JPH04284603A - Manufacture of hexagonal-system ferrite powder for magnetic recording - Google Patents

Manufacture of hexagonal-system ferrite powder for magnetic recording

Info

Publication number
JPH04284603A
JPH04284603A JP3048255A JP4825591A JPH04284603A JP H04284603 A JPH04284603 A JP H04284603A JP 3048255 A JP3048255 A JP 3048255A JP 4825591 A JP4825591 A JP 4825591A JP H04284603 A JPH04284603 A JP H04284603A
Authority
JP
Japan
Prior art keywords
hexagonal
glass
ferrite
sio2
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3048255A
Other languages
Japanese (ja)
Inventor
Toshiharu Kurisu
俊治 栗栖
Osamu Kubo
修 久保
Tatsumi Maeda
前田 辰巳
Etsuji Ogawa
悦治 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3048255A priority Critical patent/JPH04284603A/en
Publication of JPH04284603A publication Critical patent/JPH04284603A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the production cost of the title powder by a method wherein individual elements forming a hexagonal-system ferrite expressed by specific structural formula, a glass formation component and a glass modification component are mixed so as to satisfy a specific condition and their mixture is heated and melted. CONSTITUTION:Individual elements forming a hexagonal-system ferrite expressed by the formula, a glass formation component, a component which can become B2O3 or/and SiO2 as a glass modification component and a compound which can become R2O (where R represents at least one out of Li, Na and K) are mixed so as to be 0.8<R2O/B2O3<1.4, 0.5<=R2O/SiO2<0.7 or 0.7<R2O/B2O3+ SiO2<=1.5. Their mixture is heated and melted; after that, it is quenched and made amorphous. Then, a heat treatment at a prescribed temperature is executed to this amorphous substance; the hexagonal-system ferrite is precipitated. Then, the precipitated hexagonal-system ferrite is extracted. Thereby, the hexagonal-system ferrite whose particle-size distribution is narrow and whose dispersion is good as a paint can be obtained with good reproducibility.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は主に高密度磁気記録媒体
の構成に用いられる六方晶系フェライトの製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hexagonal ferrite mainly used in the construction of high-density magnetic recording media.

【0003】0003

【従来の技術】たとえば塗布形の磁気記録媒体は、ポリ
エチレンテレフタレートフイルムなどから成る基体と、
この基体面上に形成された磁性粉およびバインダレジン
を主成分とする磁性層とで構成されている。そして、こ
のような磁気記録媒体の構成に用いられる磁性粉として
は、従来γ−Fe2 O3 、Co被着γ−Fe2 O
3 、CrO2 あるいは金属Feなどの針状磁性粉を
用い、面内長手方向の磁化を利用する磁気記録方式が採
られていた。
[Prior Art] For example, a coated magnetic recording medium has a base made of polyethylene terephthalate film, etc.
It is composed of magnetic powder formed on the base surface and a magnetic layer mainly composed of binder resin. Conventional magnetic powders used in the construction of such magnetic recording media include γ-Fe2O3, Co-coated γ-Fe2O
3. A magnetic recording method was adopted that utilized acicular magnetic powder such as CrO2 or metal Fe and utilized magnetization in the longitudinal direction in the plane.

【0004】しかし、前記面内長手方向の磁化を利用す
る磁気記録媒体においては、高周波域における記録再生
の向上を図ろうとすると、記録媒体内の減磁界が増加す
るため、記録密度をそれほど向上差せることができない
という問題がある。
However, in a magnetic recording medium that utilizes magnetization in the in-plane longitudinal direction, when trying to improve recording and reproduction in a high frequency range, the demagnetizing field within the recording medium increases, so the recording density cannot be improved much. The problem is that it cannot be done.

【0005】磁気記録密度の大幅な改善・向上を図るた
め、磁気記録媒体の基体と垂直な方向の磁化を利用する
垂直磁気記録方式が提案されている。つまり、この垂直
磁気記録方式の場合は、高周波域においても記録媒体内
の減磁界の問題が生じないので、高密度記録に適するか
らである。
In order to significantly improve the magnetic recording density, a perpendicular magnetic recording system has been proposed that utilizes magnetization in a direction perpendicular to the base of a magnetic recording medium. In other words, this perpendicular magnetic recording method is suitable for high-density recording because it does not cause the problem of demagnetizing fields within the recording medium even in a high frequency range.

