JP2013522441A - Composition for producing magnetic or magnetized molded article, and method for producing the composition - Google Patents

Composition for producing magnetic or magnetized molded article, and method for producing the composition Download PDF

Info

Publication number
JP2013522441A
JP2013522441A JP2013500627A JP2013500627A JP2013522441A JP 2013522441 A JP2013522441 A JP 2013522441A JP 2013500627 A JP2013500627 A JP 2013500627A JP 2013500627 A JP2013500627 A JP 2013500627A JP 2013522441 A JP2013522441 A JP 2013522441A
Authority
JP
Japan
Prior art keywords
magnetic
curing agent
composition
mixture
epoxy novolac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013500627A
Other languages
Japanese (ja)
Inventor
ブレトナー,カルステン
カクツン,ユルゲン
クレス,リア
ヴィーベルハウス,ダーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JP2013522441A publication Critical patent/JP2013522441A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本発明は、磁気又は磁化成形品を製造するための組成物であって、この組成物の合計質量に対してそれぞれ、95.5〜98.95質量%の磁気又は磁化材料からなる粉末と、少なくとも1種のエポキシノボラック樹脂及びまた少なくとも1種の硬化剤からなる1.0〜4質量%の混合物と、0.05〜0.5質量%の少なくとも1種の添加剤と、を含む組成物に関する。
少なくとも1種のエポキシノボラック樹脂及び少なくとも1種の硬化剤からなるその混合物は、85〜95質量%のエポキシノボラック樹脂及び5〜15質量%の硬化剤を含む。その硬化剤は、(環式の)脂肪族アミン及びその付加物、ポリアミド、マンニッヒ塩基、アミドアミン、フェノール樹脂、イミダゾール及びイミダゾール誘導体、ジシアンジアミド並びにBF−モノエタノールアミンから選択されている。更に、本発明は、その組成物の製造方法及びまたその組成物からなる成形品の製造方法に関する。
【選択図】なし
The present invention is a composition for producing a magnetic or magnetized molded article, comprising 95.5 to 98.95% by mass of a magnetic or magnetized material, respectively, relative to the total mass of the composition; A composition comprising 1.0 to 4% by weight of a mixture comprising at least one epoxy novolac resin and also at least one curing agent, and 0.05 to 0.5% by weight of at least one additive. About.
The mixture of at least one epoxy novolac resin and at least one curing agent comprises 85-95% by weight epoxy novolac resin and 5-15% by weight curing agent. The curing agent is selected from (cyclic) aliphatic amines and their adducts, polyamides, Mannich bases, amidoamines, phenolic resins, imidazole and imidazole derivatives, dicyandiamide and BF 3 -monoethanolamine. Furthermore, this invention relates to the manufacturing method of the composition, and the manufacturing method of the molded article which consists of the composition.
[Selection figure] None

Description

本発明は、磁気又は磁化材料からなる粉末と、少なくとも1種のエポキシノボラック樹脂及びまた少なくとも1種の硬化剤からなる混合物とを含み、及びまた適宜に少なくとも1種の添加剤を含む、磁気又は磁化成形品を製造するための組成物に関する。   The present invention comprises a powder comprising a magnetic or magnetic material, a mixture comprising at least one epoxy novolac resin and also at least one curing agent, and optionally also comprising at least one additive, magnetic or The present invention relates to a composition for producing a magnetized molded article.

更に、本発明はその組成物の製造方法、及びその組成物からなる成形品の製造方法に関する。磁気又は磁化成形品は、例えば、コイル芯又は巻型として用いられる。対応するコイル芯又は巻型を伴うコイルは、例えば、発電機で、ラップトップ型コンピュータで、ネットブックで、携帯電話で、電動機で、ACインバータで、自動車業界向けの電子部品で、玩具で、及びエレクトロニクス産業で、電磁石として用いられる。任意形状の成形品の製造を可能とすることを目指した従来の方法は、カルボニル鉄粉等の磁気又は磁化材料、及びまた硬化性樹脂からなる混合物を金型中で圧縮し、その後その混合物を硬化させる。使用される樹脂は、エポキシ樹脂等を含む。カルボニル鉄粉、エポキシ樹脂及び潤滑剤からなる組成物が巻型を作るために金型に入れられるこの種の組成物は、US−B6,198,375等により公知である。ここで用いられるエポキシ樹脂/硬化剤混合物は、Morton InternationalからのCorvel Black(登録商標)No.10−7086を含む。用いられる潤滑剤はステアリン酸亜鉛である。   Furthermore, this invention relates to the manufacturing method of the composition, and the manufacturing method of the molded article which consists of the composition. The magnetic or magnetized molded product is used as, for example, a coil core or a winding mold. Coils with corresponding coil cores or windings are, for example, generators, laptop computers, netbooks, mobile phones, motors, AC inverters, electronic components for the automotive industry, toys, And as an electromagnet in the electronics industry. A conventional method aimed at enabling the production of molded articles of arbitrary shape is to compress a mixture of magnetic or magnetic material, such as carbonyl iron powder, and also a curable resin in a mold, after which the mixture is compressed. Harden. Resins used include epoxy resins and the like. A composition of this kind in which a composition comprising carbonyl iron powder, an epoxy resin and a lubricant is placed in a mold to make a mold is known from US-B 6,198,375 and the like. The epoxy resin / curing agent mixture used here is Corbel Black® No. from Morton International. 10-7086. The lubricant used is zinc stearate.

US−A2008/0118766は、エポキシノボラック樹脂がアミン硬化剤又は酸硬化剤と組み合わせて用いられる混合物を開示している。ここで用いられる樹脂の量はその混合物の合計質量に対して0.05〜1質量%である。従来技術から公知のその組成物の不具合は、乾式予備混合が成形品内での樹脂の不均一分布を生じさせること、及びまた長い硬化時間を生じさせることである。他の不具合は、特にエポキシ樹脂が用いられる場合、最終混合物の貯蔵安定性が単に低いことであり、及び特に硬化剤として無水物が用いられる場合には、その混合物が湿度に敏感であることである。   US-A 2008/0118766 discloses a mixture in which an epoxy novolac resin is used in combination with an amine or acid curing agent. The amount of the resin used here is 0.05 to 1% by mass relative to the total mass of the mixture. A disadvantage of the composition known from the prior art is that dry premixing causes a non-uniform distribution of the resin within the molded part and also a long curing time. Another drawback is that the storage stability of the final mixture is simply low, especially when epoxy resins are used, and that the mixture is sensitive to humidity, especially when anhydrides are used as curing agents. is there.

