JPH04288337A - Composite high-molecular dielectric material - Google Patents

Composite high-molecular dielectric material

Info

Publication number
JPH04288337A
JPH04288337A JP257191A JP257191A JPH04288337A JP H04288337 A JPH04288337 A JP H04288337A JP 257191 A JP257191 A JP 257191A JP 257191 A JP257191 A JP 257191A JP H04288337 A JPH04288337 A JP H04288337A
Authority
JP
Japan
Prior art keywords
filler
dielectric constant
titanate
fibers
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP257191A
Other languages
Japanese (ja)
Other versions
JP2530943B2 (en
Inventor
Tetsuo Tanaka
哲郎 田中
Hidekazu Kameda
英一 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP3002571A priority Critical patent/JP2530943B2/en
Publication of JPH04288337A publication Critical patent/JPH04288337A/en
Application granted granted Critical
Publication of JP2530943B2 publication Critical patent/JP2530943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To provide the title material which offers excellent dielectric properties with a low vol. ratio of a filler loaded. CONSTITUTION:The title material comprises a perovskite-structured metal titanate fiber shown by ATiO3-x (wherein 0<x<3; and A comprises at least one metal selected from the group consisting of Ca, Sr, Ba, Mg, and Pb) or a filler coated with a perovskite-structured metal titanate compd. shown by ATiOj (wherein A is as defined above) dispersed in a matrix comprising a high-molecular resin.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】  本発明は、コンデンサ等に利
用される高分子複合誘電体に関する。
TECHNICAL FIELD The present invention relates to a polymer composite dielectric material used in capacitors and the like.

【0002】0002

【従来の技術】  高分子材料の誘電率はほぼ5以下で
あり、コンデンサの小型化や大容量化に対応できなかっ
た。コンデンサあるいは高誘電率を必要とする用途に対
応するために、樹脂自体の高誘電率化を行う方法、ある
いは誘電率の大きいセラミックスの粉体や繊維をフィラ
ーとしてプラスチック等からなるマトリックスに分散し
複合化を行う方法の、大別して2つの試みがなされてい
る。後者の方法では、樹脂とセラミックスを複合化した
際の体積率N1 ,N2,およびそれぞれの誘電率ε1
 ,ε2 により、複合材の誘電率εは、 logε=N1 logε1 +N2 logε2 ・
・・・(1)により与えられる。(1)式より明らかな
ように、誘電率の大きい一方の物質の体積率を高くする
ことにより、誘電率を向上させることができ、そのよう
な試みがなされてきた。
[Prior Art] The dielectric constant of polymeric materials is approximately 5 or less, and it has not been possible to respond to miniaturization and increase in capacitance of capacitors. In order to respond to capacitors and other applications that require a high dielectric constant, there are methods to increase the dielectric constant of the resin itself, or composites in which ceramic powder or fiber with a high dielectric constant is dispersed as a filler in a matrix made of plastic, etc. Broadly speaking, two approaches have been made to achieve this. In the latter method, the volume fractions N1 and N2 and the dielectric constants ε1 of the composite resin and ceramics are
, ε2, the dielectric constant ε of the composite material is: logε=N1 logε1 +N2 logε2 ・
...Given by (1). As is clear from Equation (1), the dielectric constant can be improved by increasing the volume fraction of one of the materials having a large dielectric constant, and such attempts have been made.

【0003】0003

【発明が解決しようとする課題】  ところが、上述し
たように従来技術では高誘電率を得るために、セラミッ
クスフィラーを高い体積率で充填することにより、複合
材の誘電率を向上することができるものの、体積率を高
くすると樹脂本来の性質が損なわれる熱可塑性樹脂など
では、成型方法が限定されるという問題がある。したが
って、この両者を満足した実用的な複合量では、高分子
材料の誘電率がセラミックス材料に比べ小さいため、比
誘電率が20程度の複合材料しか得られていなかった。
[Problem to be Solved by the Invention] However, as described above, in the conventional technology, in order to obtain a high dielectric constant, the dielectric constant of the composite material can be improved by filling the ceramic filler at a high volume ratio. For thermoplastic resins, etc., in which the inherent properties of the resin are impaired when the volume fraction is increased, there is a problem in that molding methods are limited. Therefore, in a practical composite amount that satisfies both of these requirements, only a composite material with a dielectric constant of about 20 has been obtained because the dielectric constant of the polymer material is smaller than that of the ceramic material.

