路であって、図示しないコンテ
ナ本体内を冷却するものである。
As shown in FIG. 2, (1) is a refrigerant circulation circuit of a refrigeration system provided in a refrigerated container, which cools the inside of the container body (not shown).

該冷媒循環回路(1)は、容量の可変な圧縮機(11)
と、凝縮器(12)と、レシーバ(13)と、膨張機構
である電動膨張弁(E V)と、蒸発器(14)と、ア
キュームレータ(15)と、ブリードポートを有する吸
入調節機構である吸入電磁弁(SV)とが順に冷媒配管
(16)によって接続されて閉回路に構成されている。
The refrigerant circulation circuit (1) includes a variable capacity compressor (11)
, a condenser (12), a receiver (13), an electric expansion valve (EV) which is an expansion mechanism, an evaporator (14), an accumulator (15), and a suction adjustment mechanism having a bleed port. A suction solenoid valve (SV) is connected in turn through a refrigerant pipe (16) to form a closed circuit.

そして、上記凝縮器(12)には庫外ファン(12a)
が、蒸発器(14)には庫内ファン(14a)がそれぞ
れ付設される一方、上記圧縮機(11)と凝縮器(12
)との間には3方電磁弁(T V)が介設されている。
The condenser (12) is equipped with an external fan (12a).
However, the evaporator (14) is provided with an internal fan (14a), while the compressor (11) and condenser (12) are provided with an internal fan (14a).
) A three-way solenoid valve (TV) is interposed between the two.

該3方電磁弁(T V)にはホットガスバイパス路(1
7)の一端が接続され、該ホットガスバイパス路(17
)は他端が上記電動膨張弁(EV)と蒸発器(14)と
の間に接続されると共に、ドレンパンヒータ(17a)
が形成されている。そして、上記ホットガスバイパス路
(17)はデフロスト運転時にホットガスを圧縮機(1
1)から蒸発器(14)に供給し、該蒸発器(14)等
の着霜を融解するように構成されている。
The three-way solenoid valve (TV) has a hot gas bypass path (1
7) is connected to the hot gas bypass path (17).
) is connected at its other end between the electric expansion valve (EV) and the evaporator (14), and is connected to the drain pan heater (17a).
is formed. The hot gas bypass passage (17) supplies hot gas to the compressor (17) during defrost operation.
1) to an evaporator (14) to melt frost on the evaporator (14), etc.

また、上記冷凍装置には各種のセンサが設けられており
、(HPS)は圧縮機(11)の吐出側の高圧冷媒圧力
を検出する高圧センサ、(L P S)は圧縮機(11
)の吸入側の低圧冷媒圧力(低圧ガス圧力)を検出する
圧力検出手段としての低圧センサ、(Thl)は蒸発器
(14)の入口側の液管温度を検出する液管温度センサ
、(Th2)は蒸発器(14)の出口側のガス管温度を
検出するガス管温度センサ、(Th3)は蒸発器(14
)の空気吸込側の吸込空気温度を検出する吸込温度セン
サ、(Th4)は蒸発器(14)の空気吹出側の吹出空
気温度を検出する吹出温度センサである。
The refrigeration system is also equipped with various sensors, including (HPS) a high-pressure sensor that detects the high-pressure refrigerant pressure on the discharge side of the compressor (11), and (LPS) a high-pressure sensor that detects the high-pressure refrigerant pressure on the discharge side of the compressor (11).
) is a low pressure sensor as a pressure detection means for detecting the low pressure refrigerant pressure (low pressure gas pressure) on the suction side of the evaporator (14), (Thl) is a liquid pipe temperature sensor that detects the liquid pipe temperature on the inlet side of the evaporator (14), (Th2 ) is a gas pipe temperature sensor that detects the gas pipe temperature on the outlet side of the evaporator (14), and (Th3) is a gas pipe temperature sensor that detects the gas pipe temperature on the outlet side of the evaporator (14).
) is a suction temperature sensor that detects the intake air temperature on the air suction side, and (Th4) is a blowout temperature sensor that detects the blowout air temperature on the air blowout side of the evaporator (14).