US−B6,198,375US-B6, 198, 375 US−A2008/0118766US-A2008 / 0118766

本発明の目的は、従来技術と比較して改良された機械強度及び高い破壊抵抗を有する磁気又は磁化成形品を製造することができる組成物を提供することにある。   An object of the present invention is to provide a composition capable of producing a magnetic or magnetized molded article having improved mechanical strength and high fracture resistance compared to the prior art.

その目的は、磁気又は磁化成形品を製造するための組成物であって、この組成物の合計質量に対して、95.5〜98.95質量%の磁気又は磁化材料からなる粉末と、少なくとも1種のエポキシノボラック樹脂及び少なくとも1種の硬化剤からなる1.0〜4質量%の混合物と、を含み、且つ0.05〜0.5質量%の添加剤を含み、前記少なくとも1種のエポキシノボラック樹脂及び前記少なくとも1種の硬化剤からなる混合物が、樹脂及び硬化剤からなる前記混合物に対してそれぞれ85〜95質量%のエポキシノボラック樹脂及び5〜15質量%の硬化剤を含み、当該硬化剤が、(環式の)脂肪族アミン及びそれらの付加物、ポリアミド、マンニッヒ塩基、アミドアミン、フェノール樹脂、イミダゾール及びイミダゾール誘導体、ジシアンジアミド並びにBF3−モノエタノールアミンから選択されることを特徴とする組成物を介して達成される。 The purpose is a composition for producing a magnetic or magnetized molded article, comprising at least 95.5 to 98.95% by weight of a magnetic or magnetized material, based on the total mass of the composition, and at least 1.0 to 4% by weight of a mixture comprising one epoxy novolac resin and at least one curing agent, and 0.05 to 0.5% by weight additive, the at least one kind The mixture composed of an epoxy novolac resin and the at least one curing agent contains 85 to 95% by mass of an epoxy novolac resin and 5 to 15% by mass of a curing agent, respectively, based on the mixture composed of a resin and a curing agent, Curing agents include (cyclic) aliphatic amines and their adducts, polyamides, Mannich bases, amidoamines, phenolic resins, imidazole and imidazole derivatives, Anjiamido and BF 3 - is achieved via a composition being selected from monoethanolamine.

本発明に係る組成物から製造された成形品は、従来技術から公知の組成物からなる成形品よりも高い機械強度を有することがわかった。特に、本発明の組成物から製造された成形品は、磁気特性のいかなる付随する障害も生じること無く高い破壊抵抗を有する。そのうえ、非常に良好な熱耐性が本発明に係る組成物の増大したガラス転移温度を通じて達成される。   It has been found that a molded article produced from the composition according to the present invention has a higher mechanical strength than a molded article comprising a composition known from the prior art. In particular, molded articles made from the composition of the present invention have a high resistance to fracture without any associated impairment of magnetic properties. Moreover, very good heat resistance is achieved through the increased glass transition temperature of the composition according to the invention.

磁気又は磁化材料からなる粉末は、エポキシノボラック樹脂で、及び硬化剤で被覆されたものであることが特に好ましい。その被膜はその組成物内での樹脂及び硬化剤の均一な分布を達成し、それゆえ、そこから製造された成形品は均一な構成と高い破壊抵抗を有する。   The powder made of a magnetic or magnetized material is particularly preferably one that is coated with an epoxy novolac resin and a curing agent. The coating achieves a uniform distribution of resin and curing agent within the composition, and thus the molded articles produced therefrom have a uniform structure and high resistance to fracture.

エポキシノボラック樹脂及び硬化剤からなる混合物で磁気又は磁化材料からなる粉末を被覆するために、その組成物は好ましくは以下の工程:
(a)溶媒にエポキシノボラック樹脂を溶解する工程、
(b)この溶解したエポキシノボラック樹脂へ、連続的に混合しながら硬化剤を添加する工程であって、樹脂及び硬化剤に対する硬化剤の割合が5〜15質量%の範囲である工程、
(c)前記混合物へ、磁気又は磁化材料からなる粉末を連続的に混合しながら添加する工程であって、磁気又は磁化材料からなる粉末の割合が、樹脂、硬化剤及び磁気若しくは磁化材料の質量に対して95.5〜98.95質量%の範囲である工程、
(d)前記混合物から前記溶媒を除去して乾燥生成物を得る工程、及び
(e)当該乾燥生成物を粉砕して粉末を得る工程
を含む製造方法によって製造される。
In order to coat a powder consisting of a magnetic or magnetized material with a mixture consisting of an epoxy novolac resin and a curing agent, the composition preferably comprises the following steps:
(A) a step of dissolving an epoxy novolac resin in a solvent;
(B) a step of adding a curing agent to the dissolved epoxy novolac resin while continuously mixing, wherein the ratio of the curing agent to the resin and the curing agent is in the range of 5 to 15% by mass;
(C) The step of adding the magnetic or magnetized material powder to the mixture while continuously mixing, wherein the proportion of the magnetic or magnetized material powder is the mass of the resin, the curing agent, and the magnetic or magnetized material. The step being in the range of 95.5 to 98.95% by weight,
(D) A process comprising removing the solvent from the mixture to obtain a dry product, and (e) pulverizing the dry product to obtain a powder.

その組成物を製造するための本発明に係る方法は、磁気又は磁化材料からなる粉末が樹脂で被覆されるので、その粉末内における樹脂の均一な分布を達成する。   The method according to the invention for producing the composition achieves a uniform distribution of the resin within the powder, since the powder of magnetic or magnetized material is coated with the resin.