【0006】前記垂直磁気記録方式に適する記録媒体と
して、Co−Cr合金などを真空蒸着法やスパッタ法に
より基体面上に被着・形成した構成のものが知られてい
る。しかしながら、この種の磁気記録媒体の場合、環境
安定性、走行耐久性、生産性などの点で問題がある。
As a recording medium suitable for the above-mentioned perpendicular magnetic recording system, one in which a Co--Cr alloy or the like is deposited and formed on a substrate surface by a vacuum evaporation method or a sputtering method is known. However, this type of magnetic recording medium has problems in terms of environmental stability, running durability, productivity, etc.

【0007】一方、このような問題のない磁気記録媒体
として、基体面上に垂直な方向の磁化を用いる垂直記録
方式に適した高密度垂直記録媒体として、垂直方向に磁
化容易軸を配向し易い六方晶系フェライト、たとえばM
型のBaFe12O19、W型のBaMe2 Fe16
O27(Meは置換金属元素)、M型フェライトとスピ
ネルフェライトとを同時に含むもの、あるいはそれらの
原子の一部を他の元素で置換した六方晶系フェライトを
用いたものが知られている。すなわち、前記六方晶系フ
ェライト粉末を、バインダレジン、溶剤および各種添加
剤と共に混合して磁性塗料を調製し、この磁性塗料を非
磁性基体上に塗布したものが知られている。
On the other hand, as a magnetic recording medium free from such problems, a high-density perpendicular recording medium suitable for a perpendicular recording method that uses magnetization in a direction perpendicular to the surface of the substrate is used, in which the axis of easy magnetization is easily oriented in the perpendicular direction. Hexagonal ferrite, for example M
type BaFe12O19, W type BaMe2 Fe16
It is known to contain O27 (Me is a substitution metal element), M-type ferrite and spinel ferrite at the same time, or to use hexagonal ferrite in which some of these atoms are replaced with other elements. That is, it is known that a magnetic paint is prepared by mixing the hexagonal ferrite powder with a binder resin, a solvent, and various additives, and this magnetic paint is applied onto a nonmagnetic substrate.

【0008】ところで、このような磁気記録媒体用の六
方晶系フェライトを製造する方法としては、たとえば、
六方晶系フェライトの基本成分と、保磁力低減用の置換
成分と、飽和磁化向上など特性改善用の添加成分および
ガラス形成成分を混合して加熱溶融させ、この溶融物を
急速に冷却して非晶質化(ガラス化)し、得られた非晶
質体に熱処理を施して六方晶系フェライトの結晶粒子を
析出させた後、これを粉砕し、得られた微粉末をリン酸
や酢酸などの希酸で洗浄処理し、ガラス形成成分を溶解
除去することによって、六方晶系フェライトを分離抽出
するという、ガラス結晶化法が採られている。
By the way, as a method for manufacturing such hexagonal ferrite for magnetic recording media, for example,
The basic components of hexagonal ferrite, substituent components for reducing coercive force, additive components for improving properties such as improving saturation magnetization, and glass forming components are mixed and melted by heating, and the molten material is rapidly cooled to form a non-woven material. After crystallization (vitrification) and heat treatment of the resulting amorphous body to precipitate hexagonal ferrite crystal particles, this is crushed and the resulting fine powder is treated with phosphoric acid, acetic acid, etc. A glass crystallization method is used in which hexagonal ferrite is separated and extracted by cleaning with dilute acid to dissolve and remove glass-forming components.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、従来の
ガラス結晶化法では、ガラス修飾成分としてAO(Aは
Ba、Sr、CaおよびPbから選ばれた少なくとも1
種の元素)となり得る化合物およびB2 O3 となり
得る化合物を用いている。したがって、これら原料混合
物成分の溶融に際し、溶融温度を高くする必要があり、
生産コストが高くつくという問題がある。
However, in the conventional glass crystallization method, AO (A is at least one selected from Ba, Sr, Ca and Pb) is used as a glass modifying component.
A compound that can become B2O3 and a compound that can become B2O3 are used. Therefore, when melting these raw material mixture components, it is necessary to increase the melting temperature.
There is a problem that production costs are high.

