JPH0428798B2 - - Google Patents

Info

Publication number
JPH0428798B2
JPH0428798B2 JP63224550A JP22455088A JPH0428798B2 JP H0428798 B2 JPH0428798 B2 JP H0428798B2 JP 63224550 A JP63224550 A JP 63224550A JP 22455088 A JP22455088 A JP 22455088A JP H0428798 B2 JPH0428798 B2 JP H0428798B2
Authority
JP
Japan
Prior art keywords
circuit board
printed circuit
anodes
anode
copper plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63224550A
Other languages
Japanese (ja)
Other versions
JPH0274000A (en
Inventor
Takayuki Shimamune
Kazuhiro Hirao
Kenichi Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP22455088A priority Critical patent/JPH0274000A/en
Publication of JPH0274000A publication Critical patent/JPH0274000A/en
Publication of JPH0428798B2 publication Critical patent/JPH0428798B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、1対の陽極を使用してプリント基板
の両面にほぼ等しい厚さの銅メツキを施すための
方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for applying copper plating to approximately equal thickness on both sides of a printed circuit board using a pair of anodes.

(従来技術とその問題点) 両面に銅箔層を形成した銅張積層板であるプリ
ント基板の表面及び裏面の回路部分を接続するに
は、必要な部分に貫通孔つまりスルーホールを形
成し、該スルーホールの内面に銅メツキを施して
前記両回路部分を接続するようにしている。従つ
てスルーホールが形成されたプリント基板への銅
メツキは該スルーホール部分のみで十分であるが
実際には前記プリント基板の両面にも銅メツキ層
が形成される。該銅メツキ層の一部は、下地の銅
とともに回路部分を残してエツチングにより除去
されるが、メツキにより形成される銅の厚さが一
定でないと部分的にエツチング過剰となつたり不
足したりして不都合が生ずる。特にメツキ厚の不
均一はプリント基板の表裏面における厚さにおい
て特に顕著である。
(Prior art and its problems) In order to connect the circuit parts on the front and back sides of a printed circuit board, which is a copper-clad laminate with copper foil layers formed on both sides, through-holes are formed in the necessary parts. The inner surface of the through hole is plated with copper to connect the two circuit parts. Therefore, copper plating on a printed circuit board in which through holes are formed is sufficient only on the through hole portions, but in reality, copper plating layers are also formed on both surfaces of the printed circuit board. A part of the copper plating layer is removed by etching, leaving the circuit part together with the underlying copper, but if the thickness of the copper formed by plating is not constant, some parts may be over-etched or under-etched. This causes inconvenience. In particular, the non-uniformity of the plating thickness is particularly noticeable on the front and back surfaces of the printed circuit board.

該表裏面のメツキ厚さを同一にするためには、
表面及び裏面のそれぞれに別個の直流電源を接続
して別々に制御することが望ましいが、該方法に
よると直流電源の数が多くなり、経済的制約が生
ずる。従つて通常はこの方法ではなく、前記プリ
ント基板(陰極)の表裏面と両陽極間の距離をで
きる限り同一とし、電流量をほぼ同一とすること
が試みられているが、前記陽極を一定位置に固定
することが機械的に困難であることから、実際に
は両陽極とプリント基板間の距離を大きくとり、
メツキ槽内でのプリント基板の設置位置が多少ず
れても電流量への影響が殆ど生じないようにして
いる。
In order to make the plating thickness on the front and back sides the same,
Although it is desirable to connect a separate DC power source to each of the front and back surfaces and control them separately, this method requires a large number of DC power sources, resulting in economic constraints. Therefore, usually this method is not used, but an attempt is made to make the distance between the front and back surfaces of the printed circuit board (cathode) and both anodes as equal as possible, and to make the amount of current almost the same. Since it is mechanically difficult to fix the anodes to the
Even if the installed position of the printed circuit board in the plating bath is slightly shifted, the amount of current is hardly affected.

この方法では比較的安定な操作により均一なメ
ツキ層を得ることができる反面、メツキ槽が大型
化し液量も多くなり、設備が大規模になるだけで
なくランニングコストも嵩み、更に極間距離の増
加に起因する槽電圧の上昇が前記直流電源容量の
増大に繋がりかつ消費電力の増大を招くという欠
点がある。
Although this method allows a uniform plating layer to be obtained through relatively stable operation, the plating tank becomes larger and the amount of liquid increases, not only does the equipment become large-scale, but running costs also increase, and the distance between the electrodes increases. There is a drawback in that an increase in cell voltage due to an increase in the voltage leads to an increase in the capacity of the DC power supply and leads to an increase in power consumption.

