JPH04284601A - Rare earthe-iron-boron-based bonded magnet - Google Patents

Rare earthe-iron-boron-based bonded magnet

Info

Publication number
JPH04284601A
JPH04284601A JP3074077A JP7407791A JPH04284601A JP H04284601 A JPH04284601 A JP H04284601A JP 3074077 A JP3074077 A JP 3074077A JP 7407791 A JP7407791 A JP 7407791A JP H04284601 A JPH04284601 A JP H04284601A
Authority
JP
Japan
Prior art keywords
film
resin
bonded magnet
magnet
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3074077A
Other languages
Japanese (ja)
Inventor
Junichi Ishii
純一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3074077A priority Critical patent/JPH04284601A/en
Publication of JPH04284601A publication Critical patent/JPH04284601A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enhance the corrosion-resistant property of the title magnet by a method wherein a film by a thermoset resin containing a molybdenum disulfide powder at specific wt.% is formed on the surface of the rare earth-iron-boron- based bonded magnet. CONSTITUTION:The surface of a bonded magnet is coated, by a spray coating operation, with a dispersion liquid in which a film formation resin such as an epoxy resin, a phenolic resin, an unsaturated polyester resin or the like and a molybdenum disulfide powder have been dispersed uniformly to an organic solvent such as toluene, xylene, benzene or the like. The liquid is dried; an organic film is formed. At this time, the film formation resin is formed as a matrix, and a dispersion structure in which the molybdenum disulfide powder at a ratio of 10 to 70wt.% has been dispersed in the film formation resin is formed. Consequently, when the organic solvent used to form the film is evaporated from the film, it acts so as to fill produced pinholes or to reduce them. Thereby, the corrosion-resistant property of the title magnet is enhanced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、表面に耐蝕性に優れた
被膜が形成された希土類−鉄−ホウ素系ボンド磁石に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-iron-boron bonded magnet having a coating having excellent corrosion resistance formed on its surface.

【0002】0002

【従来技術】希土類−鉄−ホウ素系ボンド磁石は、希土
類−コバルト系、特にSm−Co系のボンド磁石のよう
に高価なSmしていない高性能磁石として開発され、一
般家電製品からコンピューター関連機器、自動車部品等
に使用され、その用途は拡大の一途にある。この中でも
、プラスチックをバインダーとして有するボンド磁石は
、特殊な加工を必要とせず、複雑な形状や長尺なラジア
ルリング形状とすることができる等の利点を有しており
、その用途の拡大が期待されている。しかしながら、希
土類−鉄−ホウ素系ボンド磁石は耐蝕性に劣るという欠
点を有しており、この欠点を解消するために、その磁石
表面に、スプレー塗装や電着塗装により有機被膜を形成
することが一般に行なわれている。
[Prior Art] Rare earth-iron-boron bonded magnets have been developed as high-performance magnets that do not have expensive Sm like rare earth-cobalt bonded magnets, especially Sm-Co bonded magnets, and are used for general home appliances and computer-related products. It is used in automobile parts, etc., and its applications are continuing to expand. Among these, bonded magnets that have plastic as a binder have the advantage of not requiring special processing and can be made into complex shapes or long radial ring shapes, and their applications are expected to expand. has been done. However, rare earth-iron-boron bonded magnets have the disadvantage of poor corrosion resistance, and in order to overcome this disadvantage, it is necessary to form an organic coating on the magnet surface by spray painting or electrodeposition coating. It is commonly practiced.