【0010】しかも、得られる六方晶系フェライトは、
たとえば板状比が必ずしも十分大きくなかったり、粒径
が不揃いであるなどの問題がある。
Moreover, the hexagonal ferrite obtained is
For example, there are problems such as the plate ratio is not necessarily large enough or the grain size is irregular.

【0011】本発明はこのような問題を解決するために
なされたもので、廉価な製造コストで、かつ均一性良好
な溶融物系を容易に確保でき、粒度分布が狭くて分散性
が良好な六方晶系フェライトを常に製造し得る方法の提
供を目的とする。
The present invention has been made to solve these problems, and it is possible to easily obtain a melt system with good uniformity at low manufacturing cost, and with a narrow particle size distribution and good dispersibility. The object of the present invention is to provide a method that can consistently produce hexagonal ferrite.

【0012】[発明の構成][Configuration of the invention]

【0013】[0013]

【課題を解決するための手段】本発明に係る磁気記録用
六方晶系フェライトの製造方法は、一般式、AO・n(
Fe12−x−yM1 x M2 y O18−a)(
但し、0.8 ≦n≦2.0 、0.55≦x≦2.7
 、0.0 ≦y<2.0 、0.0 ≦a≦1.0 
、AはBa、Sr、CaおよびPbの中から選ばれた少
なくとも1種の元素、M1はCo、  Ni、Cu、Z
n、MnおよびMgの中から選ばれた少なくとも1種の
元素、M2 はTi、Nb、Sn、Zr、V、Al、C
r、Mo、GeおよびWの中から選ばれた少なくとも1
種の元素)で示される六方晶系フェライトを形成する各
元素の化合物と、ガラス形成成分・ガラス修飾成分とし
てのB2 O3 または/およびSiO2 になり得る
化合物、R2 O(RはLi、NaおよびKの中から選
ばれた少なくとも1種)になり得る化合物を、 0.8 <R2 O/B2 O3 <1.4 、0.5
 ≦R2 O/SiO2 <0.7 、もしくは0.7
 <R2 O/(B2 O3 +SiO2 )≦1.5 となるように混合して加熱溶融させた後、急速冷却を施
して非晶質化する工程と、  前記形成した非晶質体に
所定温度の熱処理を施して六方晶系フェライトを析出さ
せる工程と、前記析出した六方晶系フェライトを抽出す
る工程とを備えたことを特徴とする。  ここで、n、
x、y、aが上記範囲を外れると、形成される六方晶系
フェライトの保磁力が200 〜2000 Oe の範
囲外となって、記録信号の保持が不可能となったり、あ
るいは記録が困難となる。さらに、ガラス形成成分およ
びガラス修飾成分の比率が、上記範囲を外れた場合、粒
径が大きくなり過ぎたり、六方晶系フェライト以外の相
が形成され易い。 さらにまた、六方晶系フェライトの基本成分および保磁
力制御用の置換成分の量の和は、30〜60 mol%
 の範囲が好ましい。つまり、30 mol% より少
ないと粒径が大きくなり過ぎの傾向があり、また60 
mol%を超えると溶融温度が高くなるばかりでなく、
熱処理後における六方晶系フェライトの抽出が困難な傾
向があるからである。
[Means for Solving the Problems] A method for manufacturing a hexagonal ferrite for magnetic recording according to the present invention has a general formula: AO・n(
Fe12-x-yM1 x M2 y O18-a)(
However, 0.8≦n≦2.0, 0.55≦x≦2.7
,0.0≦y<2.0 ,0.0≦a≦1.0
, A is at least one element selected from Ba, Sr, Ca and Pb, M1 is Co, Ni, Cu, Z
At least one element selected from n, Mn and Mg, M2 is Ti, Nb, Sn, Zr, V, Al, C
At least one selected from r, Mo, Ge and W
Compounds of each element forming hexagonal ferrite represented by seed elements), and compounds that can become B2O3 and/or SiO2 as glass-forming components and glass-modifying components, R2O (R is Li, Na, and K 0.8 <R2 O/B2 O3 <1.4, 0.5
≦R2 O/SiO2 <0.7 or 0.7
<R2O/(B2O3 +SiO2)≦1.5, and then heating and melting the mixture, followed by rapid cooling to make it amorphous; and heating the formed amorphous body to a predetermined temperature. The method is characterized by comprising a step of performing heat treatment to precipitate hexagonal ferrite, and a step of extracting the precipitated hexagonal ferrite. Here, n,
If x, y, and a are outside the above ranges, the coercive force of the hexagonal ferrite formed will be outside the range of 200 to 2000 Oe, making it impossible to retain recording signals or making recording difficult. Become. Furthermore, if the ratio of the glass-forming component and the glass-modifying component is out of the above range, the grain size may become too large or phases other than hexagonal ferrite are likely to be formed. Furthermore, the sum of the amounts of the basic component of the hexagonal ferrite and the substituted component for coercive force control is 30 to 60 mol%.
A range of is preferred. In other words, if it is less than 30 mol%, the particle size tends to become too large;
Exceeding mol% not only increases the melting temperature, but also
This is because it tends to be difficult to extract hexagonal ferrite after heat treatment.