(発明の目的) 本発明は、1対の陽極を使用して銅メツキを行
う際に、メツキ槽を大型化することなく、メツキ
すべきプリント基板の両面にほぼ等しい厚さのメ
ツキ層を形成することを可能にする銅メツキ方法
と該方法に使用するメツキ装置を提供することを
目的とする。
(Object of the Invention) The present invention forms a plating layer of approximately equal thickness on both sides of a printed circuit board to be plated without increasing the size of the plating tank when performing copper plating using a pair of anodes. It is an object of the present invention to provide a copper plating method and a plating device used in the method.

(問題点を解決するための手段) 本発明は、第1に1対の陽極、該陽極間に設置
された陰極であるプリント基板及び銅イオンを含
有する電解液を使用して電解を行い、前記プリン
ト基板の両面及びそのスルーホールに銅メツキを
行う方法において、前記両陽極に流れる電流量を
検出し、該検出値の差異に基づいて前記陽極を前
記プリント基板に対してほぼ垂直に移動させて極
間距離を調節し、前記両陽極に流れる電流値をほ
ぼ等しくしながらプリント基板の銅メツキを行う
ことを特徴とする方法であり、第2の該方法に使
用するメツキ装置である。
(Means for Solving the Problems) The present invention first performs electrolysis using a pair of anodes, a printed circuit board serving as a cathode installed between the anodes, and an electrolyte containing copper ions. In the method of copper plating both sides of the printed circuit board and its through holes, the amount of current flowing through both the anodes is detected, and the anode is moved approximately perpendicularly to the printed circuit board based on the difference between the detected values. This method is characterized by performing copper plating on a printed circuit board while adjusting the distance between the electrodes and making the current value flowing through both anodes approximately equal, and is the second plating device used in this method.

以下本発明を詳細に説明する。 The present invention will be explained in detail below.

プリント基板へのメツキ操作におけるメツキ量
換言すると、該基板上に形成されるメツキ層の厚
さは電流値にほぼ比例する。又メツキ時の槽電圧
は、〔陽極電位+陰極電位(電着電位)+抵抗成分
による電圧損〕で示されるが、該3種の値のうち
陽極電位及び陰極電位は電流がある程度変化して
も殆ど変わらず、プリント基板(陰極)の両側に
位置する1対の陽極に流れる電流値の差異は主と
して抵抗成分に起因する電圧損に因つている。該
抵抗成分は、導電部の抵抗とメツキ液の抵抗とに
分けられるが、前記導電部とは陽極に給電するた
めの例えば該陽極を吊支するハンガー及びそこに
到る導電体が主であり、これらの抵抗値を電解の
途中に変更することは実質手に不可能である。こ
のことから1台の直流電源でプリント基板の表裏
両面に同時に給電する場合には電極電圧は両者共
等しくなり該電圧を調節することはできない。従
つて電流値を増減させるためには液抵抗による電
圧損の調節、つまりプリント基板と陽極の極間距
離を変化させることになる。
In other words, the thickness of the plating layer formed on the printed circuit board is approximately proportional to the current value. Also, the cell voltage during plating is expressed as [anode potential + cathode potential (electrodeposition potential) + voltage loss due to resistance component], but among these three values, the anode potential and cathode potential are determined by changes in current to some extent. There is almost no difference in the current value flowing between the pair of anodes located on both sides of the printed circuit board (cathode), and the difference in current value is mainly due to voltage loss caused by the resistance component. The resistance component is divided into the resistance of the conductive part and the resistance of the plating liquid, and the conductive part mainly includes, for example, the hanger that suspends the anode and the conductor that leads there. , it is virtually impossible to change these resistance values during electrolysis. Therefore, when power is supplied to both the front and back sides of the printed circuit board simultaneously with one DC power supply, the electrode voltages on both sides become equal and cannot be adjusted. Therefore, in order to increase or decrease the current value, the voltage loss due to liquid resistance must be adjusted, that is, the distance between the printed circuit board and the anode must be changed.