そして、上記各センサ(HPS)、  (Thl)〜(
Th5)の検出信号はコントローラ(2)に入力される
一方、該コントローラ(2)には、上記電動膨張弁(E
 V)を制御する膨張弁制御手段(21)と、上記吸入
電磁弁(SV)を制御する吸入制御手段(22)とが構
成されている。該膨張弁制御手段(21)は、冷凍モー
ド時には液管温度センサ(Thl)とガス管温度センサ
(Th2)との検出信号に基づく過熱度によって電動膨
張弁(EV)をPID制御すると共に、冷蔵モード時に
は吹出温度センサ(Th4)の検出信号にに基づく吹出
空気温度によって電動膨張弁(EV)をPID制御する
ように構成されている。一方、上記吸入制御手段(22
)は、冷凍モード時には吸入電磁弁(SV)を全開に制
御すると共に、冷蔵モード時には蒸発温度か低下すると
、例えば、電動膨張弁(EV)の所定低開度か一定時間
継続すると吸入電磁弁(SV’)を閉動するように構成
されている。そして、該吸入電磁(SV)は全閉時に冷
媒がブリードポートを流れるように構成されている。
Then, each of the above sensors (HPS), (Thl) ~ (
The detection signal of the electric expansion valve (E) is input to the controller (2).
An expansion valve control means (21) for controlling the suction solenoid valve (SV), and a suction control means (22) for controlling the suction solenoid valve (SV). The expansion valve control means (21) performs PID control of the electric expansion valve (EV) based on the degree of superheating based on detection signals from a liquid pipe temperature sensor (Thl) and a gas pipe temperature sensor (Th2) in the refrigeration mode. In the mode, the electric expansion valve (EV) is configured to be PID-controlled based on the blowout air temperature based on the detection signal of the blowout temperature sensor (Th4). On the other hand, the suction control means (22
) controls the suction solenoid valve (SV) to be fully open in the freezing mode, and when the evaporation temperature drops in the refrigeration mode, for example, if the electric expansion valve (EV) is opened at a predetermined low opening or continues for a certain period of time, the suction solenoid valve (SV) is controlled to be fully open. SV'). The suction solenoid (SV) is configured such that refrigerant flows through the bleed port when it is fully closed.

また、上記コントローラ(2)は冷却負荷に対応して圧
縮機(11)の容量を制御すると共に、デフロスト時に
はホットガスがホットガスバイパス路(17)を流れる
ように3方電動弁(TV)を制御している。
The controller (2) also controls the capacity of the compressor (11) according to the cooling load, and also operates a three-way electric valve (TV) so that hot gas flows through the hot gas bypass path (17) during defrosting. It's in control.

更に、上記コントローラ(2)には圧縮機(11)の吸
入ガス量を増大させる吸入増大手段(23)が構成され
ている。該吸入増大手段(23)は冷蔵モード時におい
て上記低圧センサ(LPS)の検出低圧冷媒圧力が予め
設定された低圧値以下になると、例えば、圧縮機(11
)に定められている低圧限界点であるO kg / c
−より低下すると、上記吸入制御手段(22)の制御を
中止すると同時に、吸入電磁弁(SV)を開動するよう
に構成されている。
Further, the controller (2) is provided with suction increasing means (23) for increasing the amount of gas suctioned by the compressor (11). When the low pressure refrigerant pressure detected by the low pressure sensor (LPS) falls below a preset low pressure value in the refrigeration mode, the suction increasing means (23), for example, increases the pressure of the compressor (11).
) is the low pressure limit point defined in O kg/c
- When the intake temperature drops below -, the control of the intake control means (22) is stopped and at the same time, the intake solenoid valve (SV) is opened.

次に、上記冷凍装置の運転動作について説明する。Next, the operation of the above-mentioned refrigeration system will be explained.

先ず、圧縮機(11)より吐出した冷媒は凝縮器(12
)で凝縮し、電動膨張弁(EV)で膨張した後、蒸発器
(14)で蒸発して圧縮機(11)に戻り、コンテナ本
体内を冷却している。
First, the refrigerant discharged from the compressor (11) is passed through the condenser (12).
), and after being expanded by an electric expansion valve (EV), it is evaporated in an evaporator (14) and returned to the compressor (11), cooling the inside of the container body.