【0003】0003

【発明が解決しようとする課題】上記有機被膜の形成に
は、エポキシ樹脂、フェノール樹脂、不飽和ポリエステ
ル樹脂、アクリル樹脂等の熱硬化性樹脂が多く使用され
ており、一般に、スプレー塗装の場合には有機溶剤が使
用され、また電着塗装の場合には水系の溶剤が使用され
て上記の各種熱硬化性樹脂から成る有機被膜の形成が行
なわれている。しかしながら、有機溶剤を用いたスプレ
ー塗装においては、塗装後における有機溶剤の蒸発によ
って被膜にピンホールを生じ、この部分からボンド磁石
の腐食を生じ易いという欠点がある。また水系の溶剤を
用いての電着塗装の場合には、上記のようなピンホール
の発生はなく、満足し得る耐蝕性を有する被膜が形成さ
れるものの、塗装に際して、ボンド磁石1個1個につい
て電極が必要であり、極めてコスト高になるという欠点
がある。このために、経済的に有利なスプレー塗装によ
り、耐蝕性に優れた有機被膜を形成する方法が検討され
ており、例えば熱硬化性樹脂中にフッ素系樹脂の微粉末
やグラファイトの微粉末を添加することが提案されてい
るが、未だ十分に満足し得るような耐蝕性を有する有機
被膜が得られるに至っていない。従って本発明の目的は
、経済的に有利なスプレー塗装により形成可能な耐蝕性
に優れた有機被膜を表面に有する希土類−鉄−ホウ素系
ボンド磁石を提供することである。
[Problems to be Solved by the Invention] Thermosetting resins such as epoxy resins, phenolic resins, unsaturated polyester resins, and acrylic resins are often used to form the above-mentioned organic coatings. In the case of electrodeposition coating, an organic solvent is used, and in the case of electrodeposition coating, an aqueous solvent is used to form an organic film made of the above-mentioned various thermosetting resins. However, spray coating using an organic solvent has the disadvantage that pinholes are formed in the coating due to evaporation of the organic solvent after coating, and the bonded magnet is likely to corrode from these areas. In addition, in the case of electrodeposition coating using a water-based solvent, pinholes as described above do not occur and a film with satisfactory corrosion resistance is formed, but when coating, each bonded magnet is The drawback is that electrodes are required for this method, and the cost is extremely high. For this purpose, methods of forming organic coatings with excellent corrosion resistance using economically advantageous spray painting are being considered. For example, fine powders of fluororesin or graphite are added to thermosetting resins. However, it has not yet been possible to obtain an organic film with sufficiently satisfactory corrosion resistance. Therefore, an object of the present invention is to provide a rare earth-iron-boron based bonded magnet having an organic coating with excellent corrosion resistance on its surface that can be formed by economically advantageous spray coating.

【0004】0004

【課題を解決するための手段】本発明は、コーティング
用樹脂中に二硫化モリブデンの微粉末を添加することに
より耐蝕性に優れた有機被膜を形成することに成功した
ものである。即ち、本発明によれば、組成が原子比で希
土類元素8〜30%、ホウ素3〜15%、残部が実質的
に鉄とコバルトもしくは鉄から成る磁石粉と、熱硬化性
樹脂バインダーとから形成された希土類−鉄−ホウ素系
ボンド磁石において、該磁石表面に有機被膜が形成され
ており、且つ該有機被膜は、10〜70重量%の割合で
二硫化モリブデン粉末が被膜形成樹脂中に分散された分
散構造を有していることを特徴とするボンド磁石が提供
される。
[Means for Solving the Problems] The present invention has succeeded in forming an organic film with excellent corrosion resistance by adding fine powder of molybdenum disulfide to a coating resin. That is, according to the present invention, it is formed from magnet powder having a composition of 8 to 30% rare earth elements, 3 to 15% boron, and the remainder substantially iron and cobalt or iron in atomic ratio, and a thermosetting resin binder. In the rare earth-iron-boron bonded magnet, an organic film is formed on the surface of the magnet, and the organic film is formed by dispersing molybdenum disulfide powder in a film-forming resin at a ratio of 10 to 70% by weight. Provided is a bonded magnet characterized by having a dispersed structure.

【0005】本発明においては、ボンド磁石表面に形成
される有機被膜は、被膜形成樹脂をマトリックスとし、
その中に二硫化モリブデン粉末が分散されている構造を
有していることが顕著な特徴である。即ち、有機被膜中
に分散されている二硫化モリブデン粉末は、被膜の形成
のために使用された有機溶剤が当該被膜中から蒸発する
に際して、発生するピンホールを埋めるかあるいはそれ
を小さくするように作用し、これによって当該有機被膜
は優れた耐蝕性を示し、ボンド磁石の腐食が有効に抑制
されるのである。このような効果は、二硫化モリブデン
粉末を使用することによってのみ達成され、例えば後述
する実施例からも明らかな通り、グラファイト等の粉末
を使用した場合には達成されず、かかる効果は極めて予
想外なものである。
In the present invention, the organic film formed on the surface of the bonded magnet uses a film-forming resin as a matrix, and
A distinctive feature is that it has a structure in which molybdenum disulfide powder is dispersed. That is, the molybdenum disulfide powder dispersed in the organic film fills or reduces the size of pinholes that occur when the organic solvent used to form the film evaporates from the film. As a result, the organic coating exhibits excellent corrosion resistance, and corrosion of the bonded magnet is effectively suppressed. Such an effect can only be achieved by using molybdenum disulfide powder, and cannot be achieved by using a powder such as graphite, for example, as is clear from the examples below, and such an effect is extremely unexpected. It is something.