エポキシノボラック樹脂が溶解する好適な溶媒は、使用される樹脂、及び適宜に硬化剤が溶解する所望の溶媒である。特に好適な溶媒は、メチルエチルケトン(MEK)、アセトン又はメチルイソブチルケトンである。他の好適な溶媒の例は、トルエン又はキシレン等の芳香族炭化水素;メチルアセテート、エチルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、イソプロピルアセテート及び3−メチルブタノール等のアルキルエステル;メトキシプロパノール、メトキシブタノール、エトキシプロパノール等のアルコキシアルコール;エチルベンゼン、イソプロピルベンゼン等のアルキルベンゼン;ブチルグリコール、ブチルジグリコール、ブチルグリコールアセテート及びブチルジグリコールアセテート等のアルキルグリコールアセテート;2−メトキシ−1−メチルエチルアセテート、ジグリコールジアルキルエーテル、ジグリコールモノアルキルエーテル、ジプロピレングリコールジアルキルエーテル、ジプロピレングリコールモノアルキルエーテル、ジグリコールアルキルエーテルアセテート、ジプロピレングリコールアルキルエーテルアセテート、ジオキサン及びテトラヒドロフラン等のエーテル、ブチロラクトン等のラクトン;アセトン、2−ブタノン、シクロヘキサノン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)等のケトン;メチルフェノール(オルト−,メタ−,又はパラ−クレゾール)、N−メチル−2−ピロリドン等のピロリドン;ジメチルホルムアミド、及びまたこれらの溶媒の2種以上からなる混合物である。   A suitable solvent in which the epoxy novolac resin is dissolved is the resin used and the desired solvent in which the curing agent is dissolved appropriately. Particularly suitable solvents are methyl ethyl ketone (MEK), acetone or methyl isobutyl ketone. Examples of other suitable solvents are aromatic hydrocarbons such as toluene or xylene; alkyl esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, isopropyl acetate and 3-methylbutanol; methoxypropanol, methoxy Alkoxy alcohols such as butanol and ethoxypropanol; alkylbenzenes such as ethylbenzene and isopropylbenzene; alkyl glycol acetates such as butyl glycol, butyl diglycol, butyl glycol acetate and butyl diglycol acetate; 2-methoxy-1-methylethyl acetate, diglycol Dialkyl ether, diglycol monoalkyl ether, dipropylene glycol dialkyl ether, dipropylene group Cole monoalkyl ether, diglycol alkyl ether acetate, dipropylene glycol alkyl ether acetate, ethers such as dioxane and tetrahydrofuran, lactones such as butyrolactone; acetone, 2-butanone, cyclohexanone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), etc. A pyrrolidone such as methylphenol (ortho-, meta-, or para-cresol), N-methyl-2-pyrrolidone; dimethylformamide, and also a mixture of two or more of these solvents.

溶媒の量は、使用されるエポキシノボラック樹脂が完全に溶解するように選択される。   The amount of solvent is selected so that the epoxy novolac resin used is completely dissolved.

その組成物はバッチ式で、あるいは連続的に製造され得る。バッチ式の製造の場合には、個々の成分は攪拌タンク等の好適な容器へと一緒に充填される。連続的な製造の場合には、使用される組成物は好適な連続ミキサーへと連続的に添加されることが有利である。ここで、他の可能な方法では、独立した混合装置が個々の成分の混合のために用いられる。別の方法として、構成成分の全てを一つの混合装置中で混合することもまた可能である。成分の全てが一つの装置で混合される場合、溶媒中にエポキシノボラック樹脂を溶解し、その後に他の成分を添加することにより開始することが有利である。   The composition can be manufactured batchwise or continuously. In the case of batch production, the individual components are filled together in suitable containers such as stirred tanks. In the case of continuous production, it is advantageous that the composition used is continuously added to a suitable continuous mixer. Here, in another possible method, a separate mixing device is used for mixing the individual components. As an alternative, it is also possible to mix all of the components in one mixing device. If all of the components are mixed in one apparatus, it is advantageous to start by dissolving the epoxy novolac resin in the solvent and then adding the other components.

しかしながら、好適な容器中で組成物のバッチ式製造を行うことが好ましい。   However, it is preferred to perform batch production of the composition in a suitable container.

組成物から製造された成形品の品質のさらなる向上を達成するために、乾燥生成物の粉砕によって粉末が得られた後に、その粉末の粒度選別を実施することが好ましい。その粉末の粒度選別は、例えば、篩を用いることができる。篩の使用は、その粉末の異なる粒径での画分への分割を可能にする。小さすぎる粒子又は大きすぎてふるい残りとして留まる粒子は、本方法へと戻され得る。そのふるい残りは、磁気若しくは磁化材料からなる粉末の添加前、添加時又は添加後であってその溶媒の除去の前に添加されることがここでは特に好ましい。そのふるい残りは、磁気又は磁化材料からなる粉末の添加前にその混合物へと添加されることが特に好ましい。したがって、そのふるい残りに含まれる樹脂は再びその溶媒に溶解し得る。   In order to achieve a further improvement in the quality of the moldings produced from the composition, it is preferable to carry out a particle size selection of the powder after it has been obtained by grinding the dry product. For the particle size selection of the powder, for example, a sieve can be used. The use of a sieve allows the powder to be divided into fractions with different particle sizes. Particles that are too small or too large to remain as sieve residue can be returned to the process. It is particularly preferred here that the sieve residue is added before, during or after the addition of the powder of magnetic or magnetized material and before the removal of the solvent. It is particularly preferred that the sieving residue is added to the mixture before the addition of the powder of magnetic or magnetized material. Therefore, the resin contained in the sieve residue can be dissolved again in the solvent.

上述の乾燥生成物を製造するための工程(d)において、従来の乾燥方法が混合物からその溶媒を除去するために用いられる。それゆえ、例えば、室温で溶媒を蒸発させることが可能である。さらに、高温で、好ましくは真空中で、混合物を乾燥させることもまた可能である。乾燥が高温で実施される場合、乾燥方法が実施される温度は樹脂と硬化剤の架橋反応が開始しないように選択されるべきである。   In step (d) for producing the dried product described above, conventional drying methods are used to remove the solvent from the mixture. Thus, for example, it is possible to evaporate the solvent at room temperature. Furthermore, it is also possible to dry the mixture at an elevated temperature, preferably in a vacuum. When drying is performed at an elevated temperature, the temperature at which the drying method is performed should be selected so that the crosslinking reaction between the resin and the curing agent does not begin.

本発明においては、エポキシノボラック樹脂がその組成物を製造するために用いられる。エポキシノボラック樹脂は、高温での高い強度と優れた耐薬品性とを備えた多官能エポキシ樹脂である。   In the present invention, an epoxy novolac resin is used to produce the composition. Epoxy novolac resin is a polyfunctional epoxy resin having high strength at high temperatures and excellent chemical resistance.