【0014】本発明において、六方晶系フェライトの基
本成分は、BaO、SrO、CaOおよびPbOから選
ばれた少なくとも1種とFe2 O3 であり、また、
保磁力制御のための置換成分は、CoO、NiO、Cu
O、ZnO、MgO、TiO2 、Nb2 O5 、S
nO2 、ZrO2 、V2 O5 、CrO2 、M
oO2 、MoO、Al2 O3 、GeO2 および
WO2 から選ばれた少なくとも1種である。さらに、
ガラス形成成分・ガラス修飾成分は、Li2 O、Na
2 OおよびK2 Oから選ばれる少なくとも1種と、
B2 O3 および/またはSiO2 が挙げられる。 そして、これらの各成分は、たとえば炭酸化合物など他
の形態の化合物を用いてもよい。  本発明に係る製造
方法は、一般的に次のように行なわれる。すなわち、上
記のように組成比など選択された原料を十分に混合し、
たとえば1300℃程度以下の温度で加熱溶融した後、
この溶融物をたとえば双ロール間に落として急冷し非晶
質体とする。次いで、この非晶質体に600 〜900
 ℃程度の熱処理を施し、六方晶系フェライトを析出さ
せた後、粉砕してから酸および水によりガラス成分を除
去し、前記析出した六方晶系フェライトを抽出して乾燥
することによって、所望の六方晶系フェライトが得られ
る。
In the present invention, the basic components of the hexagonal ferrite are at least one selected from BaO, SrO, CaO and PbO and Fe2O3, and
Substitution components for coercive force control include CoO, NiO, and Cu.
O, ZnO, MgO, TiO2, Nb2O5, S
nO2, ZrO2, V2O5, CrO2, M
It is at least one selected from oO2, MoO, Al2O3, GeO2 and WO2. moreover,
Glass forming components and glass modifying components include Li2O, Na
At least one species selected from 2 O and K2 O,
Examples include B2 O3 and/or SiO2. For each of these components, other forms of compounds such as carbonate compounds may be used. The manufacturing method according to the present invention is generally carried out as follows. That is, the raw materials selected including the composition ratio as described above are thoroughly mixed,
For example, after heating and melting at a temperature of about 1300℃ or less,
This melt is dropped, for example, between twin rolls and rapidly cooled to form an amorphous material. Next, this amorphous body is coated with 600 to 900
After precipitating hexagonal ferrite by heat treatment at a temperature of about Crystalline ferrite is obtained.