両陽極の電流値を調製するためには、まず両陽
極のそれぞれの電流値を検出する必要がある。該
電流値の検出には、標準抵抗を接続してその両側
の電圧値を検出して電流値を換算してもよく、又
電磁回路により行つてもよい。次いで検出された
電流値からその差異を算出し、その値を制御回路
に送り、該制御回路の出力側を前記陽極を移動さ
せるモータ等の駆動機構と接続し、該回路を駆動
させて前記電流値の差異が零になるまで前記陽極
を移動させればよい。該一連の制御操作は、例え
ば1対の陽極のそれぞれに連結された標準抵抗に
流れる電流差を電圧差として検出し、該検出値を
ブリツジ回路に送り前記電圧差が零になるよう前
記陽極の少なくとも一方を移動させればよい。こ
の制御はメツキ操作中継続して行うことが望まし
く、その制御方式は通常比例制御のみで十分であ
る。
In order to adjust the current values of both anodes, it is first necessary to detect the respective current values of both anodes. The current value may be detected by connecting a standard resistor and detecting the voltage values on both sides thereof to convert the current value, or by using an electromagnetic circuit. Next, the difference is calculated from the detected current value, and the value is sent to a control circuit.The output side of the control circuit is connected to a drive mechanism such as a motor that moves the anode, and the circuit is driven to increase the current. The anode may be moved until the difference in values becomes zero. The series of control operations includes, for example, detecting the difference in current flowing through standard resistors connected to each of a pair of anodes as a voltage difference, sending the detected value to a bridge circuit, and controlling the anodes so that the voltage difference becomes zero. It is sufficient to move at least one of them. It is desirable to perform this control continuously during the plating operation, and proportional control alone is usually sufficient as the control method.

本発明では、陽極として不溶性陽極又は溶性陽
極を使用する。不溶性陽極としては、白金メツキ
チタン電極やチタン板上に白金族金属酸化物含有
被覆を形成したいわゆるDSE等があり、溶性陽
極としては、吊支したバスケツト等に球状の銅を
収容した電極がある。前記不溶性陽極は、溶性陽
極と比較して寸法安定性が良好で実質的な寸法変
化がなく、しかも極めて軽いという特徴を有して
おり、該陽極とプリント基板との距離が該陽極の
消耗により変化することがなく、更に該陽極の移
動も比較的容易に行うことができる。一方前記溶
性陽極は電解の進行に従つて溶解し極間距離が変
化し流れる電流量も変化するため、本発明により
効果的に銅メツキ厚を制御することができる。
In the present invention, an insoluble anode or a soluble anode is used as the anode. Examples of insoluble anodes include platinum-plated titanium electrodes and so-called DSE in which a coating containing a platinum group metal oxide is formed on a titanium plate, while soluble anodes include electrodes containing spherical copper in a suspended basket or the like. The insoluble anode has good dimensional stability compared to the soluble anode, has no substantial dimensional change, and is extremely light, and the distance between the anode and the printed circuit board is The anode does not change, and furthermore, the anode can be moved relatively easily. On the other hand, the soluble anode dissolves as the electrolysis progresses, and the distance between the electrodes changes and the amount of current flowing also changes, so the copper plating thickness can be effectively controlled by the present invention.

このような1対の陽極の少なくとも一方はプリ
ント基板に対してほぼ垂直に移動できるようメツ
キ槽内に設置される。該陽極を移動させるための
機構は特に限定されず、板体の移動に使用される
従来の技術をそのまま使用すればよいが、前記陽
極に給電する給電体を可撓性ワイアとし、該ワイ
アと別個に前記陽極を支持しプリント基板とほぼ
垂直方向に移動する把持体により把持された陽極
を使用することができる。
At least one of the pair of anodes is installed in the plating bath so that it can move substantially perpendicularly to the printed circuit board. The mechanism for moving the anode is not particularly limited, and the conventional technique used for moving the plate may be used as is. It is possible to use an anode held by a holding body that separately supports the anode and moves in a direction substantially perpendicular to the printed circuit board.

又該陽極はその周囲に存在する隔膜により囲ま
れていることが望ましく、該隔膜により陽極反応
により発生する酸素ガスを集めて放出し、かつメ
ツキ液中の添加剤の陽極酸化による分解を防止す
ることができる。
Further, the anode is preferably surrounded by a diaphragm existing around it, which collects and releases oxygen gas generated by the anode reaction and prevents the additives in the plating solution from being decomposed by anodic oxidation. be able to.