【0004】本発明は、従来のチタン酸バリウム繊維を
フィラーとする複合材料に比べ少ないフィラーの体積率
で高誘電率特性が得られる高分子複合材料を提供するこ
とを目的とする。
[0004] An object of the present invention is to provide a polymer composite material that can obtain high dielectric constant properties with a smaller filler volume fraction than conventional composite materials containing barium titanate fibers as fillers.

【0005】[0005]

【課題を解決するための手段】  本発明の目的を達成
するために、本発明の高分子複合誘電体は、Ca、Sr
、Ba、MgおよびPbのうち少なくとも一種以上のA
群元素からなるATiO3−X (0<x<3)で表さ
れるペロブスカイト型のチタン酸金属塩繊維を、高分子
樹脂からなるマトリックス中に分散されてなることによ
って特徴づけられる。
[Means for Solving the Problems] In order to achieve the objects of the present invention, the polymer composite dielectric of the present invention has Ca, Sr,
, Ba, Mg, and Pb.
It is characterized in that perovskite-type metal titanate fibers represented by ATiO3-X (0<x<3) consisting of group elements are dispersed in a matrix made of a polymer resin.

【0006】また、導電性または半導電性のチタン酸ア
ルカリ繊維、またはそのチタン酸アルカリ繊維から誘導
されたチタン酸繊維に、Ca、Sr、Ba、Mgおよび
Pbのうち、少なくとも一種以上のA群元素からなる、
ATiO3 で表されるペロブスカイト型チタン酸金属
塩化合物の皮膜が形成されたフィラーが、高分子樹脂か
らなるマトリックス中に分散されてなることによって特
徴づけられる。
[0006] In addition, conductive or semiconductive alkali titanate fibers or titanate fibers derived from the alkali titanate fibers may contain at least one member of Group A selected from Ca, Sr, Ba, Mg, and Pb. consisting of elements,
It is characterized in that a filler on which a film of a perovskite metal titanate compound represented by ATiO3 is formed is dispersed in a matrix made of a polymer resin.

【0007】[0007]

【作用】  中心部が導電性または半導電性のチタン酸
アルカリ繊維またはチタン酸アルカリ繊維からの誘導さ
れたチタン酸繊維からなり、表面層が主にCa、Sr、
Ba、MgおよびPbのうち、少なくとも一種以上のA
群元素からなるATiO3 で表されるペロブスカイト
型チタン酸金属塩化合物からなる二層構造を有している
。繊維を高分子材料に複合した高分子複合誘電体は、図
3に示す等価回路で表される複合材料となり、見かけの
誘電率を大きくすることができる。
[Function] The center part consists of conductive or semiconductive alkali titanate fibers or titanate fibers derived from alkali titanate fibers, and the surface layer mainly consists of Ca, Sr,
At least one type of A among Ba, Mg and Pb
It has a two-layer structure consisting of a perovskite-type titanate metal salt compound represented by ATiO3 consisting of group elements. A polymer composite dielectric material made by combining fibers with a polymer material becomes a composite material represented by the equivalent circuit shown in FIG. 3, and can have a large apparent dielectric constant.

【0008】またATiO3−X (0<x<3)繊維
を高分子材料に複合化した場合も、従来の酸素欠陥のな
いATiO3 繊維を複合化した場合より大きな誘電率
の複合材料が得られる。
Also, when ATiO3-X (0<x<3) fibers are composited with a polymer material, a composite material with a higher dielectric constant can be obtained than when conventional ATiO3 fibers without oxygen vacancies are composited.