【0015】[0015]

【作用】本発明に係る磁気記録用六方晶系フェライトの
製造方法においては、六方晶系フェライトを形成する成
分およびガラス形成成分を、加熱溶融させた後急冷して
非晶質化するにあたり、ガラス形成成分・ガラス修飾成
分として、B2 O3 および/またはSiO2 とな
り得る化合物と、R2 Oとなり得る化合物を所定の組
成比で用いることによって、均一性のよい溶融物を比較
的低くい溶融温度で得られるばかりでなく、微粒径で粒
度分布が狭くかつ板状比も大きくて磁気記録用に適する
六方晶系フェライトを、容易に再現性よく得ることがで
きる。
[Function] In the method for producing hexagonal ferrite for magnetic recording according to the present invention, the hexagonal ferrite-forming component and the glass-forming component are melted by heating and then rapidly cooled to become amorphous. By using a compound that can become B2O3 and/or SiO2 and a compound that can become R2O in a predetermined composition ratio as a forming component/glass modification component, a melt with good uniformity can be obtained at a relatively low melting temperature. In addition, it is possible to easily obtain hexagonal ferrite with fine particle size, narrow particle size distribution, and large plate-like ratio, and which is suitable for magnetic recording with good reproducibility.

【0016】[0016]

【実施例】以下、本発明の実施例を説明する。[Examples] Examples of the present invention will be described below.

【0017】六方晶系フェライトの基本成分および保磁
力制御用の置換成分の和が、37.5mol%になるよ
うに、各原料組成分を秤量する。なお、CoおよびTi
を置換成分としてその置換量x=y=0.77とし、n
=1.0 、a=0.0 とし、さらにR2 O=Na
2 Oとした。
Each raw material composition is weighed so that the sum of the basic component of the hexagonal ferrite and the substituted component for coercive force control is 37.5 mol %. Note that Co and Ti
is the replacement component and its replacement amount x=y=0.77, n
=1.0, a=0.0, and R2O=Na
2 O.

【0018】また、溶融物の均一性や非晶質体となって
いるか否かの判定は、溶融物を圧延急冷したものに対し
てX線回析を行い結晶の有無によった。析出した六方晶
系フェライトの形状は、透過電子顕微鏡写真上で400
 個の粒子について測定を行い算出した。さらに、得ら
れた粉末が六方晶系フェライト単相であるか否かをX線
回析により調べた。
[0018] Further, the uniformity of the melt and whether it is an amorphous body were determined by performing X-ray diffraction on the melt that had been rapidly cooled by rolling, and checking for the presence or absence of crystals. The shape of the precipitated hexagonal ferrite is 400 mm on a transmission electron micrograph.
The calculation was made by measuring each particle. Furthermore, it was examined by X-ray diffraction whether the obtained powder was a hexagonal ferrite single phase.

【0019】実施例1 ガラス形成成分・ガラス修飾成分を、Na2 O/B2
 O3 =1.0 として、上記のごとく選択調製した
原料組成分を1280℃で溶融した。この溶融物を圧延
急冷したものに対してX線回析を行った結果、結晶は観
測されなかった。ここで得られた非晶質体を800 ℃
で5時間保持の条件で熱処理した後、酸洗浄、水洗浄を
順次施してから乾燥処理して、六方晶系Baフェライト
を得た。この六方晶系Baフェライトは、平均粒径55
 nm 、板状比3.4 であった。
Example 1 Glass-forming components and glass-modifying components were replaced with Na2O/B2
The raw material compositions selected and prepared as described above were melted at 1280° C. with O3 = 1.0. When this melt was subjected to X-ray diffraction after rolling and quenching, no crystals were observed. The amorphous body obtained here was heated to 800 °C.
After heat treatment under conditions of holding for 5 hours, acid washing and water washing were sequentially performed, followed by drying treatment to obtain hexagonal Ba ferrite. This hexagonal Ba ferrite has an average grain size of 55
nm, and the platelet ratio was 3.4.

【0020】実施例2 ガラス形成成分・ガラス修飾成分を、Na2 O/Si
O2 =0.5 として、上記のごとく選択調製した原
料組成分を1280℃で溶融した。この溶融物を圧延急
冷したものに対してX線回析を行った結果、結晶は観測
されなかった。ここで得られた非晶質体を800 ℃で
5時間保持の条件で熱処理した後、酸洗浄、水洗浄を順
次施してから乾燥処理して、六方晶系Baフェライトを
得た。この六方晶系Baフェライトは、平均粒径63 
nm 、板状比5.9 であった。
Example 2 Glass-forming components and glass-modifying components were replaced with Na2O/Si
The raw material compositions selected and prepared as described above were melted at 1280° C. with O2 = 0.5. When this melt was subjected to X-ray diffraction after rolling and quenching, no crystals were observed. The amorphous body obtained here was heat treated at 800° C. for 5 hours, washed with acid and washed with water in sequence, and then dried to obtain hexagonal Ba ferrite. This hexagonal Ba ferrite has an average grain size of 63
nm, and the platelet ratio was 5.9.