(実施例) 以下本発明の実施例を記載するが、該実施例は
本発明を限定するものではない。
(Examples) Examples of the present invention will be described below, but these examples do not limit the present invention.

実施例 添付図面に示すメツキ槽及び該メツキ槽に付属
する制御回路及び駆動機構を有するメツキ装置を
使用してプリント基板への銅メツキを行つた。
EXAMPLE Copper plating was performed on a printed circuit board using a plating device having a plating tank and a control circuit and drive mechanism attached to the plating tank shown in the attached drawings.

幅30cmの箱型の銅メツキ槽1の中央に、銅箔で
被覆し化学銅メツキを施したスルーホールを有す
る銅メツキすべきプリント基板2を設置し、該プ
リント基板2の両側にそれぞれ10cmの間隔をおい
て酸化イリジウムを被覆したチタン板から成る1
対の不溶性陽極3,3′を配置し、各陽極3,
3′を袋状イオン交換膜(商品名ナフイオン
#117)4で囲んだ。右側の陽極3′はレール(図
示略)上に取り付け、モータである駆動機構5に
より前記プリント基板2から10cmの位置を中心に
±5cmの範囲で移動できるようにした。該メツキ
槽1内には、液抵抗が1.6Ω・cmである硫酸銅水
溶液6を満たした。
A printed circuit board 2 to be copper plated, which has through holes coated with copper foil and subjected to chemical copper plating, is placed in the center of a box-shaped copper plating tank 1 with a width of 30 cm. 1 consisting of titanium plates coated with iridium oxide at intervals
A pair of insoluble anodes 3, 3' are arranged, each anode 3,
3' was surrounded by a bag-shaped ion exchange membrane (trade name: Nafion #117) 4. The right anode 3' was mounted on a rail (not shown) and could be moved within a range of ±5 cm around a position 10 cm from the printed circuit board 2 by a drive mechanism 5, which is a motor. The plating tank 1 was filled with an aqueous copper sulfate solution 6 having a liquid resistance of 1.6 Ω·cm.

前記プリント基板2と両側の陽極3,3′間に
1台の直流電源7を接続し、該プリント基板2と
両陽極3,3′間に等しい電圧が掛かるようにし
た。前記プリント基板2と各陽極3,3′間には
それぞれ電流検出用の端子を接続し、該検出電流
を制御回路8により解析して両陽極3,3′に流
れる電流を算出し、該算出値に基づいて前記駆動
機構5を駆動させて、右側の陽極3′左右方向に
移動させられるようにセツトした(図中の矢印及
び一点鎖線参照)。
One DC power supply 7 was connected between the printed circuit board 2 and the anodes 3, 3' on both sides, so that equal voltage was applied between the printed circuit board 2 and both anodes 3, 3'. A current detection terminal is connected between the printed circuit board 2 and each anode 3, 3', and the detected current is analyzed by a control circuit 8 to calculate the current flowing through both anodes 3, 3'. The drive mechanism 5 was driven based on the value, and was set so that the right anode 3' could be moved in the left-right direction (see the arrow and the dashed-dotted line in the figure).

図示の状態で左側の陽極3に0.2Vに相当する
抵抗を接続したところ、3.30A/dm2の電流密度
で右側の陽極3′が右方向に4cm移動し、両陽極
3,3′を流れる電流値が等しくなつた。このま
ま銅メツキを30分間継続した後、通電を停止し、
プリント基板2をメツキ槽2から取り出し両面の
銅メツキ層厚を測定したところ、両面とも21μで
あつた。
When a resistor equivalent to 0.2V is connected to the left anode 3 in the illustrated state, the right anode 3' moves 4 cm to the right at a current density of 3.30 A/dm 2 , and current flows through both anodes 3 and 3'. The current values became equal. After continuing copper plating for 30 minutes, turn off the electricity,
When the printed circuit board 2 was taken out from the plating tank 2 and the thickness of the copper plating layer on both sides was measured, it was 21μ on both sides.