エポキシノボラック樹脂はフェノール前駆体とホルムアルデヒドとの酸触媒縮合、及びその後のエピクロロヒドリンとのエポキシ化によって製造される。使用し得る前駆体の例は、フェノール、ビスフェノールA又はオルト−クレゾールである。使用される前駆体に応じて、結果として生じるエポキシノボラック樹脂は、フェノールノボラック樹脂、クレゾールノボラック樹脂又はビスフェノールAノボラック樹脂である。エポキシノボラックの合成は、それらに高いエポキシ官能性をもたらし、これが、主に二官能性であるビスフェノールAを基礎とする従来のエポキシドよりも1、7から最大8までの値で著しく高くなり得る。その多官能性はさらなる反応部位を供給し、したがって、向上した酸/塩基耐性、高温・湿潤環境下での機械的特性の保持、最小限の収縮、及び高温での向上した結合作用を特色とする高度に架橋された系を可能にする。   Epoxy novolac resins are made by acid-catalyzed condensation of phenol precursors with formaldehyde and subsequent epoxidation with epichlorohydrin. Examples of precursors that can be used are phenol, bisphenol A or ortho-cresol. Depending on the precursor used, the resulting epoxy novolac resin is a phenol novolac resin, a cresol novolac resin or a bisphenol A novolac resin. The synthesis of epoxy novolacs gives them high epoxy functionality, which can be significantly higher at values from 1, 7 to up to 8 than conventional epoxides based on bisphenol A, which is predominantly difunctional. Its polyfunctionality provides additional reactive sites and thus features improved acid / base resistance, retention of mechanical properties in high temperature / humid environments, minimal shrinkage, and improved binding at high temperatures. Enables highly cross-linked systems.

エポキシ基と反応可能である任意の硬化剤及び促進剤が、エポキシノボラック樹脂の架橋のために好適である。好適な硬化剤及び促進剤の例は、(環式の)脂肪族アミン及びまたそれらの付加物、ポリアミド、マンニッヒ塩基、アミドアミン、フェノール樹脂、イミダゾール及びイミダゾール誘導体、ジシアンジアミド並びにBF3−モノエタノールアミンである。 Any curing agent and accelerator capable of reacting with the epoxy group is suitable for crosslinking of the epoxy novolac resin. Examples of suitable curing agents and accelerators are (cyclic) aliphatic amines and also their adducts, polyamides, Mannich bases, amidoamines, phenolic resins, imidazole and imidazole derivatives, dicyandiamide and BF 3 -monoethanolamine. is there.

本発明の目的のために、(環式の)脂肪族アミンは、脂環式アミン、脂肪族アミン、並びに脂環式及び脂肪族アミンからなる混合物である。   For the purposes of the present invention, (cyclic) aliphatic amines are alicyclic amines, aliphatic amines, and mixtures of alicyclic and aliphatic amines.

硬化剤は、イミダゾール、イミダゾール誘導体、ジシアンジアミド及びBF3−モノエタノールアミンから選択されたものであることが特に好ましい。硬化剤は特に好ましくはジシアンジアミドである。 The curing agent is particularly preferably selected from imidazole, imidazole derivatives, dicyandiamide and BF 3 -monoethanolamine. The curing agent is particularly preferably dicyandiamide.

イミダゾール又はイミダゾール誘導体が硬化剤として使用される場合、好適な化合物の例は、イミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、1,2−ジメチルイミダゾール等の脂肪族イミダゾール誘導体、また1−ベンジル−2−メチルイミダゾール、2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール及び2−フェニル−4−メチルイミダゾール等の芳香族イミダゾール誘導体である。硬化剤として用いることができるイミダゾールは市販されている。   When imidazole or imidazole derivatives are used as curing agents, examples of suitable compounds are imidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, etc. Aliphatic imidazole derivatives such as 1-benzyl-2-methylimidazole, 2-phenylimidazole, 1-benzyl-2-methylimidazole, and 2-phenyl-4-methylimidazole. Imidazole that can be used as a curing agent is commercially available.

磁気又は磁化成形品の製造を可能にするためには、その組成物は95.5〜98.95質量%の、好ましくは96〜98質量%の磁気又は磁化材料からなる粉末を含む。   In order to be able to produce magnetic or magnetized shaped articles, the composition comprises a powder composed of 95.5 to 98.95% by weight, preferably 96 to 98% by weight of a magnetic or magnetized material.

磁気又は磁化材料からなる用いられる粉末は、所望の形状の粒子であって所望の磁気又は磁化材料からなる粒子からなる粉末を含み得る。好適な磁気又は磁化材料は、鉄、コバルト、ニッケル、モリブデン、マンガン、あるいはNiCoFe、NiCuCo、AlNi、AlNiCo、FeCrV、FeCo、FeNi、MnAlCu2、SmCo、Nd2Fe14B、FeSi、FeSiAl、又はこれらの材料の2以上からなる混合物である。鉄が特に好ましく、カルボニル鉄粉の形態であることが特に好ましい。 The powder used consisting of a magnetic or magnetized material may comprise a powder consisting of particles of a desired shape and consisting of a desired magnetic or magnetized material. Suitable magnetic or magnetisable materials, iron, cobalt, nickel, molybdenum, manganese, or NiCoFe, NiCuCo, AlNi, AlNiCo, FeCrV, FeCo, FeNi, MnAlCu 2, SmCo, Nd 2 Fe 14 B, FeSi, FeSiAl, or their A mixture of two or more of the above materials. Iron is particularly preferred, particularly preferably in the form of carbonyl iron powder.

個々の粉末粒子の平均粒径は、好ましくは0.001〜100μm、好ましくは0.005〜50μm、特に好ましくは0.01〜10μmである。平均粒径は、マイクロトラック×100装置等で、レーザー散乱を用いて決定することができる。粒径の分布は、粒子を生成するために使用される方法に依存する。粒径分布は通常、1つの最大値を有するが、複数の最大値も可能である。   The average particle size of the individual powder particles is preferably 0.001 to 100 μm, preferably 0.005 to 50 μm, and particularly preferably 0.01 to 10 μm. The average particle size can be determined using laser scattering with a Microtrac × 100 apparatus or the like. The particle size distribution depends on the method used to produce the particles. The particle size distribution usually has one maximum value, but multiple maximum values are possible.

磁気又は磁化粒子の表面の少なくとも一部に被膜が設けられ得る。好適な被膜は無機型(SiO2又はSiO2リン酸塩等)の、あるいは有機型のものであり得る。もちろん、磁気又は磁化粒子はまた、金属又は金属酸化物で被覆されたものでもあり得る。 A coating may be provided on at least a portion of the surface of the magnetic or magnetized particles. Suitable coatings can be of the inorganic type (such as SiO 2 or SiO 2 phosphate) or of the organic type. Of course, magnetic or magnetized particles can also be coated with a metal or metal oxide.