【0021】実施例3 ガラス形成成分・ガラス修飾成分を、Na2 O/(B
2 O3 +SiO2 )=1.3 として、上記のご
とく選択調製した原料組成分を1280℃で溶融した。 この溶融物を圧延急冷したものに対してX線回析を行っ
た結果、結晶は観測されなかった。ここで得られた非晶
質体を800 ℃で5時間保持の条件で熱処理した後、
酸洗浄、水洗浄を順次施してから乾燥処理して、六方晶
系Baフェライトを得た。この六方晶系Baフェライト
は、平均粒径57 nm 、板状比4.4 であった。
Example 3 Glass-forming components and glass-modifying components were mixed with Na2O/(B
2O3 +SiO2)=1.3, and the raw material compositions selected and prepared as described above were melted at 1280°C. When this melt was subjected to X-ray diffraction after rolling and quenching, no crystals were observed. After heat-treating the amorphous body obtained here at 800 °C for 5 hours,
A hexagonal Ba ferrite was obtained by sequentially performing acid washing and water washing and then drying. This hexagonal Ba ferrite had an average grain size of 57 nm and a plate ratio of 4.4.

【0022】比較例1 ガラス形成成分・ガラス修飾成分を、BaO/B2 O
3 =1.0 として、上記のごとく選択調製した原料
組成分を1280℃で溶融した。この溶融物を圧延急冷
したものに対してX線回析を行った結果、非晶質体では
なかった。ここで得られた非晶質体を800 ℃で5時
間保持の条件で熱処理した後、酸洗浄、水洗浄を順次施
してから乾燥処理して、六方晶系Baフェライトを得た
。この六方晶系Baフェライトは、粒径300 nm以
上の粒子が多量含まれていた。
Comparative Example 1 The glass forming component and glass modifying component were BaO/B2O
3 = 1.0, the raw material compositions selected and prepared as described above were melted at 1280°C. An X-ray diffraction analysis of this molten material after rolling and quenching revealed that it was not an amorphous material. The amorphous body obtained here was heat treated at 800° C. for 5 hours, washed with acid and washed with water in sequence, and then dried to obtain hexagonal Ba ferrite. This hexagonal Ba ferrite contained a large amount of particles with a particle size of 300 nm or more.

【0023】比較例2 ガラス形成成分・ガラス修飾成分を、Na2 O/B2
 O3 =0.5 として、上記のごとく選択調製した
原料組成分を1400℃で溶融した。この溶融物を圧延
急冷したものに対してX線回析を行った結果、Fe3 
O4 が観測された。ここで得られた非晶質体を800
 ℃で5時間保持の条件で熱処理した後、酸洗浄、水洗
浄を順次施してから乾燥処理して、Baフェライトを得
た。このBaフェライトには、α−Fe2 O3 が含
まれていた。
Comparative Example 2 Glass forming components and glass modifying components were replaced with Na2O/B2
The raw material compositions selected and prepared as described above were melted at 1400° C. with O3 =0.5. As a result of performing X-ray diffraction on this melt that was rapidly cooled by rolling, it was found that Fe3
O4 was observed. The amorphous body obtained here was 800
After heat treatment under the conditions of holding at °C for 5 hours, acid washing and water washing were sequentially performed, followed by drying treatment to obtain Ba ferrite. This Ba ferrite contained α-Fe2O3.