【0006】本発明において、上記二硫化モリブデン粉
末は、有機被膜中に10〜70重量%、特に20〜40
重量%の割合で分散されていることも重要であり、その
量が10重量%よりも少ないと、ピンホールの抑制効果
が十分でなく、満足すべき耐蝕性が付与されない。また
70重量%を越えると、用いる塗料の粘度が大きくなり
、均一な被膜を形成することが困難となる。また用いる
二硫化モリブデン粉末の粒径は、一般に0.01〜2μ
m の範囲にあることが好適である。
In the present invention, the molybdenum disulfide powder is contained in the organic coating in an amount of 10 to 70% by weight, particularly 20 to 40% by weight.
It is also important that the amount is dispersed in a proportion of 10% by weight, and if the amount is less than 10% by weight, the effect of suppressing pinholes will not be sufficient and satisfactory corrosion resistance will not be imparted. Moreover, if it exceeds 70% by weight, the viscosity of the paint used will increase, making it difficult to form a uniform film. The particle size of the molybdenum disulfide powder used is generally 0.01 to 2μ.
It is preferable that it is in the range of m.

【0007】また上記被膜を形成するための被膜形成用
樹脂としては、熱硬化性樹脂および熱可塑性樹脂の何れ
をも使用することができるが、磁石の加熱ないし加温時
における被膜の安定性の見地からは、熱硬化性樹脂を使
用することが好適である。かかる熱硬化性樹脂としては
種々のものを使用することができ、例えばエポキシ樹脂
、フェノール樹脂、不飽和ポリエステル樹脂、アクリル
系樹脂等の一般に被膜形成用として使用されているもの
を使用することができる。
[0007] Furthermore, as the film-forming resin for forming the above-mentioned film, both thermosetting resins and thermoplastic resins can be used; From this point of view, it is preferred to use thermosetting resins. Various types of thermosetting resins can be used, including those commonly used for film formation, such as epoxy resins, phenolic resins, unsaturated polyester resins, and acrylic resins. .

【0008】さらに上記有機被膜の厚みは、一般に5〜
50μm の範囲にあることが好適である。膜厚が5μ
m よりも薄いと十分な耐蝕性が発揮されず、50μm
 よりも厚い場合には均一な厚みとすることが困難とな
り、またボンド磁石の容量が低くなって磁気特性が低下
する傾向がある。
[0008] Furthermore, the thickness of the organic coating is generally 5 to
Preferably, the thickness is in the range of 50 μm. Film thickness is 5μ
If it is thinner than 50 μm, sufficient corrosion resistance will not be exhibited;
If the bonded magnet is thicker than this, it becomes difficult to obtain a uniform thickness, and the capacitance of the bonded magnet tends to decrease, resulting in a decrease in magnetic properties.

【0009】上述した有機被膜は、上記被膜形成樹脂及
び二硫化モリブデン粉末を、トルエン、キシレン、メチ
ルエチルケトン、ベンゼン等の有機溶剤に均一に分散さ
せた分散液を用いて、例えばスプレー塗装によってボン
ド磁石表面に塗布し、乾燥することによって容易に形成
される。この場合、被膜形成樹脂及び二硫化モリブデン
粉末の使用量は、形成される被膜中に前述した量で二硫
化モリブデン粉末が存在するような範囲とし、この限り
において、例えば有機溶剤の使用量は、任意であり、作
業性等を考慮して設定すればよい。またボンド磁石表面
への塗布は、スプレー塗装が最も経済的であり且つ効率
がよいが、ボンド磁石の形状等によっては、刷毛塗り、
バーコーター等を用いて行なうことも可能である。
The above-mentioned organic coating is applied to the surface of the bonded magnet by, for example, spray painting using a dispersion in which the coating-forming resin and molybdenum disulfide powder are uniformly dispersed in an organic solvent such as toluene, xylene, methyl ethyl ketone, or benzene. It is easily formed by applying it to the surface and drying it. In this case, the amounts of the film-forming resin and molybdenum disulfide powder to be used are such that the molybdenum disulfide powder is present in the above-mentioned amounts in the film to be formed, and within this range, for example, the amount of the organic solvent to be used is This is optional and may be set in consideration of workability and the like. Also, spray painting is the most economical and efficient method for coating the surface of a bonded magnet, but depending on the shape of the bonded magnet, brush painting,
It is also possible to carry out using a bar coater or the like.

