JPH04286477A - Infrared image pickup device - Google Patents

Infrared image pickup device

Info

Publication number
JPH04286477A
JPH04286477A JP3051698A JP5169891A JPH04286477A JP H04286477 A JPH04286477 A JP H04286477A JP 3051698 A JP3051698 A JP 3051698A JP 5169891 A JP5169891 A JP 5169891A JP H04286477 A JPH04286477 A JP H04286477A
Authority
JP
Japan
Prior art keywords
dark current
cooling temperature
light receiving
current component
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3051698A
Other languages
Japanese (ja)
Inventor
Kenji Awamoto
健司 粟本
Shoji Doi
土肥 正二
Isao Tofuku
東福 勲
Hiroyuki Ishizaki
石崎 洋之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3051698A priority Critical patent/JPH04286477A/en
Publication of JPH04286477A publication Critical patent/JPH04286477A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To correct fluctuation of a detector output due to fluctuation of a cooling temperature more accurately and to attain high performance with respect to the infrared image pickup device. CONSTITUTION:The image pickup device is provided with a storage means 11 storing in advance relation between a cooling temperature and a dark current component of each light receiving element of an infrared ray detector and an arithmetic control means 15 reading a dark current component for each light receiving element from the storage means 11 based on a cooling temperature detected by a temperature sensor and subtracting the dark current component of each light receiving element read as above from the infrared ray detector.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、赤外線撮像装置に関し
、特に、赤外線検知器の冷却温度変動による出力信号揺
らぎを補正し、高感度信号を得る赤外線撮像装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared imaging device, and more particularly to an infrared imaging device that corrects output signal fluctuations due to fluctuations in the cooling temperature of an infrared detector and obtains a highly sensitive signal.

【0002】近年、赤外線検知器は高性能化の要求に従
ってSN比が向上しており、その結果、検知器から出力
される雑音として、冷却温度変動による出力信号の揺ら
ぎが大きな割合を占めるようになっている。このため、
冷却温度の安定化と同時に冷却温度変動による出力信号
揺らぎを補正する手段が重要となっている。
[0002] In recent years, the signal-to-noise ratio of infrared detectors has improved in response to demands for higher performance, and as a result, fluctuations in the output signal due to fluctuations in cooling temperature have come to account for a large proportion of the noise output from the detector. It has become. For this reason,
It is important to have a means for stabilizing the cooling temperature and at the same time correcting output signal fluctuations due to fluctuations in the cooling temperature.

【0003】0003

【従来の技術】冷却温度変動による出力信号揺らぎを補
正する方法の従来の一例を図5に示す。また、赤外線検
知器出力信号の例を図6に示す。この例では4個の受光
素子■〜■を持つ赤外線検知器を用いている。
2. Description of the Related Art An example of a conventional method for correcting output signal fluctuations due to cooling temperature fluctuations is shown in FIG. Further, an example of an infrared detector output signal is shown in FIG. In this example, an infrared detector having four light receiving elements ① to ② is used.

【0004】図5において、入射光は検知器容器1内に
設けられた赤外線検知器2の受光素子■〜■に入力され
てここで光電変換され、赤外線検知器出力信号としてプ
リアンプ3を介して減(加)算用アンプ4に供給される
。一方、冷却器5に設けられた冷却温度センサ6では冷
却温度が検出されて冷却温度に対応した信号(後述の如
く、入射光によらない受光素子固有の暗電流成分)が出
力され、プリアンプ7を介して減(加)算用アンプ4に
供給される。減(加)算用アンプ4において、検知器出
力信号から冷却温度センサ出力信号が減算されることに
よって検知器出力信号が補正され、AD変換器8にてA
D変換されて出力される。
In FIG. 5, incident light is input to the light receiving elements 1 to 2 of the infrared detector 2 provided in the detector container 1, where it is photoelectrically converted, and is output as an infrared detector output signal via the preamplifier 3. It is supplied to the subtraction (addition) amplifier 4. On the other hand, the cooling temperature sensor 6 provided in the cooler 5 detects the cooling temperature and outputs a signal corresponding to the cooling temperature (as will be described later, a dark current component unique to the light receiving element that is not dependent on the incident light), and the preamplifier 5 The signal is supplied to the subtracting (adding) amplifier 4 via the subtracting (adding) amplifier 4. The subtraction (addition) amplifier 4 corrects the detector output signal by subtracting the cooling temperature sensor output signal from the detector output signal, and the AD converter 8 corrects the cooling temperature sensor output signal.
It is D-converted and output.