そして、冷凍モード時において、電動膨張弁(EV)は
蒸発器(14)入口側の液管温度と出口側のガス管温度
とに基づく過熱度が一定になるように膨張弁制御手段(
21)によってPID制御されている。また、冷蔵モー
ド時において、電動膨張弁(EV)は蒸発器(14)の
吹出空気温度が設定温度になるように膨張弁制御手段(
21)によってPID制御されている。更に、冷蔵モー
ド時において、冷却負荷が小さく、蒸発温度か低下する
と、例えば、電動膨張弁(E V)の低開度が所定時間
継続すると、吸入制御手段(22)が吸入電磁弁(SV
)を開動する。これにより、冷媒は吸入電磁弁(SV)
のブリードポートを流れて圧縮機(11)に吸込まれ、
該圧縮機(11)の能力を低下させている。
In the freezing mode, the electric expansion valve (EV) controls the expansion valve control means (
21). In addition, in the refrigeration mode, the electric expansion valve (EV) controls the expansion valve control means (EV) so that the temperature of the air blown from the evaporator (14) reaches the set temperature.
21). Furthermore, in the refrigeration mode, if the cooling load is small and the evaporation temperature drops, for example, if the electric expansion valve (EV) continues to open at a low degree for a predetermined period of time, the suction control means (22) controls the suction solenoid valve (SV).
). This allows the refrigerant to flow through the suction solenoid valve (SV).
flows through the bleed port and is sucked into the compressor (11),
The capacity of the compressor (11) is reduced.

次に、本発明の特徴とする低外気温度時における吸入電
磁弁(SV)の制作動作を第3図に基づいて説明する。
Next, the manufacturing operation of the intake solenoid valve (SV) at low outside temperature, which is a feature of the present invention, will be explained based on FIG.

先ず、ステップSTIにおいて、コントローラ(2)は
低圧センサ(LPS)が検出する低圧冷媒圧力を取込ん
でいる。続いて、ステップST2に移り、上記低圧冷媒
圧力が設定圧より低くなったか否かを吸入増大手段(2
3)が判定する。そして、上記電動膨張弁(EV)及び
吸入電磁弁(SV)は、上述の如く冷蔵モード時に冷却
負荷に対応して制御される一方、上記設定圧は圧縮機(
11)の低圧限界値、例えば、Okg / cdに定め
られており、上記低圧冷媒圧力が設定圧より大きい場合
にはステップST2よりステップST1に戻り、通常の
冷蔵モード運転が継続される。
First, in step STI, the controller (2) takes in the low pressure refrigerant pressure detected by the low pressure sensor (LPS). Next, the process moves to step ST2, where the suction increasing means (2) determines whether the low-pressure refrigerant pressure has become lower than the set pressure.
3) is determined. The electric expansion valve (EV) and the intake solenoid valve (SV) are controlled according to the cooling load in the refrigeration mode as described above, while the set pressure is controlled by the compressor (
11) is set at a low pressure limit value, for example, Okg/cd, and if the low pressure refrigerant pressure is higher than the set pressure, the process returns from step ST2 to step ST1, and normal refrigeration mode operation is continued.

一方、上記ステップST2において、低圧冷媒圧力が設
定圧より低くなると、判定がYESとなり、ステップS
T3に移り、吸入増大手段(23)が吸入電磁弁(SV
)を開動させてリターンすることになる。つまり、圧縮
機(11)の吸入側である低圧冷媒圧力が低圧限界値等
にまで低下している状態にあっては、冷却負荷が小さい
状態であり、圧縮機(11)は最低容量に、電動膨張弁
(EV)は絞り方向にそれぞれ制御されると共に、吸入
電磁弁(SV)は閉動状態に制御されている。
On the other hand, in step ST2, when the low-pressure refrigerant pressure becomes lower than the set pressure, the determination becomes YES, and step ST2
Moving to T3, the suction increasing means (23) operates the suction solenoid valve (SV
) and return. In other words, when the low-pressure refrigerant pressure on the suction side of the compressor (11) has decreased to the low-pressure limit value, the cooling load is small, and the compressor (11) is at its lowest capacity. The electric expansion valves (EV) are each controlled in the throttle direction, and the intake solenoid valve (SV) is controlled to be in a closed state.