【0010】本発明において、上述した有機被膜を形成
すべきボンド磁石は、希土類−鉄−ホウ素系の磁石粉末
と熱硬化性樹脂バインダーとから形成されたものであり
、このボンド磁石はそれ自体公知である。即ち、上記磁
石粉末は、原子比でネオジウム等の希土類元素8〜30
%、ホウ素3〜15%、残部が実質的に鉄とコバルトも
しくは鉄である組成を有している。例えば、Nd−Fe
−Co−B系、Nd−Dy−Fe−B系、Nd−Fe−
B系等が知られている。上記ボンド磁石は、例えば液体
急冷法によって製造することができる。即ち、上記組成
の合金を高周波等の手段によって溶解し、溶湯を高速回
転する銅またはアルミ製のロールに吹き付けて急冷し、
厚さ数十ミクロンのリボンとする。このリボンを適当な
熱処理に付して、例えば平均結晶粒径をが3000Å以
下とした後に、スタンプミル、ボールミル等による乾式
あるいは湿式粉砕に付することにより、ボンド磁石用粉
末とする。この粉末の粒径は、通常、35メッシュ(J
IS)以下とする。この粉末を、熱硬化性樹脂バインダ
ーと混合してプレス成形を行ない、磁場中で着磁するこ
とによりボンド磁石が得られる。ここで使用する熱硬化
性樹脂としては、この種のバインダーとして使用されて
いるものは全て使用することができ、その一例としてエ
ポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂
、アクリル樹脂等を例示することができる。これらは一
液性のものでもよいし、あるいは硬化剤、硬化触媒等を
含む混合系のものでもよい。この熱硬化性樹脂バインダ
ーは、通常、上記合金粉末当り 0.5〜4重量%の割
合で使用される。合金粉末と熱硬化性樹脂との混合は、
ブレンダーによる乾式混合によって行なうこともできる
が、一旦バインダーを有機溶媒に溶かした溶液中に合金
粉末を浸漬し、乾燥、塊砕する湿式法が好適である。上
記で得られた合金粉末とバインダーとの混合物を用いて
プレス成形及びバインダー樹脂の硬化を行ない、前述し
た有機被膜を形成した後、磁場中で着磁を行なってボン
ド磁石が得られる。
[0010] In the present invention, the bonded magnet on which the above-mentioned organic film is to be formed is formed from rare earth-iron-boron based magnet powder and a thermosetting resin binder, and this bonded magnet is known per se. It is. That is, the magnet powder has an atomic ratio of 8 to 30 rare earth elements such as neodymium.
%, 3 to 15% boron, and the balance substantially iron and cobalt or iron. For example, Nd-Fe
-Co-B system, Nd-Dy-Fe-B system, Nd-Fe-
B series etc. are known. The bonded magnet described above can be manufactured, for example, by a liquid quenching method. That is, an alloy having the above composition is melted by means such as high frequency, and the molten metal is quenched by being sprayed onto high-speed rotating copper or aluminum rolls.
The ribbon is several tens of microns thick. This ribbon is subjected to a suitable heat treatment to, for example, have an average crystal grain size of 3000 Å or less, and then subjected to dry or wet pulverization using a stamp mill, ball mill, etc. to obtain powder for bonded magnets. The particle size of this powder is usually 35 mesh (J
IS) The following shall apply. This powder is mixed with a thermosetting resin binder, press-molded, and magnetized in a magnetic field to obtain a bonded magnet. As the thermosetting resin used here, all those used as this type of binder can be used, and examples thereof include epoxy resin, phenol resin, unsaturated polyester resin, acrylic resin, etc. Can be done. These may be one-component, or may be a mixed type containing a curing agent, curing catalyst, etc. This thermosetting resin binder is normally used in an amount of 0.5 to 4% by weight based on the alloy powder. The mixture of alloy powder and thermosetting resin is
Although this can be carried out by dry mixing using a blender, a wet method in which the alloy powder is immersed in a solution of a binder dissolved in an organic solvent, dried, and crushed is preferred. The mixture of the alloy powder and binder obtained above is press-molded and the binder resin is cured to form the above-mentioned organic coating, and then magnetized in a magnetic field to obtain a bonded magnet.