2種以上の異なる材料から磁気又は磁化粒子を形成する意図がある場合は、上記材料の混合により達成することができる。   If the intention is to form magnetic or magnetized particles from two or more different materials, this can be achieved by mixing the materials.

磁気又は磁化粒子の材料の選択とともに、その粉末を形成する粒子の形状もまたそれから製造される成形品の特性に影響を与える。その粒子の形状に関して、当業者に公知の多くの可能な変形が存在する。磁気又は磁化粒子の形状は、一例として、針状、円筒状、層状又は球状であり得る。これらの粒子形状は理想化された形状を表しており、ここでの実際の形状は、例えばその粒子の製造方法の結果として、そこから比較的大きな程度に逸脱し得る。それゆえ、例えば液滴状の粒子は、理想的な形状である球からの本発明の目的のための実際的な偏差である。   Along with the choice of magnetic or magnetized particle material, the shape of the particles forming the powder also affects the properties of the molded product produced therefrom. There are many possible variations known to those skilled in the art regarding the shape of the particles. The shape of the magnetic or magnetized particles can be, for example, acicular, cylindrical, layered or spherical. These particle shapes represent an idealized shape, and the actual shape here can deviate to a relatively large extent therefrom, for example as a result of the method of manufacturing the particles. Thus, for example, droplet-like particles are a practical deviation for the purposes of the present invention from an ideally shaped sphere.

磁気又は磁化粒子の混合物が用いられる場合、混合物の個々の成分もまた異なる粒子形状又は粒径を有し得る。異なる粒径又は粒子形状を有する1種の磁気又は磁化粒子のみの混合物を用いることもまた可能である。   When a mixture of magnetic or magnetized particles is used, the individual components of the mixture can also have different particle shapes or particle sizes. It is also possible to use a mixture of only one kind of magnetic or magnetized particles having different particle sizes or particle shapes.

磁気又は磁化材料からなる粉末は、ありふれた市販の製品であるか、又は公知の方法を用いることにより、例えば、電解析出法若しくは金属塩溶液からの化学的還元を用いることにより、酸化物粉末の水素等を用いた還元により、又はノズルを介した金属塩の、特に、ガス若しくは水等の冷媒中への噴霧若しくは通過により、容易に製造することができる。材料がノズルを通過するガス−又は水−に基づく方法、及びまた金属酸化物の還元が用いられることが好ましい。よりきめの粗い金属粉末の粉砕により好ましい粒径の金属粉末を製造することもまた可能である。例えば、この目的のためにはボールミルが好適である。   Powders made of magnetic or magnetized materials are common commercial products or oxide powders by using known methods, for example by using electrolytic deposition or chemical reduction from metal salt solutions It can be easily produced by reduction using hydrogen or the like, or by spraying or passing a metal salt through a nozzle, particularly into a refrigerant such as gas or water. It is preferred to use a gas- or water-based method in which the material passes through a nozzle, and also metal oxide reduction. It is also possible to produce a metal powder with a preferred particle size by grinding a coarser metal powder. For example, a ball mill is suitable for this purpose.

鉄の場合、材料をノズルに通過させる、ガス−及び水−に基づく方法と共に、他の好ましい方法は、カルボニル鉄粉を製造するためのカルボニル鉄粉法である。この方法はペンタカルボニル鉄の熱分解を用いる。これは、Ullmann’s Encyclopedia of Industrial Chemistry,第5版、A14巻、599頁等に記載されている。一例として、ペンタカルボニル鉄は、石英ガラス又はV2A鋼等の耐熱材料からなる管を好ましくは垂直位置で含む加熱可能な分解器系であって、前記管が、例えば、ヒーターバス若しくはヒーター線、又は熱流体が通過するヒータージャケットから成る周囲のヒーターを有する分解器系において高温高圧下で分解され得る。   In the case of iron, along with a gas- and water-based method of passing material through a nozzle, another preferred method is the carbonyl iron powder method for producing carbonyl iron powder. This method uses the thermal decomposition of pentacarbonyl iron. This is described in Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, volume A14, page 599, and the like. By way of example, iron pentacarbonyl is a heatable cracker system comprising a tube made of a refractory material such as quartz glass or V2A steel, preferably in a vertical position, said tube being, for example, a heater bath or heater wire, or It can be cracked under high temperature and pressure in a cracker system with a surrounding heater consisting of a heater jacket through which the hot fluid passes.

製造される球状の磁気又は磁化粒子は、その粒子の製造方法中で最適化された条件を用いて調整することができ、又はその後に機械的処理、例えば、攪拌ボールミルでの機械的処理を用いることにより得ることができる。   The spherical magnetic or magnetized particles produced can be tuned using conditions optimized in the method of producing the particles, or using mechanical treatment, for example mechanical treatment in a stirred ball mill Can be obtained.

組成物は、磁気又は磁化材料からなる粉末と、少なくとも1種のエポキシノボラック樹脂及び少なくとも1種の硬化剤からなる混合物と共に、少なくとも1種の添加剤を含み得る。その組成物における添加剤の割合は、その組成物の合計質量に対して好ましくは0.01〜0.5質量%の範囲であり、好ましくは0.02〜0.4質量%の範囲であり、及び特に好ましくは0.05〜0.2質量%の範囲である。   The composition may comprise at least one additive together with a powder comprising a magnetic or magnetized material and a mixture comprising at least one epoxy novolac resin and at least one curing agent. The proportion of the additive in the composition is preferably in the range of 0.01 to 0.5% by weight, preferably in the range of 0.02 to 0.4% by weight, based on the total weight of the composition. , And particularly preferably in the range of 0.05 to 0.2% by mass.

特に、その組成物は添加剤として潤滑剤を含む。組成物が潤滑剤を含む場合、組成物中における潤滑剤の割合は、それぞれの場合において組成物の合計質量に対して好ましくは0.01〜0.5質量%の範囲であり、特に0.05〜0.2質量%の範囲である。   In particular, the composition includes a lubricant as an additive. When the composition contains a lubricant, the ratio of the lubricant in the composition is preferably in the range of 0.01 to 0.5% by weight with respect to the total weight of the composition in each case. It is the range of 05-0.2 mass%.