【0024】比較例3 ガラス形成成分・ガラス修飾成分を、Na2 O/Si
O2 =1.0 として、上記のごとく選択調製した原
料組成分を1280℃で溶融した。この溶融物を圧延急
冷したものに対してX線回析を行った結果、結晶は観測
されなかった。ここで得られた非晶質体を800 ℃で
5時間保持の条件で熱処理した後、酸洗浄、水洗浄を順
次施してから乾燥処理して、六方晶系Baフェライトを
得た。この六方晶系Baフェライトは、平均粒径250
 nmと可なり大きいものであった。
Comparative Example 3 Glass forming components and glass modifying components were replaced with Na2O/Si
The raw material compositions selected and prepared as described above were melted at 1280° C. with O2 = 1.0. When this melt was subjected to X-ray diffraction after rolling and quenching, no crystals were observed. The amorphous body obtained here was heat treated at 800° C. for 5 hours, washed with acid and washed with water in sequence, and then dried to obtain hexagonal Ba ferrite. This hexagonal Ba ferrite has an average grain size of 250
It was quite large at nm.

【0025】なお、本発明は上記実施例に限定されるも
のでなく、前記に規定した組成分および組成比の範囲内
ではいずれの場合も同様の結果が認められる。すなわち
、六方晶系フェライトの基本成分および置換成分の量の
和が37.5 mol% 以外の場合、Baフェライト
の代わりにSrフェライトなど他のフェライトの場合、
あるいは置換元素がCoやTi以外の場合でも同様な傾
向ないし結果が認められた。
It should be noted that the present invention is not limited to the above-mentioned examples, and similar results can be obtained in any case within the range of the composition and composition ratio defined above. That is, when the sum of the basic components and substituted components of hexagonal ferrite is other than 37.5 mol%, when using other ferrite such as Sr ferrite instead of Ba ferrite,
Alternatively, similar trends and results were observed even when the substitution element was other than Co or Ti.

【0026】[0026]

【発明の効果】以上の説明からも明らかなように、本発
明の製造方法によれば、廉価な製造コストで、かつ均一
性良好な溶融物を容易に確保でき、粒度分布が狭くまた
塗料化の際の分散性も良好な六方晶系フェライトを、再
現性よく得ることができる。そして得られた磁性粉末を
使用することによって、高い記録密度と再生出力を備え
た高密度磁気記録媒体を作製することができる。
[Effects of the Invention] As is clear from the above explanation, according to the production method of the present invention, it is possible to easily obtain a melt with good uniformity at a low production cost, and the particle size distribution is narrow and it is possible to form a coating material. Hexagonal ferrite with good dispersibility during the process can be obtained with good reproducibility. By using the obtained magnetic powder, a high-density magnetic recording medium with high recording density and reproduction output can be manufactured.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  一般式、 AO・n(Fe12−x−yM1 x M2 y O1
8−a)(但し、0.8 ≦n≦2.0 、0.55≦
x≦2.7 、0.0 ≦y<2.0 、0.0 ≦a
≦1.0 、AはBa、Sr、CaおよびPbの中から
選ばれた少なくとも1種の元素、M1はCo、  Ni
、Cu、Zn、MnおよびMgの中から選ばれた少なく
とも1種の元素、M2 はTi、Nb、Sn、Zr、V
、Al、Cr、Mo、GeおよびWの中から選ばれた少
なくとも1種の元素)で示される六方晶系フェライトを
形成する各元素の化合物と、ガラス形成成分・ガラス修
飾成分としてのB2 O3 または/およびSiO2 
になり得る化合物、R2 O(RはLi、NaおよびK
の中から選ばれた少なくとも1種)になり得る化合物を
、 0.8 <R2 O/B2 O3 <1.4 、0.5
 ≦R2 O/SiO2 <0.7 、もしくは0.7
 <R2 O/(B2 O3 +SiO2 )≦1.5 となるように混合して加熱溶融させた後、急速冷却を施
して非晶質化する工程と、  前記形成した非晶質体に
所定温度の熱処理を施して六方晶系フェライトを析出さ
せる工程と、前記析出した六方晶系フェライトを抽出す
る工程とを備えたことを特徴とする磁気記録用六方晶系
フェライトの製造方法。
[Claim 1] General formula, AO・n(Fe12-x-yM1 x M2 y O1
8-a) (However, 0.8≦n≦2.0, 0.55≦
x≦2.7, 0.0≦y<2.0, 0.0≦a
≦1.0, A is at least one element selected from Ba, Sr, Ca and Pb, M1 is Co, Ni
, Cu, Zn, Mn and Mg; M2 is Ti, Nb, Sn, Zr, V
, Al, Cr, Mo, Ge, and W) and a compound of each element forming a hexagonal ferrite, and B2 O3 as a glass forming component/glass modifying component or / and SiO2
Compounds that can be R2O (R is Li, Na and K
0.8 <R2 O/B2 O3 <1.4, 0.5
≦R2 O/SiO2 <0.7 or 0.7
<R2O/(B2O3 +SiO2)≦1.5, and then heating and melting the mixture, followed by rapid cooling to make it amorphous; and heating the formed amorphous body to a predetermined temperature. 1. A method for producing hexagonal ferrite for magnetic recording, comprising a step of precipitating hexagonal ferrite by heat treatment, and a step of extracting the precipitated hexagonal ferrite.
JP3048255A 1991-03-13 1991-03-13 Manufacture of hexagonal-system ferrite powder for magnetic recording Withdrawn JPH04284603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3048255A JPH04284603A (en) 1991-03-13 1991-03-13 Manufacture of hexagonal-system ferrite powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3048255A JPH04284603A (en) 1991-03-13 1991-03-13 Manufacture of hexagonal-system ferrite powder for magnetic recording