【0009】[0009]

【実施例】  図1は本発明実施例の斜視図である。本
発明実施例の高分子複合誘電体3は、高分子樹脂からな
るマトリックス2にATiO3−X (0<x<3)で
表されるフィラー1が複合されている。フィラー1であ
るATiO3−X (0<x<3)なるペロブスカイト
型チタン酸金属塩繊維は、還元して得られる導電性また
は半導電性のチタン酸アルカリ繊維やチタン酸繊維を、
その繊維に含まれるチタンと等量以上のAなる金属元素
であるBa等の二価金属を含む水溶液中で常圧または水
熱反応することによりえられる。
Embodiment FIG. 1 is a perspective view of an embodiment of the present invention. In the polymer composite dielectric material 3 of the embodiment of the present invention, a filler 1 represented by ATiO3-X (0<x<3) is composited into a matrix 2 made of a polymer resin. The filler 1, ATiO3-X (0<x<3), is a perovskite metal titanate fiber, which is obtained by reducing conductive or semiconductive alkali titanate fiber or titanate fiber.
It can be obtained by a normal pressure or hydrothermal reaction in an aqueous solution containing a divalent metal such as Ba, which is a metal element A, in an amount equal to or more than titanium contained in the fiber.

【0010】図2は本発明実施例の二層構造を有するフ
ィラーの斜視図である。このフィラーは、中心部は導電
性チタン酸アルカリ繊維1aからなり、表面層にはAT
iO3−X (0<x<3)で表されるチタン酸金属塩
1bが形成されている。また、皮膜の形成は、■  導
電性または半導電性のチタン酸アルカリ繊維やチタン酸
繊維を水酸化バリウム等の二価の金属を含む水溶液中で
常圧または水熱反応させる。■  バリウムイソプロポ
キシドや二価金属のアルコキシドとチタンイソプロポキ
シドの溶液に繊維を浸漬する等の、いわゆるゾルーゲル
法。■  スパッタ等の真空蒸着法。等の方法で実現で
きる。
FIG. 2 is a perspective view of a filler having a two-layer structure according to an embodiment of the present invention. The center of this filler is made of conductive alkali titanate fiber 1a, and the surface layer is made of AT.
A metal titanate salt 1b represented by iO3-X (0<x<3) is formed. The film is formed by (1) subjecting conductive or semiconductive titanate alkali fibers or titanate fibers to a normal pressure or hydrothermal reaction in an aqueous solution containing a divalent metal such as barium hydroxide. ■ So-called sol-gel methods, such as immersing fibers in solutions of barium isopropoxide, divalent metal alkoxides, and titanium isopropoxide. ■ Vacuum deposition methods such as sputtering. This can be achieved using the following methods.

【0011】本発明実施例では、上述のうち■による方
法でフィラーを形成した。すなわち、還元焼成によって
造られた比抵抗104 程度程度のチタン酸カリウム繊
維を、繊維に含まれるTiに対して1.2のBaを含む
水溶液中で水熱反応させることによりBaTiO3−X
 繊維を、同じく0.75のBaを含む水溶液中で水熱
反応させることによりBaTiO3−X 皮膜を形成し
た。これらの繊維をフィラーとしてPBT(ポリブチレ
ンテレフタレート)樹脂に対して20〜40%の体積率
で、押し出し機を用い溶融および混合することにより、
コンパウンドペレットを作製した。なお、比重はPBT
が1.31、フィラー繊維は4.7である。このコンパ
ウンドペレットを用いて、ホットプレスにより所定寸法
の成型板を作製して、誘電率、誘電損失、体積抵抗率を
測定した結果を表1に示す。
In the examples of the present invention, fillers were formed by the method (2) above. That is, by subjecting potassium titanate fibers produced by reduction firing and having a specific resistance of about 104 to a hydrothermal reaction in an aqueous solution containing 1.2% Ba to Ti contained in the fibers, BaTiO3-X
A BaTiO3-X film was formed by subjecting the fiber to a hydrothermal reaction in an aqueous solution containing 0.75 Ba. By using an extruder to melt and mix these fibers as fillers at a volume ratio of 20 to 40% with respect to PBT (polybutylene terephthalate) resin,
Compound pellets were produced. In addition, the specific gravity is PBT
is 1.31, and the filler fiber is 4.7. Using this compound pellet, a molded plate of predetermined dimensions was produced by hot pressing, and the dielectric constant, dielectric loss, and volume resistivity were measured. Table 1 shows the results.