好適な潤滑剤の例は、ワックス、脂肪酸、脂肪酸アミド、高級脂肪酸の塩、及びシロキサンである。   Examples of suitable lubricants are waxes, fatty acids, fatty acid amides, higher fatty acid salts, and siloxanes.

潤滑剤は、合成ワックス、アミド系ワックス、テフロン(登録商標)系ワックス、ステアリン酸金属塩、ポリマー潤滑剤、脂肪酸、ホウ酸及びホウ酸エステル、及びビニルトリメトキシシロキサン又はポリジメチルシロキサン等のシロキサンから選択されたものであることが好ましい。   Lubricants include synthetic waxes, amide waxes, Teflon (registered trademark) waxes, metal stearates, polymer lubricants, fatty acids, boric acid and borate esters, and siloxanes such as vinyltrimethoxysiloxane or polydimethylsiloxane. It is preferred that it is selected.

潤滑剤は、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、ステアリン酸マグネシウム、又はオレイン酸亜鉛等の高級脂肪酸の塩であることが特に好ましい。   The lubricant is particularly preferably a salt of a higher fatty acid such as calcium stearate, zinc stearate, barium stearate, magnesium stearate, or zinc oleate.

潤滑剤は組成物と乾燥形態で混合することができ、又は組成物と混合するプロセスのために溶解され、若しくは溶融される。潤滑剤は乾燥粉末へと添加されることが好ましい。   The lubricant can be mixed with the composition in dry form, or it can be dissolved or melted for the process of mixing with the composition. The lubricant is preferably added to the dry powder.

粉末治金法で使用される所望の他の潤滑剤が、上述の潤滑剤に加えて好適である。好適な潤滑剤の選択は、その材料の所望の特性に特に依存している。それゆえ、一例を挙げると、ある潤滑剤は熱処理後に高い電気抵抗を有する部分を提供し得る一方で、他の潤滑剤は高い透過性又は高い機械的強度を結果としてもたらし得る。同様に、潤滑剤の量は、製造されるべき成形品の所望の特性に依存する。   Other desired lubricants used in powder metallurgy are suitable in addition to the lubricants described above. The selection of a suitable lubricant depends in particular on the desired properties of the material. Thus, to name one example, some lubricants may provide a portion with high electrical resistance after heat treatment, while other lubricants may result in high permeability or high mechanical strength. Similarly, the amount of lubricant depends on the desired properties of the molded article to be produced.

潤滑剤の添加は、製造されるべき成形品と型壁(mold walls)との間の摩擦を減少させ、したがって、処方された粉末が本製造方法中において流動性を有することを保証し、且つ成形品の製造の間の、特に、成分の圧縮の間の金型(mold)上での摩耗を低減させる。さらに、潤滑剤は、圧縮工程の間の個々の粒子間の電気的接触の形成を阻害し、且つ圧縮されたグリーン製品の電気抵抗を大きく増大させる。   The addition of a lubricant reduces the friction between the part to be produced and the mold walls, thus ensuring that the formulated powder is flowable during the production process, and Reduces wear on the mold during the manufacture of the molding, in particular during the compression of the components. In addition, the lubricant inhibits the formation of electrical contact between individual particles during the compression process and greatly increases the electrical resistance of the compressed green product.

組成物はまた潤滑剤だけでなく他の添加剤もまた含み得る。これらの他の添加物の例は、樹脂/硬化剤系に対して0.1〜2%の割合であるイミダゾール誘導体又はジアルキル尿素等の硬化剤に加えて用いられるエポキシ重合プロセスのための触媒である。エポキシ重合プロセスのための触媒がさらなる添加剤として添加される場合、これは好ましくは溶媒中に溶解したエポキシノボラック樹脂に添加される。ここで、触媒は、硬化剤と共に同時に、工程(b)で得られた硬化剤と溶解したエポキシノボラック樹脂とを含む混合物中に、或いは溶解したエポキシノボラック樹脂への硬化剤の添加より前に添加され得る。   The composition may also include other additives as well as lubricants. Examples of these other additives are catalysts for epoxy polymerization processes used in addition to curing agents such as imidazole derivatives or dialkylureas in a proportion of 0.1-2% with respect to the resin / curing agent system. is there. If a catalyst for the epoxy polymerization process is added as a further additive, this is preferably added to an epoxy novolac resin dissolved in a solvent. Here, the catalyst is added together with the curing agent in the mixture containing the curing agent obtained in step (b) and the dissolved epoxy novolac resin or before the addition of the curing agent to the dissolved epoxy novolac resin. Can be done.

組成物は磁気又は磁化成形品を製造するために用いられる。特に、このタイプの成形品は、電気工学で使用されるように、コイル芯又は巻型である。対応するコイル芯又は巻型と共にコイルが、一例として、発電機で、ラップトップ型コンピュータで、ネットブックで、携帯電話で、電動機で、ACインバータで、自動車業界向けの電子部品で、玩具で、及びエレクトロニクス産業で、電磁石として用いられる。さらに、その組成物は磁場コンセントレータを製造するために用いられ得る。   The composition is used to produce magnetic or magnetized molded articles. In particular, this type of molded article is a coil core or a winding mold, as used in electrical engineering. Coils with corresponding coil cores or windings, for example, generators, laptop computers, netbooks, mobile phones, motors, AC inverters, electronic components for the automotive industry, toys, And as an electromagnet in the electronics industry. Further, the composition can be used to make a magnetic field concentrator.

成形品を製造するために、組成物は金型中で圧縮されて成形品を得て、その後、エポキシノボラック樹脂の反応を開始させるために加熱される。硬化剤とのエポキシノボラック樹脂の反応が開始される温度は用いられる硬化剤に依存する。通常、その温度は100〜220℃の範囲であり、好ましくは120〜200℃である。   In order to produce a molded article, the composition is compressed in a mold to obtain a molded article and then heated to initiate the reaction of the epoxy novolac resin. The temperature at which the reaction of the epoxy novolac resin with the curing agent begins depends on the curing agent used. Usually, the temperature is in the range of 100 to 220 ° C, preferably 120 to 200 ° C.

圧縮、及び硬化剤とのエポキシノボラック樹脂の反応は、高強度の成形品を製造する。   The compression and reaction of the epoxy novolac resin with the curing agent produces a high strength molded article.