【0011】[0011]

【実施例】原子%でNd12%、Co8%、B5%及び
残部がFeから成る合金溶湯を、周速度25m/sec
 で回転する銅ロール上に吹き付け、巾3mm、厚さ2
0μm のリボン状試料を得た。この試料をスタンプミ
ルで80メッシュ篩(JIS)下まで粉砕し、得られた
粉末に硬化剤を含むエポキシ樹脂(ビスフェノールA型
,二液性)を2重量%混合した。該混合物をプレス金型
中に供給し、成形面圧7ton/cm2 でプレス成形
し、外径20mm×内径16mm×高さ4mmのリング
状試料を得た。次いで、この試料を大気中において13
0℃×1時間熱処理し、該試料中のエポキシ樹脂を硬化
させた。次いで上記試料に、表1に示すような塗料を裏
表それぞれ1回ずつスプレー塗装し、120℃×2時間
乾燥を行なった。
[Example] A molten alloy consisting of 12% Nd, 8% Co, 5% B and the balance Fe was heated at a circumferential speed of 25 m/sec.
Spray onto a rotating copper roll, width 3mm, thickness 2
A ribbon-like sample of 0 μm was obtained. This sample was pulverized using a stamp mill to a level below an 80 mesh sieve (JIS), and 2% by weight of an epoxy resin (bisphenol A type, two-component) containing a curing agent was mixed with the resulting powder. The mixture was supplied into a press mold and press-molded at a molding surface pressure of 7 ton/cm2 to obtain a ring-shaped sample with an outer diameter of 20 mm, an inner diameter of 16 mm, and a height of 4 mm. Next, this sample was placed in the atmosphere for 13 minutes.
Heat treatment was performed at 0° C. for 1 hour to harden the epoxy resin in the sample. Next, the above sample was spray-coated once on each of the front and back sides with the paint shown in Table 1, and dried at 120°C for 2 hours.

【0012】0012

【0013】上記表中、MEKはメチルエチルケトンを
示す。実施例等で使用した二硫化モリブデンの平均粒径
は 0.5μm である。また比較例3で用いたテフロ
ン樹脂は平均粒径 0.2μm の粉末であり、比較例
4で用いたカーボングラファイトは平均粒径 0.5μ
m の粉末である。 試料(ボンド磁石)表面に形成された塗膜の厚みは、走
査型電子顕微鏡で測定した。上記の被膜が形成された試
料を80℃,90%RHの恒温恒湿槽中に入れ、経時に
よる錆の発生具合を目視で評価した。その結果を表2に
示す。
In the above table, MEK represents methyl ethyl ketone. The average particle size of molybdenum disulfide used in Examples and the like is 0.5 μm. The Teflon resin used in Comparative Example 3 was a powder with an average particle size of 0.2 μm, and the carbon graphite used in Comparative Example 4 had an average particle size of 0.5 μm.
m powder. The thickness of the coating film formed on the surface of the sample (bond magnet) was measured using a scanning electron microscope. The sample on which the above film was formed was placed in a constant temperature and humidity chamber at 80° C. and 90% RH, and the degree of rust generation over time was visually evaluated. The results are shown in Table 2.

【0014】[0014]

【0015】[0015]