Publications (1)

Publication Number Publication Date
JPH04284603A true JPH04284603A (en) 1992-10-09

Family

ID=12798339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3048255A Withdrawn JPH04284603A (en) 1991-03-13 1991-03-13 Manufacture of hexagonal-system ferrite powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPH04284603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306725A (en) * 1995-07-13 2006-11-09 Asahi Techno Glass Corp Production method of hexagonal ferrite fine powder for functional thin film
JP2009084125A (en) * 2007-10-02 2009-04-23 Tdk Corp Method for manufacturing ferrite powder, ferrite powder, and magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306725A (en) * 1995-07-13 2006-11-09 Asahi Techno Glass Corp Production method of hexagonal ferrite fine powder for functional thin film
JP2009084125A (en) * 2007-10-02 2009-04-23 Tdk Corp Method for manufacturing ferrite powder, ferrite powder, and magnetic recording medium

Similar Documents

Publication Publication Date Title
JPS6136685B2 (en)
JPS6015577B2 (en) Method for producing magnetic powder for magnetic recording
US4543198A (en) Ferrite magnetic material for magnetic recording and process for the preparation thereof
US4493779A (en) Process for the preparation of ferrite magnetic particulate for magnetic recording
JPS59151341A (en) Manufacture of magnetic ferrite powder for magnetic recording
JPH0986906A (en) Production of functional oxide powder for functional thin film
JPH0451490B2 (en)
JP3251753B2 (en) Method for producing Ba ferrite magnetic powder
JPH04284603A (en) Manufacture of hexagonal-system ferrite powder for magnetic recording
JPH04285015A (en) Manufacture of hexagonal ferrite for magnetic recording
JP3083891B2 (en) Magnetic powder for magnetic recording medium and method for producing the same
JPH04284604A (en) Manufacture of hexagonal-system ferrite for magnetic recording
KR960000501B1 (en) Method of preparing high density magnetic hexagonal ferrite powder
JP3429881B2 (en) Composite type hexagonal ferrite magnetic powder and method for producing the same
JPH04337521A (en) Magnetic powder for magnetic recording medium and magnetic recording medium formed by using the powder
JPH0472601A (en) Manufacture of magnetic powder for magnetic recording medium
JPS63107818A (en) Fine hexagonal ferrite particle and production thereof
JP2691790B2 (en) Method for producing magnetic powder for magnetic recording medium
JPH0685370B2 (en) Method for producing hexagonal ferrite powder
JPS61278104A (en) Manufacture of hexagonal system ferrite particle powder
JPS62291905A (en) Manufacture of hexagonal ferrite particle power
JPS6127329B2 (en)
JP2802653B2 (en) Magnetic powder for high-density magnetic recording and method for producing the same
JP2717720B2 (en) Method for producing magnetic powder for magnetic recording medium
JPS6110210A (en) Ferrite magnetic grain for magnetic recording

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514