【0005】ここで、受光素子■〜■の各出力信号電圧
は図6に示す如くであり、入射光によらない暗電流成分
(検知器2の冷却温度Tに依存した量)、暗電流変動成
分(冷却温度変動△Tによる量)、背景入射光成分、信
号入射光成分を含む。図5に示す従来例では、冷却温度
センサ6にて暗電流成分を検出し、減算用アンプ4で検
知器出力信号からこの暗電流成分を減じ、補正後出力信
号を得ている。
Here, the output signal voltages of the light-receiving elements (1) to (2) are as shown in FIG. component (amount due to cooling temperature fluctuation ΔT), background incident light component, and signal incident light component. In the conventional example shown in FIG. 5, a cooling temperature sensor 6 detects a dark current component, and a subtraction amplifier 4 subtracts this dark current component from the detector output signal to obtain a corrected output signal.

【0006】[0006]

【発明が解決しようとする課題】図6において、暗電流
成分及び暗電流変動成分が各受光素子■〜■全て同じ量
であれば特に問題はない。然るに、実際には図6に示す
如く、暗電流成分及び暗電流変動成分は各受光素子■〜
■毎にばらついており、従来例では暗電流成分を各受光
素子共通のものとして扱っていたため、ばらつきの分だ
け補正できない。即ち、図7に示す如く、受光素子■の
暗電流成分及び暗電流変動成分が零となるようにプリア
ンプ7のゲイン及びオフセット電圧を調整すると、その
他の受光素子■,■,■は十分補正しきれずに暗電流成
分及び暗電流変動成分が残り(冷却温度変動による信号
揺らぎを含むことになり)、検知器2の性能が低下する
問題点があった。
In FIG. 6, there is no particular problem if the dark current component and the dark current fluctuation component are the same for each of the light receiving elements (1) to (2). However, in reality, as shown in FIG. 6, the dark current component and the dark current fluctuation component are
In the conventional example, the dark current component was treated as something common to each light-receiving element, so it was not possible to correct for the variation. That is, as shown in FIG. 7, when the gain and offset voltage of the preamplifier 7 are adjusted so that the dark current component and the dark current fluctuation component of the light receiving element (2) become zero, the other light receiving elements (2), (2), and (3) will be sufficiently corrected. There is a problem in that the dark current component and the dark current fluctuation component remain (including signal fluctuation due to cooling temperature fluctuation), and the performance of the detector 2 deteriorates.

【0007】本発明は、検知器出力信号の冷却温度変動
による信号揺らぎをより正確に補正し、高性能化を図る
ことができる赤外線撮像装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an infrared imaging device capable of more accurately correcting signal fluctuations in a detector output signal due to fluctuations in cooling temperature and achieving higher performance.

【0008】[0008]

【課題を解決するための手段】図1は本発明の原理説明
図を示す。同図中、11は記憶手段で、赤外線検知器の
各受光素子毎の、冷却温度と受光素子の暗電流成分との
関係を予め記憶されている。15は演算制御手段で、温
度センサにて検出された冷却温度に基づいて記憶手段1
1から各受光素子毎の暗電流成分を読出し、赤外線検知
器出力から該読出した各受光素子の暗電流成分を減じる
[Means for Solving the Problems] FIG. 1 shows a diagram illustrating the principle of the present invention. In the figure, reference numeral 11 denotes a storage means in which the relationship between the cooling temperature and the dark current component of the light receiving element is stored in advance for each light receiving element of the infrared detector. 15 is an arithmetic control means, and the memory means 1 is stored based on the cooling temperature detected by the temperature sensor.
1, the dark current component of each light receiving element is read out, and the read dark current component of each light receiving element is subtracted from the infrared detector output.

【0009】[0009]

【作用】本発明では、図3に示すように冷却温度と赤外
線検知器出力の暗電流成分との関係を予め記憶手段11
に記憶しておき、検知器出力から予め記憶されている各
受光素子固有の暗電流成分を減じるようにしている。従
って、従来例に比して各受光素子について冷却温度変動
による検知器出力の揺らぎをより正確に補正でき、装置
の性能を向上できる。
[Operation] In the present invention, as shown in FIG.
The dark current component unique to each light-receiving element stored in advance is subtracted from the detector output. Therefore, compared to the conventional example, it is possible to more accurately correct fluctuations in the detector output due to cooling temperature fluctuations for each light receiving element, and improve the performance of the apparatus.