そこで、上記低圧冷媒圧力が必要以上に低下すると、上
記吸入制御手段(22)の制御に代えて吸入電磁弁(S
V)を開動し、圧縮機(11)の吸入ガス量を増大させ
、低圧冷媒圧力を上昇させている。
Therefore, when the low-pressure refrigerant pressure drops more than necessary, the suction solenoid valve (S) replaces the control of the suction control means (22).
V) is opened to increase the amount of gas sucked into the compressor (11) and raise the low-pressure refrigerant pressure.

従って、上記圧縮機(11)の吸入冷媒圧力が予め設定
された設定値以下になると、該圧縮機(11)の吸入ガ
ス量を増大させるようにしたために、該圧縮機(11)
の吸入冷媒圧力の低下を防止することができる。この結
果、上記圧縮機(11)の吸入弁が弁座に叩き付けられ
ることがないので、弁割れの危険性を除去することがで
きることから、圧縮機(11)の信頼性を向上させるこ
とができる。
Therefore, when the suction refrigerant pressure of the compressor (11) becomes lower than a preset value, the amount of suction gas of the compressor (11) is increased.
This can prevent a drop in suction refrigerant pressure. As a result, the suction valve of the compressor (11) is not slammed against the valve seat, which eliminates the risk of valve cracking, thereby improving the reliability of the compressor (11). .

また、上記電動膨張弁(EV)と吸入電磁弁(SV)と
によって圧縮機(11)の吸入ガス量を冷却負荷に応じ
て精度良く制御することができる。
Moreover, the amount of intake gas of the compressor (11) can be accurately controlled according to the cooling load by the electric expansion valve (EV) and the intake solenoid valve (SV).

尚、上記実施例において、吸入調節機構はブリ−ドポー
トを備えた吸入電磁弁(SV)によって構成したが、電
磁弁と並列にキャピラリーチューブを有するバイパス路
を設けたものでもよい。
In the above embodiment, the suction adjustment mechanism is constituted by a suction solenoid valve (SV) equipped with a bleed port, but a bypass passage having a capillary tube may be provided in parallel with the solenoid valve.

また、圧力検出手段は、低圧センサ(L P S)の他
、圧縮機(11)の吸入ガス圧力に関連する信号を検出
するものであればよい。
In addition to the low pressure sensor (LPS), the pressure detection means may be any device that detects a signal related to the suction gas pressure of the compressor (11).

また、冷媒循環回路(1)は実施例に限られるものでは
ない。
Further, the refrigerant circulation circuit (1) is not limited to the embodiment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図である。 第2図及び第3図は本発明の一実施例を示し、第2図は
冷媒循環回路を示す冷媒回路図、第3図は吸入電磁弁の
制御フロー図である。 (1)・・・冷媒循環回路 (2)・・・コントローラ (11)・・・圧縮機 (12)・・・凝縮器 (14)・・・蒸発器 (21)・・・膨張弁制御手段 (22)・・・吸入制御手段 (23)・・・吸入増大手段 (EV)・・・電動膨張弁 (SV)・・・吸入電磁弁 (LPS)・・・低圧センサ ほか1名
FIG. 1 is a block diagram showing the configuration of the present invention. 2 and 3 show an embodiment of the present invention, FIG. 2 is a refrigerant circuit diagram showing a refrigerant circulation circuit, and FIG. 3 is a control flow diagram of a suction solenoid valve. (1)...Refrigerant circulation circuit (2)...Controller (11)...Compressor (12)...Condenser (14)...Evaporator (21)...Expansion valve control means (22) Suction control means (23) Suction increasing means (EV) Electric expansion valve (SV) Suction solenoid valve (LPS) Low pressure sensor and 1 other person