(発明の効果) 本発明による銅メツキ方法は、メツキすべきプ
リント基板の両側に位置する陽極に流れる電流を
検出し、該検出値の差異に基づいて前記陽極を前
記プリント基板に対してほぼ垂直に移動させて極
間距離を調節し、前記両陽極に流れる電流値をほ
ぼ等しくしながらプリント基板の銅メツキを行う
方法であり、電流量がほぼ等しいため前記プリン
ト基板の両側にぼほ等しい厚さの銅メツキ層を形
成することができる。又本発明による銅メツキ装
置によつても同様にして前記プリント基板の両側
にほぼ等しい厚さの銅メツキ層を形成することが
できる。
(Effects of the Invention) The copper plating method according to the present invention detects the current flowing through the anodes located on both sides of the printed circuit board to be plated, and based on the difference between the detected values, the anode is moved approximately perpendicularly to the printed circuit board. This is a method in which copper plating is performed on a printed circuit board by moving the anodes to adjust the distance between the electrodes and making the current flowing through both anodes approximately equal.Since the amount of current is approximately equal, the thickness is approximately equal on both sides of the printed circuit board. A thin copper plating layer can be formed. Also, with the copper plating apparatus according to the present invention, copper plating layers of approximately equal thickness can be formed on both sides of the printed circuit board in the same manner.

従つて本発明によると、第1に、1台の直流電
源で両陽極に通電してもプリント基板の両面にほ
ぼ等しい厚さの銅メツキ層を形成することができ
る。即ち単一の直流電源のみの使用で十分であ
り、メツキ装置自体の構造の簡略化と経済的な設
計を可能にする。
Therefore, according to the present invention, firstly, even when both anodes are energized by one DC power supply, copper plating layers having approximately the same thickness can be formed on both sides of the printed circuit board. In other words, it is sufficient to use only a single DC power source, and the structure of the plating device itself can be simplified and economically designed.

第2に、陽極電流を容易かつ確実にバランスさ
せることができるため、極間距離を小さくするこ
とが可能であり、これにより電力コストの低減を
図ることができるとともに、装置全体の小型化が
可能になり、装置設計コストの低減と設置面積を
減少させ、同一スペースでの処理能力を向上させ
ることができる。
Second, since the anode current can be easily and reliably balanced, it is possible to reduce the distance between the electrodes, thereby reducing power costs and making it possible to downsize the entire device. This reduces device design costs, reduces installation space, and improves processing capacity in the same space.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明に係わる銅メツキ装置の一例を
示す概略図である。 1……メツキ槽、2……プリント基板、3,
3′……陽極、4……隔膜、5……駆動機構、6
……電解液、7……直流電源、8……制御回路。
The drawing is a schematic diagram showing an example of a copper plating apparatus according to the present invention. 1...Plating tank, 2...Printed circuit board, 3,
3'...Anode, 4...Diaphragm, 5...Drive mechanism, 6
... Electrolyte, 7 ... DC power supply, 8 ... Control circuit.

Claims (1)

【特許請求の範囲】 1 1対の陽極、該陽極間に設置された陰極であ
るプリント基板及び銅イオンを含有する電解液を
使用して電解を行い、前記プリント基板の両面及
びそのスルーホールに銅メツキを行う方法におい
て、前記両陽極に流れる電流量を検出し、該検出
値の差異に基づいて前記陽極を前記プリント基板
に対してほぼ垂直に移動させて極間距離を調節
し、前記両陽極に流れる電流値をほぼ等しくしな
がらプリント基板の銅メツキを行うことを特徴と
する方法。 2 1対の陽極、該陽極間に設置された陰極であ
るプリント基板及び銅イオンを含有する電解液を
使用して電解を行い、前記プリント基板の両面及
びそのスルーホールに銅メツキを行う銅メツキ装
置において、前記両陽極に流れる電流量を検出す
る機構と、該検出値の差異に基づいて前記陽極を
前記プリント基板に対してほぼ垂直に移動させて
極間距離を調節し、前記両陽極に流れる電流値を
ほぼ等しくする機構とを有することを特徴とする
プリント基板の銅メツキ装置。 3 不溶性陽極が隔膜により陰極から分離されて
いる請求項2に記載の銅メツキ装置。
[Claims] 1. Electrolysis is performed using a pair of anodes, a printed circuit board as a cathode installed between the anodes, and an electrolytic solution containing copper ions, and electrolysis is performed on both surfaces of the printed circuit board and its through holes. In the method of performing copper plating, the amount of current flowing through both the anodes is detected, and the distance between the electrodes is adjusted by moving the anode almost perpendicularly to the printed circuit board based on the difference between the detected values. A method characterized by performing copper plating on a printed circuit board while keeping the current value flowing through the anode approximately equal. 2. Copper plating in which electrolysis is performed using a pair of anodes, a printed circuit board as a cathode installed between the anodes, and an electrolytic solution containing copper ions, and copper plating is performed on both sides of the printed circuit board and its through holes. The device includes a mechanism for detecting the amount of current flowing through the two anodes, and a mechanism for moving the anode substantially perpendicularly to the printed circuit board to adjust the distance between the electrodes based on the difference between the detected values. 1. A copper plating device for a printed circuit board, characterized by having a mechanism for substantially equalizing flowing current values. 3. The copper plating apparatus of claim 2, wherein the insoluble anode is separated from the cathode by a diaphragm.
JP22455088A 1988-09-09 1988-09-09 Method and apparatus for plating printed board with copper Granted JPH0274000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22455088A JPH0274000A (en) 1988-09-09 1988-09-09 Method and apparatus for plating printed board with copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22455088A JPH0274000A (en) 1988-09-09 1988-09-09 Method and apparatus for plating printed board with copper