【0010】0010

【実施例】図2は本発明の第1実施例の構成図を示し、
同図中、図5と同一構成部分には同一番号を付してその
説明を省略する。図2中、10は温度判定回路で、図3
に示すように冷却温度Tとして通常冷却温度Ta,冷却
変動を生じた場合の冷却温度Tbを設定したとき、プリ
アンプ7の出力により、冷却温度Tが冷却温度Ta,T
bの間に設定されている閾値冷却温度Tc以下にあるか
、Tcを越えているかを判定する。11はメモリで、メ
モリエリア11aには各受光素子■,■,…の通常冷却
温度Taにおける暗電流成分値V1a,V2a,…が、
メモリエリア11bには各受光素子■,■,…の冷却変
動温度Tbにおける暗電流成分値V1b,V2b,…が
夫々予め記憶されている。これら暗電流成分値は測定に
よって予め求められている。12は演算論理回路で、A
D変換器13から出力された赤外線検知器出力信号から
メモリ11の出力信号を減算する。14は制御回路で、
温度判定回路10からの出力に応じてメモリ11のメモ
リエリア11a,11bから暗電流成分値を選択読出し
、演算論理回路12に供給する。制御回路14及び演算
論理回路12にて演算制御手段15が構成されている。
[Embodiment] FIG. 2 shows a configuration diagram of a first embodiment of the present invention,
In the figure, the same components as those in FIG. 5 are given the same numbers and their explanations will be omitted. In Figure 2, 10 is a temperature determination circuit, and Figure 3
As shown in the figure, when the normal cooling temperature Ta and the cooling temperature Tb in case of cooling fluctuation are set as the cooling temperature T, the output of the preamplifier 7 changes the cooling temperature T to the cooling temperature Ta, T.
It is determined whether the cooling temperature is below or above the threshold cooling temperature Tc set during b. Reference numeral 11 denotes a memory, and a memory area 11a stores dark current component values V1a, V2a, . . . at the normal cooling temperature Ta of each of the light receiving elements
In the memory area 11b, dark current component values V1b, V2b, . . . of the respective light receiving elements ①, ②, . . . at the cooling fluctuation temperature Tb are stored in advance, respectively. These dark current component values are determined in advance by measurement. 12 is an arithmetic logic circuit, A
The output signal of the memory 11 is subtracted from the infrared detector output signal output from the D converter 13. 14 is a control circuit;
Dark current component values are selectively read out from memory areas 11 a and 11 b of memory 11 in accordance with the output from temperature determination circuit 10 and supplied to arithmetic logic circuit 12 . The control circuit 14 and the arithmetic logic circuit 12 constitute an arithmetic control means 15.

【0011】次に、本発明の動作について説明する。Next, the operation of the present invention will be explained.

【0012】図2において、温度判定回路10によって
冷却温度Tが例えば閾値冷却温度Tc以下であることが
判定された場合、制御回路14の制御によってメモリ1
1のメモリエリア11aに記憶されている通常冷却温度
Ta時の暗電流成分値V1a,V2a,…が読出され、
演算論理回路12において検知器出力信号から減算され
る。 一方、温度判定回路10によって冷却温度Tが閾値冷却
温度Tcを越えたことが判定されている場合、制御回路
14の制御によってメモリ11のメモリエリア11bに
記憶されている冷却変動温度Tb時の暗電流成分値V1
b,V2b,…が読出され、演算論理回路12において
検知器出力信号から減算される。
In FIG. 2, when the temperature determination circuit 10 determines that the cooling temperature T is below the threshold cooling temperature Tc, the memory 1 is controlled by the control circuit 14.
The dark current component values V1a, V2a, . . . at the normal cooling temperature Ta stored in the memory area 11a of No. 1 are read out,
It is subtracted from the detector output signal in the arithmetic logic circuit 12. On the other hand, if the temperature determination circuit 10 determines that the cooling temperature T has exceeded the threshold cooling temperature Tc, the control circuit 14 controls the cooling fluctuation temperature Tb stored in the memory area 11b of the memory 11. Current component value V1
b, V2b, . . . are read out and subtracted from the detector output signal in the arithmetic logic circuit 12.