【発明の効果】本発明によれば、経済的に極めて有利な
スプレー塗装により、耐蝕性に優れた被膜を希土類−鉄
−ホウ素系ボンド磁石表面に形成することができ、かか
る被膜が形成されたボンド磁石は、耐蝕性が要求される
電子機器等の分野において、特に有効に使用される。
[Effects of the Invention] According to the present invention, a coating with excellent corrosion resistance can be formed on the surface of a rare earth-iron-boron bonded magnet by spray coating, which is extremely economically advantageous. Bonded magnets are particularly effectively used in fields such as electronic equipment that require corrosion resistance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】組成が原子比で希土類元素8〜30%、ホ
ウ素3〜15%、残部が実質的に鉄とコバルトもしくは
鉄から成る磁石粉と、熱硬化性樹脂バインダーとから形
成された希土類−鉄−ホウ素系ボンド磁石において、該
磁石表面に有機被膜が形成されており、且つ該有機被膜
は、10〜70重量%の割合で二硫化モリブデン粉末が
被膜形成樹脂中に分散された分散構造を有していること
を特徴とするボンド磁石。
[Claim 1] A rare earth element formed from magnet powder whose atomic ratio is 8 to 30% rare earth elements, 3 to 15% boron, and the remainder essentially iron and cobalt or iron, and a thermosetting resin binder. - In an iron-boron bonded magnet, an organic film is formed on the surface of the magnet, and the organic film has a dispersed structure in which molybdenum disulfide powder is dispersed in a film-forming resin at a ratio of 10 to 70% by weight. A bonded magnet characterized by having.
JP3074077A 1991-03-13 1991-03-13 Rare earthe-iron-boron-based bonded magnet Pending JPH04284601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3074077A JPH04284601A (en) 1991-03-13 1991-03-13 Rare earthe-iron-boron-based bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3074077A JPH04284601A (en) 1991-03-13 1991-03-13 Rare earthe-iron-boron-based bonded magnet

Publications (1)

Publication Number Publication Date
JPH04284601A true JPH04284601A (en) 1992-10-09

Family

ID=13536749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3074077A Pending JPH04284601A (en) 1991-03-13 1991-03-13 Rare earthe-iron-boron-based bonded magnet

Country Status (1)

Country Link
JP (1) JPH04284601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034963A1 (en) * 1998-12-07 2000-06-15 Sumitomo Metal Mining Co., Ltd. Resin-bonded magnet
JP2009065027A (en) * 2007-09-07 2009-03-26 Daido Electronics Co Ltd Integrated yoke type magnetic body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034963A1 (en) * 1998-12-07 2000-06-15 Sumitomo Metal Mining Co., Ltd. Resin-bonded magnet
US6641919B1 (en) * 1998-12-07 2003-11-04 Sumitomo Metal Mining Co., Ltd. Resin-bonded magnet
JP2009065027A (en) * 2007-09-07 2009-03-26 Daido Electronics Co Ltd Integrated yoke type magnetic body

Similar Documents

Publication Publication Date Title
DE69926237T2 (en) COATING COMPOSITION
US20040261909A1 (en) Corrosion-resistant rare earth element magnet
US20080124567A1 (en) Corrosion-resistant rare earth metal-based permanent magnet
JP2013522441A (en) Composition for producing magnetic or magnetized molded article, and method for producing the composition
KR20030051387A (en) Thick film composition yielding magnetic properties
JP2005520351A (en) Bond magnet manufactured using atomized permanent magnet powder
EP2158595A1 (en) Method for the production of a magnetic layer on a substrate and printable magnetizable varnish
TW201432723A (en) Conductive paste
JPH04284601A (en) Rare earthe-iron-boron-based bonded magnet
US5176842A (en) Method of manufacturing a resin bound magnet
CN109456681A (en) A kind of preparation method of the graphene of anti-corrosive properties/powder thermosetting composite coating
JP3236813B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
DE1469948B2 (en) METHOD FOR PRODUCING PERMANENTLY MAGNETIZABLE SHAPED BODIES
CN100416720C (en) Oxidation-resistant rare earth based magnet powder and method for production thereof, compound for rare earth based bonded magnet, rare earth based bonded magnet and method for production thereof
JPH02110904A (en) Resin-bonded nd-fe-b magnet
JP3236815B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JPH05275220A (en) Rare earth-ferrous bond magnet
JPH0536510A (en) Composition for bond magnet and the bond magnet
JP4265168B2 (en) Method for manufacturing permanent magnet
JPH04307232A (en) Preparation of composite damping metal plate
JP2010110064A (en) Magnet body and manufacturing method therefor
JPH02187472A (en) Method for forming coating film of electrically conductive paint
JPH0982511A (en) Resin bonded magnet and composition therefor
JPH04354104A (en) Manufacture of rare earth bond magnet
JPH06314607A (en) Highly rust-resistant rare earth bonded magnet and its manufacture