Publications (2)

Publication Number Publication Date
JPH0274000A JPH0274000A (en) 1990-03-13
JPH0428798B2 true JPH0428798B2 (en) 1992-05-15

Family

ID=16815547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22455088A Granted JPH0274000A (en) 1988-09-09 1988-09-09 Method and apparatus for plating printed board with copper

Country Status (1)

Country Link
JP (1) JPH0274000A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6129497B2 (en) * 2011-09-29 2017-05-17 アルメックスPe株式会社 Continuous plating equipment
JP5515056B1 (en) * 2012-11-01 2014-06-11 ユケン工業株式会社 Plating apparatus, nozzle-anode unit, plating member manufacturing method, and member to be plated fixing apparatus
CN109496080B (en) * 2018-10-08 2021-04-09 江苏长电科技股份有限公司 Circuit board electroplating process method
CN109972190A (en) * 2019-04-16 2019-07-05 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) The two-sided electroplanting device of wafer and electro-plating method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915998A (en) * 1982-07-20 1984-01-27 日本電気株式会社 Voice encoder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915998A (en) * 1982-07-20 1984-01-27 日本電気株式会社 Voice encoder

Also Published As

Publication number Publication date
JPH0274000A (en) 1990-03-13

Similar Documents

Publication Publication Date Title
EP0462943B1 (en) Method of copper plating
JP3379755B2 (en) Metal plating equipment
US10047449B2 (en) Device and method for electrolytically coating an object
JP4148895B2 (en) Hole copper plating method
KR101569185B1 (en) An insoluble anode and apparatus for producing electrolytic copperfoil having the same
JPH0428798B2 (en)
JPH06228791A (en) Electroplating device
KR20020042730A (en) Method and device for the electrolytic treatment of electrically conducting surfaces separated plates and film material pieces in addition to uses of said method
JPH10130896A (en) Electroplating method
CN101492831B (en) Anode apparatus for electroplating and electroplating apparatus comprising the same
JPH02150432A (en) Method for etching of epoxide resin
JPH06116799A (en) Electroplating method
Monev et al. In situ stress measurements during electrodeposition of Ag-Sb and Pt-Co alloy multilayers
JPH0739875A (en) Method and device for controlling ph value of electrolyzed water
JP2005264339A (en) Electrolytic treatment method and apparatus therefor
JPH04284691A (en) Electrically plating method for printed circuit board
CN114836808A (en) Electroplating device and electroplating method
US20200109486A1 (en) Plating device for printed interconnect boards and metal jig
KR20030025523A (en) apparatus for electroplating PCB
JPH0413440B2 (en)
JPH04191394A (en) Production of copper coated steel wire
CN207727150U (en) A kind of Electical connector for electroless copper
JP3370896B2 (en) Method and apparatus for supplying Zn ions to a Zn-Ni alloy electroplating bath
JP3365608B2 (en) Nickel ion replenishment method and apparatus for plating
JP3267875B2 (en) Continuous electroplating method for steel sheet