【0013】このように、本発明では、検知器出力信号
から予め測定されている受光素子固有の暗電流成分を減
じるようにしているので、従来例に比して各受光素子に
ついてより正確に補正でき、検知器2の性能を向上でき
る。特に、各受光素子■〜■間での暗電流成分のばらつ
きが大きい場合、従来例に比して冷却温度変動の影響を
減じる効果が大である。
As described above, in the present invention, since the dark current component unique to the light receiving element measured in advance is subtracted from the detector output signal, each light receiving element can be corrected more accurately than in the conventional example. It is possible to improve the performance of the detector 2. In particular, when there is a large variation in dark current components among the light receiving elements (1) to (2), the effect of reducing the influence of cooling temperature fluctuations is greater than in the conventional example.

【0014】なお、上記実施例では冷却温度がTa〜T
bの範囲で変動しているのを全て一つの閾値冷却温度T
cを判定点として判定しているので、例えばTcより極
く僅か高い冷却温度が検出冷却温度であった場合でも、
冷却温度Tbの暗電流成分値を用いて演算されることに
なる。このため、補正は十分正確に行なわれるわけでは
ない。そこで、図3に示すように例えばTcの代りに閾
値冷却温度Tc1,Tc2を設け、これに伴ってメモリ
11に更にメモリエリア11cを設けて図3に示す冷却
温度Tcの暗電流成分値V1c,V2c,…を予め測定
して記憶しておく。温度判定回路10にてT1c以上、
T2c以下が判定された場合にはメモリエリア11cか
ら暗電流成分値V1c,V2c,…を選択読出すように
する。このようにすれば、前述の実施例よりも更に正確
に補正を行なうことができる。
[0014] In the above embodiment, the cooling temperature ranges from Ta to T.
All fluctuations in the range b are set to one threshold cooling temperature T.
Since the determination is made using c as the determination point, for example, even if the detected cooling temperature is extremely slightly higher than Tc,
It is calculated using the dark current component value of the cooling temperature Tb. Therefore, the correction is not performed accurately enough. Therefore, as shown in FIG. 3, for example, threshold cooling temperatures Tc1 and Tc2 are provided instead of Tc, and accordingly, a memory area 11c is further provided in the memory 11, and the dark current component value V1c of the cooling temperature Tc shown in FIG. Measure and store V2c, . . . in advance. T1c or more in the temperature judgment circuit 10,
If it is determined that T2c or less, the dark current component values V1c, V2c, . . . are selectively read out from the memory area 11c. In this way, it is possible to perform correction more accurately than in the previous embodiment.

【0015】次に、本発明の第2実施例について説明す
る。図6に示す暗電流成分と暗電流変動成分との和Vn
(△T)は、受光素子をn,通常冷却温度Taからの温
度変動(温度差)を△T(=任意の冷却温度T−Ta)
とすると、   Vn(△T)={(Vnb−Vna)/(Tb−T
a)}△T+Vnaで表わすことができる。そこで、各
受光素子毎に、(V1b−V1a)/(Tb−Ta)=
A1 ,(V2b−V2a)/(Tb−Ta)=A2 
,…をメモリ11のメモリエリア11aに、V1a=B
1 ,V2a=B2 ,…をメモリエリア11bに予め
記憶しておく。温度判定回路10をAD変換器を用いて
構成して温度変動(温度差)△Tを検出し、演算論理回
路12において、各受光素子毎に上記式を演算によって
求め(V1 (△T),V2 (△T)…)、更に、検
知器出力信号からV1 (△T),V2 (△T),…
を減算する。
Next, a second embodiment of the present invention will be explained. The sum Vn of the dark current component and the dark current fluctuation component shown in FIG.
(△T) is the light receiving element n, and the temperature fluctuation (temperature difference) from the normal cooling temperature Ta is △T (= arbitrary cooling temperature T - Ta)
Then, Vn(△T)={(Vnb-Vna)/(Tb-T
a)} Can be expressed as △T+Vna. Therefore, for each light receiving element, (V1b-V1a)/(Tb-Ta)=
A1, (V2b-V2a)/(Tb-Ta)=A2
,... in the memory area 11a of the memory 11, V1a=B
1, V2a=B2, . . . are stored in advance in the memory area 11b. The temperature determination circuit 10 is configured using an AD converter to detect temperature fluctuation (temperature difference) ΔT, and the arithmetic logic circuit 12 calculates the above equation for each light receiving element by calculating (V1 (ΔT), V2 (△T)...), and further V1 (△T), V2 (△T),... from the detector output signal.
Subtract.