成形品を得るための組成物の圧縮は1〜10MPa(10〜100bar)の範囲の、及び特に2〜8MPa(20〜80bar)の範囲の圧力で行われる。   The compression of the composition to obtain a shaped article is performed at a pressure in the range of 1-10 MPa (10-100 bar) and in particular in the range of 2-8 MPa (20-80 bar).

磁気又は磁化成形品を製造するための組成物を製造するために、10〜200mlのメチルエチルケトンを混合器中に溶媒の形態で初充填として用いた。30〜35gのエポキシノボラック樹脂をその溶媒に添加し、混合しながら完全に溶解させた。ジメチルホルムアミド中に20%濃度の溶液の形態のジシアンジアミドを、連続的に混合しながらその溶液中に添加した。表1は、ジシアンジアミドのそれぞれの量を表す。   In order to produce a composition for producing magnetic or magnetized molded articles, 10-200 ml of methyl ethyl ketone was used as the initial charge in the form of a solvent in a mixer. 30-35 g of epoxy novolac resin was added to the solvent and completely dissolved with mixing. Dicyandiamide in the form of a 20% strength solution in dimethylformamide was added to the solution with continuous mixing. Table 1 represents the respective amounts of dicyandiamide.

硬化剤の添加後、1000gのカルボニル鉄粉をさらに連続的に混合しながら添加した。カルボニル鉄粉の添加後、さらに少なくとも15分間混合を継続した。   After the addition of the curing agent, 1000 g of carbonyl iron powder was further added with continuous mixing. After the addition of carbonyl iron powder, mixing was continued for at least 15 minutes.

その後、得られた混合物を室温での蒸発による実質的な溶媒の除去により乾燥させた。乾燥生成物を得るために、混合物を乾燥工程のための大きな表面積を得るための金属板上に注いだ。その後、0.002MPa(20mbar)で30℃で、真空オーブン中で12時間の乾燥を継続した。   The resulting mixture was then dried by substantial solvent removal by evaporation at room temperature. In order to obtain a dry product, the mixture was poured onto a metal plate to obtain a large surface area for the drying process. Thereafter, drying was continued in a vacuum oven at 0.002 MPa (20 mbar) at 30 ° C. for 12 hours.

その後、要求されるそれぞれの粒径に調節するために、乾燥生成物を粉砕し、篩にかけた。   The dried product was then crushed and sieved to adjust to the required particle size.

表1:本発明の実施例のための処方   Table 1: Formulations for the examples of the present invention

Figure 2013522441
Figure 2013522441

表2:比較例   Table 2: Comparative examples

Figure 2013522441
Figure 2013522441

本発明の実施例1〜4で使用されるフェノールノボラックは、HexionからのEpikote(登録商標)154である。使用されるクレゾールノボラックはHexionからのEpon(登録商標)164である。本発明の実施例6のフェノールノボラックは、DowからのDEN639である。   The phenol novolak used in Examples 1-4 of the present invention is Epikote® 154 from Hexion. The cresol novolak used is Epon® 164 from Hexion. The phenol novolac of Example 6 of the present invention is DEN639 from Dow.

比較例1で使用されるCorvel Black(登録商標)は、一例としてRohm and Haasから入手することができる。使用されるビスフェノールAはHexionからのEpikote(登録商標)1004である。   Corvel Black® used in Comparative Example 1 can be obtained from Rohm and Haas as an example. The bisphenol A used is Epikote® 1004 from Hexion.

CS−型カルボニル鉄粉は還元されたカルボニル鉄粉であり、SQi−型材料は還元され、且つリン酸化されたBASF SEからのカルボニル鉄粉である。   CS-type carbonyl iron powder is reduced carbonyl iron powder, and SQi-type material is reduced and phosphorylated carbonyl iron powder from BASF SE.

表3:実験の結果   Table 3: Experimental results

Figure 2013522441
Figure 2013522441

表3は、被覆されていないカルボニル鉄粉が使用される場合に特に、透過性が従来技術から公知の樹脂より良好になることを示している。   Table 3 shows that the permeability is better than the resins known from the prior art, especially when uncoated carbonyl iron powder is used.

表中、略語“phr”は100当たりの部分(重量部)を示している。   In the table, the abbreviation “phr” indicates a part per 100 (parts by weight).

Claims (13)