【0012】0012

【表1】[Table 1]

【0013】なお、比較例は本発明者らが先に出願して
いる特願平2−113444(未公開)により作製した
チタン酸バリウム繊維を本発明実施例と同条件で混合し
た複合材料を用いた測定結果である。なお、測定にあた
っては、誘電率およびtanδは1MHzでの測定値、
また体積抵抗率は500Vでの測定値である。  表1
から明らかなように、本発明実施例では、その誘電損失
は従来例と同等であり、また、誘電率は従来例のほぼ1
.5〜2倍となった。とくに、その誘電率は30以上と
いう、これまで得ることができなかった値を有する高分
子複合誘電体が得られた効果は大きい。
[0013] The comparative example is a composite material obtained by mixing barium titanate fibers produced in accordance with Japanese Patent Application No. 2-113444 (unpublished) previously filed by the present inventors under the same conditions as the examples of the present invention. These are the measurement results used. In addition, when measuring, the dielectric constant and tan δ are measured values at 1 MHz,
Moreover, the volume resistivity is a value measured at 500V. Table 1
As is clear from the above, in the embodiment of the present invention, the dielectric loss is the same as that of the conventional example, and the dielectric constant is approximately 1 of that of the conventional example.
.. It became 5 to 2 times. In particular, the effect of obtaining a polymer composite dielectric material having a dielectric constant of 30 or more, a value that could not be obtained until now, is significant.

【0014】[0014]

【発明の効果】  以上説明したように、本発明によれ
ば、従来のチタン酸バリウム繊維の複合材料に比べ少な
いフィラーの添加量で高誘電率特性が得られる高分子複
合材料を提供することができる。また、フィラーの充填
率の低い高分子複合材料であるから、従来のように樹脂
本来の性質が損なわれることにより成型方法が限定され
るということもなく、たとえば射出成形が可能なことか
ら、複雑な形状のものでも簡単な製造工程で作製できる
効果もある。
[Effects of the Invention] As explained above, according to the present invention, it is possible to provide a polymer composite material that can obtain high dielectric constant characteristics with a smaller amount of filler added than conventional barium titanate fiber composite materials. can. In addition, since it is a polymer composite material with a low filler filling rate, there are no limitations on molding methods due to loss of the original properties of the resin, as is the case with conventional methods, and injection molding is possible, making it less complex. It also has the advantage that it can be manufactured with a simple manufacturing process even if it has a small shape.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明実施例の斜視図[Fig. 1] Perspective view of an embodiment of the present invention

【図2】  本発明実施例のフィラーの斜視図[Figure 2] Perspective view of the filler according to the embodiment of the present invention

【図3】
  本発明実施例の等価回路
[Figure 3]
Equivalent circuit of the embodiment of the present invention

【符号の説明】[Explanation of symbols]