【0016】このようにすれば、任意の冷却温度Tにお
ける各受光素子の暗電流成分及び暗電流変動成分を除去
でき、前述の各実施例よりも更に正確に補正することが
できる。
In this way, the dark current component and dark current fluctuation component of each light receiving element at an arbitrary cooling temperature T can be removed, and correction can be made more accurately than in each of the embodiments described above.

【0017】次に、本発明の第3実施例について説明す
る。図4は第3実施例の構成図を示し、同図中、図2と
同一構成部分には同一符号を付してその説明を省略する
。図4中、2´は赤外線検知器で、受光素子■〜■と同
列面に冷却温度センサ6が設けられている。第3実施例
では、図2に示す冷却温度センサ出力信号ライン、プリ
アンプ7,温度判定回路10は設けられていない。
Next, a third embodiment of the present invention will be described. FIG. 4 shows a configuration diagram of the third embodiment, and in the figure, the same components as those in FIG. In FIG. 4, 2' is an infrared detector, and a cooling temperature sensor 6 is provided on the same plane as the light receiving elements (1) to (2). In the third embodiment, the cooling temperature sensor output signal line, preamplifier 7, and temperature determination circuit 10 shown in FIG. 2 are not provided.

【0018】赤外線検知器の出力信号は図6に示すよう
に、各受光素子■,■,…からの信号が順次出力される
が、一般に、あるフレームの出力(受光素子■〜■の出
力)から次のフレームの出力までに時間的隙間がある。 そこで、第3実施例では、冷却温度センサ6を受光素子
■〜■と同列面に設け、受光素子ドライブ信号によって
冷却温度センサ6もドライブして冷却温度センサ6の出
力信号を上記隙間に挿入し、つまり、検知器出力信号に
冷却温度センサ6の出力信号を多重化して出力する。
As shown in FIG. 6, the output signals of the infrared detector are sequentially output from each of the light-receiving elements ①, ②, . There is a time gap between the output of the next frame and the output of the next frame. Therefore, in the third embodiment, the cooling temperature sensor 6 is provided on the same plane as the light-receiving elements ■ to ■, and the cooling temperature sensor 6 is also driven by the light-receiving element drive signal, and the output signal of the cooling temperature sensor 6 is inserted into the gap. That is, the output signal of the cooling temperature sensor 6 is multiplexed with the detector output signal and output.

【0019】この検知器及び冷却温度センサ出力信号は
プリアンプ3,AD変換器13を介して演算論理回路1
2に供給され、制御回路14の制御によって冷却温度セ
ンサ出力信号のみ抜出されて冷却温度に応じた暗電流成
分がメモリ11内から選択読出される。前述の各実施例
と同様に、演算論理回路12において検知器出力信号か
ら暗電流成分が減じられる。第3実施例は、前記第1,
第2実施例よりもプリアンプ7,温度判定回路10が設
けられていない分だけ装置を小形化でき、しかも、冷却
温度センサ6を受光素子■〜■と同列面に設けているの
で冷却温度検出をより正確に行なうことができる。
The output signals of the detector and the cooling temperature sensor are sent to the arithmetic logic circuit 1 via the preamplifier 3 and the AD converter 13.
2, only the cooling temperature sensor output signal is extracted under the control of the control circuit 14, and a dark current component corresponding to the cooling temperature is selectively read out from the memory 11. As with the previous embodiments, the dark current component is subtracted from the detector output signal in the arithmetic logic circuit 12. The third embodiment is based on the first,
Compared to the second embodiment, the device can be made more compact since the preamplifier 7 and the temperature determination circuit 10 are not provided.Moreover, since the cooling temperature sensor 6 is provided on the same plane as the light receiving elements 1 to 2, cooling temperature detection is possible. It can be done more accurately.

【0020】なお、図6に示す受光素子毎の背景入射光
成分のばらつきを補正するための演算論理回路を既に設
けられている装置においては、本発明で用いる演算論理
回路12と共用でき、回路を複雑化することなく構成で
きる。
It should be noted that in an apparatus already provided with an arithmetic logic circuit for correcting variations in background incident light components for each light receiving element shown in FIG. 6, the arithmetic logic circuit 12 used in the present invention can be used in common with the can be configured without complication.