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機(11)と凝縮器(12)と膨張機構(E
V)と蒸発器(14)とが順に接続されて成る冷媒循環
回路(1)と、 該冷媒循環回路(1)における蒸発器(14)と圧縮機
(11)との間に設けられ、該圧縮機(11)の吸入ガ
ス量を調節する吸入調節機構(SV)と、 上記圧縮機(11)の吸入ガス量を冷却負荷に応じて変
化させるように上記吸入調節機構(SV)を制御する吸
入制御手段(22)と、上記圧縮機(11)の吸入ガス
圧力に関連する信号を検出する圧力検出手段(LPS)
と、該圧力検出手段(LPS)の検出圧力が予め設定し
た低圧値以下になると、上記吸入制御手段(22)の制
御を中止して強制的に圧縮機(11)の吸入ガス量を増
大させるように上記吸入調節機構(SV)を制御する吸
入増大手段(23)とを備えていることを特徴とする冷
凍装置の運転制御装置。
(1) Compressor (11), condenser (12) and expansion mechanism (E
A refrigerant circulation circuit (1) in which a refrigerant circuit (1) and an evaporator (14) are connected in sequence; a suction adjustment mechanism (SV) that adjusts the suction gas amount of the compressor (11); and a suction adjustment mechanism (SV) that controls the suction adjustment mechanism (SV) so as to change the suction gas amount of the compressor (11) according to the cooling load. Suction control means (22) and pressure detection means (LPS) for detecting a signal related to the suction gas pressure of the compressor (11).
When the detected pressure of the pressure detection means (LPS) becomes less than a preset low pressure value, the control of the suction control means (22) is stopped and the amount of suction gas of the compressor (11) is forcibly increased. An operation control device for a refrigeration system, comprising a suction increasing means (23) for controlling the suction adjustment mechanism (SV).
(2)請求項(1)記載の冷凍装置の運転制御装置にお
いて、上記膨張機構(EV)は開度の調節自在な膨張弁
(EV)によって構成される一方、該膨張弁(EV)の
開度を冷却負荷に応じて制御する膨張弁制御手段(21
)が設けられていることを特徴とする冷凍装置の運転制
御装置。
(2) In the operation control device for a refrigeration system according to claim (1), the expansion mechanism (EV) is constituted by an expansion valve (EV) whose opening degree can be freely adjusted; Expansion valve control means (21
) is provided.
JP2135075A 1990-05-23 1990-05-23 Operation control device for freezer Pending JPH0428958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2135075A JPH0428958A (en) 1990-05-23 1990-05-23 Operation control device for freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2135075A JPH0428958A (en) 1990-05-23 1990-05-23 Operation control device for freezer

Publications (1)

Publication Number Publication Date
JPH0428958A true JPH0428958A (en) 1992-01-31

Family

ID=15143260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2135075A Pending JPH0428958A (en) 1990-05-23 1990-05-23 Operation control device for freezer

Country Status (1)

Country Link
JP (1) JPH0428958A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090843A1 (en) * 2001-05-01 2002-11-14 Daikin Industries, Ltd. Refrigerating device
US6923097B2 (en) 2002-03-29 2005-08-02 Kabushiki Kaisha Engineer Pliers for removing small screws and the like

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090843A1 (en) * 2001-05-01 2002-11-14 Daikin Industries, Ltd. Refrigerating device
US6779355B2 (en) 2001-05-01 2004-08-24 Daikin Industries, Ltd. Refrigeration device
US6923097B2 (en) 2002-03-29 2005-08-02 Kabushiki Kaisha Engineer Pliers for removing small screws and the like

Similar Documents

Publication Publication Date Title
US20090120113A1 (en) Refrigeration system
JPS636368A (en) Air conditioner
JP2745836B2 (en) Operation control device for refrigeration equipment
JPH043865A (en) Freezing cycle device
JPH0730979B2 (en) Air conditioner
JPH0428958A (en) Operation control device for freezer
JPH09318205A (en) Refrigerating device
JP2526435B2 (en) Refrigeration system operation controller
JPH0395342A (en) Operating controller for air conditioner
JP2503636B2 (en) Refrigeration system operation controller
JP2757685B2 (en) Operation control device for air conditioner
JPH10339509A (en) Freezer for freezing container
JPH04366365A (en) Controlling device for operation of refrigerating plant
JP3240207B2 (en) Screw refrigerator
JPS6315513B2 (en)
JP2634267B2 (en) Anti-freezing device for air conditioners
JPS63129286A (en) Refrigerator
JPH03225161A (en) Liquid injection device of freezing cycle in thermostatic device
JP2500531B2 (en) Refrigeration system operation controller
JP2541177B2 (en) Refrigeration system operation controller
JPS6350629B2 (en)
JPH02233944A (en) Operation control device for freezer
JPH10253182A (en) Binary refrigerating device
JPH05340614A (en) Freezer device
JPH03113252A (en) Operation control device for refrigerating plant