1・・・・フィラー 1a・・・・チタン酸アルカリ繊維 1b・・・・チタン酸金属塩 2・・・・マトリックス 3・・・・高分子複合誘電体 1... Filler 1a... Alkaline titanate fiber 1b...Metal titanate salt 2...Matrix 3...Polymer composite dielectric material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  Ca、Sr、Ba、MgおよびPbの
うち少なくとも一種以上のA群元素からなるATiO3
−X (0<x<3)で表されるペロブスカイト型のチ
タン酸金属塩繊維を、高分子樹脂からなるマトリックス
中に分散されてなる高分子複合誘電体。
[Claim 1] ATiO3 consisting of at least one group A element among Ca, Sr, Ba, Mg and Pb.
-X (0<x<3) perovskite-type metal titanate fibers are dispersed in a matrix made of a polymer resin.
【請求項2】  導電性または半導電性のチタン酸アル
カリ繊維、またはそのチタン酸アルカリ繊維から誘導さ
れたチタン酸繊維に、Ca、Sr、Ba、MgおよびP
bのうち、少なくとも一種以上のA群元素からなる、A
TiO3 で表されるペロブスカイト型チタン酸金属塩
化合物の皮膜が形成されたフィラーが、高分子樹脂から
なるマトリックス中に分散されてなる高分子複合誘電体
2. Conductive or semiconductive alkali titanate fibers, or titanate fibers derived from the alkali titanate fibers, containing Ca, Sr, Ba, Mg and P.
A consisting of at least one group A element among b
A polymer composite dielectric material in which a filler on which a film of a perovskite metal titanate compound represented by TiO3 is formed is dispersed in a matrix made of a polymer resin.
JP3002571A 1991-01-14 1991-01-14 Polymer composite dielectric Expired - Lifetime JP2530943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3002571A JP2530943B2 (en) 1991-01-14 1991-01-14 Polymer composite dielectric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3002571A JP2530943B2 (en) 1991-01-14 1991-01-14 Polymer composite dielectric

Publications (2)

Publication Number Publication Date
JPH04288337A true JPH04288337A (en) 1992-10-13
JP2530943B2 JP2530943B2 (en) 1996-09-04

Family

ID=11533058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3002571A Expired - Lifetime JP2530943B2 (en) 1991-01-14 1991-01-14 Polymer composite dielectric

Country Status (1)

Country Link
JP (1) JP2530943B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017511426A (en) * 2014-03-28 2017-04-20 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Polymer-ceramic composite material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281574A (en) * 1990-03-29 1991-12-12 Otsuka Chem Co Ltd Highly dielectric resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281574A (en) * 1990-03-29 1991-12-12 Otsuka Chem Co Ltd Highly dielectric resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017511426A (en) * 2014-03-28 2017-04-20 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Polymer-ceramic composite material

Also Published As

Publication number Publication date
JP2530943B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
US7989530B2 (en) Nonlinear polymer composites and methods of making the same
US5155072A (en) High K dielectric compositions with fine grain size
EP0261419B1 (en) Semiconductive ceramic composition
JP2005015652A (en) Resin composition having high dielectric constant and electronic component
US3788867A (en) Batio3-mgo-nb2o5 dielectric ceramic compositions and method
JPH04288337A (en) Composite high-molecular dielectric material
US2776898A (en) Ceramic dielectric with high dielectric constant and process of making the same
EP0104257B1 (en) High dielectric constant porcelain composition
US4929575A (en) Melt processable, green, ceramic precursor powder
JPH04161461A (en) Composite material for dielectric electromotive type antenna
EP0767152B1 (en) Piezoelectric ceramic and manufacturing method thereof
JPH0770410B2 (en) Capacitor
US3255395A (en) Ceramic capacitor
JPH02167823A (en) Composition having dielectric or piezoelectric property
JPH04145134A (en) High-molecular composite dielectric
JP2020066723A (en) Dielectric composition
JPH05307911A (en) High dielectric constant composite material
JPH03254011A (en) High molecular composite dielectric substance
JPH011216A (en) High voltage capacitor
JPS61128412A (en) Composite dielectric and manufacture thereof
JP2907957B2 (en) Feed-through condenser
JPH0461705A (en) Highpolymer composite dielectric substance
JPH0412403A (en) Manufacture of compound dielectric material
JP2687375B2 (en) Composite dielectric
JPS63244605A (en) High dielectric strength capacitor