【0021】[0021]

【発明の効果】本発明によれば、検知器出力から予め記
憶されている各受光素子固有の暗電流成分を減じるよう
にしているので、従来例に比して各受光素子について冷
却温度変動による検知器出力の揺らぎをより正確に補正
でき、装置の高性能化を図ることができる。
According to the present invention, since the dark current component unique to each light-receiving element stored in advance is reduced from the detector output, it is possible to reduce the dark current component unique to each light-receiving element, which is stored in advance, from the detector output. Fluctuations in the detector output can be corrected more accurately, and the performance of the device can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の原理説明図である。FIG. 1 is a diagram explaining the principle of the present invention.

【図2】本発明の第1実施例の構成図である。FIG. 2 is a configuration diagram of a first embodiment of the present invention.

【図3】冷却温度と暗電流成分との関係を示す図である
FIG. 3 is a diagram showing the relationship between cooling temperature and dark current component.

【図4】本発明の第2実施例の構成図である。FIG. 4 is a configuration diagram of a second embodiment of the present invention.

【図5】従来の一例の構成図である。FIG. 5 is a configuration diagram of a conventional example.

【図6】赤外線検知器出力信号を示す図である。FIG. 6 is a diagram showing an infrared detector output signal.

【図7】従来例における補正後の出力信号を示す図であ
る。
FIG. 7 is a diagram showing an output signal after correction in a conventional example.

【符号の説明】[Explanation of symbols]

■〜■  赤外線受光素子 2,2´  赤外線検知器 6  冷却温度センサ 10  温度判定回路 11  メモリ(記憶手段) 11a,11b  メモリエリア 12  演算論理回路 14  制御回路 15  演算制御手段 ■~■ Infrared receiving element 2,2´  Infrared detector 6 Cooling temperature sensor 10 Temperature judgment circuit 11 Memory (storage means) 11a, 11b Memory area 12 Arithmetic logic circuit 14 Control circuit 15 Arithmetic control means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  赤外線検知器の冷却温度を検出する温
度センサを設けられ、該赤外線検知器出力から該温度セ
ンサ出力を減じて赤外線検知器出力補正を行なう赤外線
撮像装置において、上記赤外線検知器の各受光素子毎の
、冷却温度と受光素子の暗電流成分との関係を予め記憶
された記憶手段(11)と、上記温度センサにて検出さ
れた冷却温度に基づいて該記憶手段から各受光素子毎の
暗電流成分を読出し、上記赤外線検知器出力から該読出
した各受光素子の暗電流成分を減じる演算制御手段(1
5)とを設けてなることを特徴とする赤外線撮像装置。
1. An infrared imaging device that is provided with a temperature sensor that detects the cooling temperature of an infrared detector, and that corrects the output of the infrared detector by subtracting the output of the temperature sensor from the output of the infrared detector. A storage means (11) in which the relationship between the cooling temperature and the dark current component of the light receiving element is stored in advance for each light receiving element, and each light receiving element is stored from the storage means based on the cooling temperature detected by the temperature sensor. an arithmetic control means (1
5) An infrared imaging device comprising:
【請求項2】  赤外線検知器の冷却温度を検出する温
度センサを設けられ、該赤外線検知器出力から該温度セ
ンサ出力を減じて赤外線検知器出力補正を行なう赤外線
撮像装置において、上記赤外線検知器の各受光素子毎の
、冷却温度差と冷却温度差による受光素子の暗電流成分
差との比、及び、冷却温度に対する暗電流成分を予め記
憶された記憶手段(11)と、上記温度センサにて検出
された冷却温度から冷却温度差を求め、該記憶手段から
各受光素子毎の上記比及び暗電流成分を読出して予め設
定されている演算式に基づいて各受光素子毎の、暗電流
成分と暗電流変動成分との和を求め、上記赤外線検知器
出力から該暗電流成分と暗電流変動成分との和を減じる
演算制御手段(15)とを設けてなることを特徴とする
赤外線撮像装置。
2. An infrared imaging device that is provided with a temperature sensor that detects the cooling temperature of the infrared detector, and performs infrared detector output correction by subtracting the temperature sensor output from the infrared detector output, wherein The storage means (11) in which the ratio of the cooling temperature difference to the dark current component difference of the light receiving element due to the cooling temperature difference and the dark current component with respect to the cooling temperature are stored in advance for each light receiving element, and the temperature sensor The cooling temperature difference is determined from the detected cooling temperature, the ratio and the dark current component for each light receiving element are read out from the storage means, and the dark current component and the dark current component for each light receiving element are calculated based on a preset calculation formula. An infrared imaging device characterized by comprising: arithmetic control means (15) for determining the sum of the dark current component and the dark current fluctuation component, and subtracting the sum of the dark current component and the dark current fluctuation component from the output of the infrared detector.
【請求項3】  前記温度センサ(6)を前記各受光素
子と同列面に設け、前記赤外線検知器出力に前記温度セ
ンサ出力を多重化して前記演算制御手段(15)に供給
する構成としたことを特徴とする請求項1又は2の赤外
線撮像装置。
3. The temperature sensor (6) is provided on the same plane as each of the light receiving elements, and the temperature sensor output is multiplexed with the infrared detector output and supplied to the calculation control means (15). The infrared imaging device according to claim 1 or 2, characterized in that:
JP3051698A 1991-03-15 1991-03-15 Infrared image pickup device Withdrawn JPH04286477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3051698A JPH04286477A (en) 1991-03-15 1991-03-15 Infrared image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3051698A JPH04286477A (en) 1991-03-15 1991-03-15 Infrared image pickup device

Publications (1)

Publication Number Publication Date
JPH04286477A true JPH04286477A (en) 1992-10-12

Family

ID=12894121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3051698A Withdrawn JPH04286477A (en) 1991-03-15 1991-03-15 Infrared image pickup device

Country Status (1)

Country Link
JP (1) JPH04286477A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289712A (en) * 2000-03-03 2001-10-19 Boeing Co:The Method for correcting video signal of infrared sensor and imaging system
JP2007174113A (en) * 2005-12-20 2007-07-05 Sumitomo Electric Ind Ltd Obstacle detection system and obstacle detection method
JP2008022454A (en) * 2006-07-14 2008-01-31 Sumitomo Electric Ind Ltd Obstacle detection system and obstacle detection method
JP2008187254A (en) * 2007-01-26 2008-08-14 Sumitomo Electric Ind Ltd Infrared imaging apparatus, and output value calculating method for imaging element
WO2015072006A1 (en) * 2013-11-15 2015-05-21 富士通株式会社 Infrared ray detection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289712A (en) * 2000-03-03 2001-10-19 Boeing Co:The Method for correcting video signal of infrared sensor and imaging system
JP2007174113A (en) * 2005-12-20 2007-07-05 Sumitomo Electric Ind Ltd Obstacle detection system and obstacle detection method
JP2008022454A (en) * 2006-07-14 2008-01-31 Sumitomo Electric Ind Ltd Obstacle detection system and obstacle detection method
JP2008187254A (en) * 2007-01-26 2008-08-14 Sumitomo Electric Ind Ltd Infrared imaging apparatus, and output value calculating method for imaging element
WO2015072006A1 (en) * 2013-11-15 2015-05-21 富士通株式会社 Infrared ray detection device
JPWO2015072006A1 (en) * 2013-11-15 2017-03-09 富士通株式会社 Infrared detector
US9967484B2 (en) 2013-11-15 2018-05-08 Fujitsu Limited Infrared detection apparatus

Similar Documents

Publication Publication Date Title
EP3413023A2 (en) Real time radiation sensor calibration
JPH04286477A (en) Infrared image pickup device
JPH11112884A (en) Method for correcting dark current of video camera device and video camera device using the method
JPH10122956A (en) Infrared camera
JP2713196B2 (en) Signal processing method of multi-element imaging device
JP3060545B2 (en) Human body detector
JP4007018B2 (en) Infrared imaging device
JPH0923358A (en) Video camera
US7042503B2 (en) Image sensing apparatus, method and program for distance measurement
JPS631918A (en) Distance detector
JP2529210B2 (en) White balance adjustment device
JPH1038683A (en) Light quantity detector
JPH0213815A (en) Sensitivity correction system for photoconducting type infrared detector
JP2678528B2 (en) Semiconductor sensor and adjusting method thereof
JPH0612302B2 (en) Infrared radiation thermometer
JP2003322344A (en) Heating cooker
JPH01287428A (en) Infrared image pickup device
JP3115358B2 (en) Pressure control device
JPH10160581A (en) Thermal image detecting device
JPH01138485A (en) Radiation image device
JP3038255B2 (en) Camera aperture control device
JPS6040904A (en) Length measuring device
JPH0524032Y2 (en)
JPH01193627A (en) Optical moisture meter
JPH01152331A (en) Automatically offset correcting thermography apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514