磁気又は磁化成形品を製造するための組成物であって、該組成物の合計質量に対してそれぞれ、
95.5〜98.58質量%の磁気又は磁化材料からなる粉末、
少なくとも1種のエポキシノボラック樹脂及び少なくとも1種の硬化剤からなる1.0〜4質量%の混合物、及び
0.05〜0.5質量%の少なくとも1種の添加剤を含有し、
少なくとも1種のエポキシノボラック樹脂及び少なくとも1種の硬化剤の前記混合物が、樹脂及び硬化剤からなるその混合物に対してそれぞれ85〜95質量%のエポキシノボラック樹脂と5〜15質量%の硬化剤とを含み、
該硬化剤が、(環式の)脂肪族アミン及びそれらの付加物、ポリアミド、マンニッヒ塩基、アミドアミン、フェノール樹脂、イミダゾール及びイミダゾール誘導体、ジシアンジアミド並びにBF3−モノエタノールアミンから選択されることを特徴とする組成物。
A composition for producing a magnetic or magnetized molded article, each with respect to the total mass of the composition,
Powder consisting of 95.5 to 98.58% by weight of magnetic or magnetized material,
Containing 1.0 to 4% by weight of a mixture comprising at least one epoxy novolac resin and at least one curing agent, and 0.05 to 0.5% by weight of at least one additive,
The mixture of at least one epoxy novolac resin and at least one curing agent is 85 to 95% by weight epoxy novolac resin and 5 to 15% by weight curing agent, respectively, based on the mixture of resin and curing agent. Including
Wherein the curing agent is selected from (cyclic) aliphatic amines and their adducts, polyamides, Mannich bases, amidoamines, phenol resins, imidazole and imidazole derivatives, dicyandiamide and BF 3 -monoethanolamine. Composition.
前記硬化剤が、イミダゾール、イミダゾール誘導体、ジシアンジアミド及びBF3−モノエタノールアミンから選択される請求項1に記載の組成物。 Wherein the curing agent, imidazole, imidazole derivatives, dicyandiamide and BF 3 - composition according to claim 1 selected from monoethanolamine. 前記磁気又は磁化材料が、鉄、コバルト、ニッケル、モリブデン、マンガン、あるいはNiCoFe、NiCuCo、AlNi、AlNiCo、FeCrV、FeCo、FeNi、MnAlCu2、SmCo、Nd2Fe14B、FeSi、FeSiAl、又はこれらの材料の2種以上からなる混合物である請求項1又は2に記載の組成物。 Said magnetic or magnetizable material, iron, cobalt, nickel, molybdenum, manganese, or NiCoFe, NiCuCo, AlNi, AlNiCo, FeCrV, FeCo, FeNi, MnAlCu 2, SmCo, Nd 2 Fe 14 B, FeSi, FeSiAl, or their The composition according to claim 1 or 2, which is a mixture composed of two or more kinds of materials. 前記磁気又は磁化材料が、カルボニル鉄粉を含む請求項1〜3の何れか1項に記載の組成物。   The composition according to claim 1, wherein the magnetic or magnetized material contains carbonyl iron powder. 前記エポキシノボラック樹脂が、フェノールノボラック樹脂、クレゾールノボラック樹脂又はビスフェノールA−ノボラック樹脂である請求項1〜4の何れか1項に記載の組成物。   The composition according to any one of claims 1 to 4, wherein the epoxy novolac resin is a phenol novolak resin, a cresol novolak resin, or a bisphenol A-novolak resin. 少なくとも1種の潤滑剤を添加剤として含む請求項1〜5の何れか1項に記載の組成物。   The composition according to any one of claims 1 to 5, comprising at least one lubricant as an additive. 前記潤滑剤が、ワックス、脂肪酸、脂肪酸アミド、又は高級脂肪酸の塩から選択されたものである請求項6に記載の組成物。   The composition according to claim 6, wherein the lubricant is selected from waxes, fatty acids, fatty acid amides, or salts of higher fatty acids. 請求項1〜7の何れか1項に記載の組成物の製造方法であって、以下の工程:
(a)溶媒にエポキシノボラック樹脂を溶解する工程、
(b)該溶解したエポキシノボラック樹脂へ、硬化剤又は硬化剤溶液を連続的に混合しながら添加する工程であって、樹脂及び硬化剤の質量に対する該硬化剤の割合が5〜15質量%である工程、
(c)前記混合物へ、磁気又は磁化材料からなる粉末を連続的に混合しながら添加する工程であって、該磁気又は磁化材料からなる粉末の割合が、樹脂、硬化剤、及び磁気若しくは磁化材料からなる粉末の質量に対して95.5〜98.95質量%の範囲である工程、
(d)前記混合物から前記溶媒を除去して乾燥生成物を得る工程、及び
(e)該乾燥生成物を粉砕して粉末を得る工程
を含む製造方法。
It is a manufacturing method of the composition of any one of Claims 1-7, Comprising: The following processes:
(A) a step of dissolving an epoxy novolac resin in a solvent;
(B) A step of adding a curing agent or a curing agent solution to the dissolved epoxy novolac resin while continuously mixing, wherein the ratio of the curing agent to the mass of the resin and the curing agent is 5 to 15% by mass. A process,
(C) A step of adding a magnetic or magnetic material powder to the mixture while continuously mixing, wherein the ratio of the magnetic or magnetic material powder is a resin, a curing agent, and a magnetic or magnetic material. A step in the range of 95.5 to 98.95% by mass with respect to the mass of the powder comprising
(D) removing the solvent from the mixture to obtain a dry product, and (e) pulverizing the dry product to obtain a powder.
前記溶媒が、メチルエチルケトン又はアセトンである請求項8に記載の製造方法。   The production method according to claim 8, wherein the solvent is methyl ethyl ketone or acetone. 前記乾燥生成物の粉砕後に粒度選別工程を実施する請求項8又は9に記載の製造方法。   The manufacturing method of Claim 8 or 9 which implements a particle size selection process after the grinding | pulverization of the said dried product. 前記粒度選別工程からの残留物が、
磁気若しくは磁化材料からなる粉末の前記添加前に、磁気若しくは磁化材料からなる粉末の前記添加後に、又は磁気若しくは磁化材料からなる粉末の添加中に、連続的に混合しながら添加される請求項10に記載の製造方法。
The residue from the particle size sorting process is
11. Addition with continuous mixing prior to the addition of the magnetic or magnetic material powder, after the addition of the magnetic or magnetic material powder, or during the addition of the magnetic or magnetic material powder. The manufacturing method as described in.
金型中で請求項1〜7の何れか1項に記載の組成物を圧縮することにより成形品を得て、その後に前記エポキシノボラック樹脂と前記硬化剤との反応を開始させるために加熱することによる、成形品の製造方法。   A molded article is obtained by compressing the composition according to any one of claims 1 to 7 in a mold, and then heated to initiate a reaction between the epoxy novolac resin and the curing agent. A method for manufacturing a molded product. 前記成形品がコイル芯、巻型、又は磁場コンセントレータである請求項12に記載の製造方法。   The manufacturing method according to claim 12, wherein the molded product is a coil core, a winding mold, or a magnetic field concentrator.
JP2013500627A 2010-03-23 2011-03-17 Composition for producing magnetic or magnetized molded article, and method for producing the composition Pending JP2013522441A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10157429.1 2010-03-23
EP10157429 2010-03-23
PCT/IB2011/051112 WO2011117783A2 (en) 2010-03-23 2011-03-17 Composition for producing magnetic or magnetizable moldings, and process for producing the same

Publications (1)

Publication Number Publication Date
JP2013522441A true JP2013522441A (en) 2013-06-13

Family

ID=44673707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013500627A Pending JP2013522441A (en) 2010-03-23 2011-03-17 Composition for producing magnetic or magnetized molded article, and method for producing the composition

Country Status (6)

Country Link
EP (1) EP2550666A2 (en)
JP (1) JP2013522441A (en)
KR (1) KR20130051930A (en)
CN (1) CN102906827A (en)
TW (1) TWI462125B (en)
WO (1) WO2011117783A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198237A1 (en) * 2018-04-13 2019-10-17 日立化成株式会社 Compound and molded body
JP2021009930A (en) * 2019-07-01 2021-01-28 株式会社豊田中央研究所 Dust core
WO2022070789A1 (en) * 2020-09-30 2022-04-07 Ntn株式会社 Magnetic core material and magnetic core

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452579B (en) * 2012-04-24 2014-09-11 Nat Univ Tsing Hua Method for preparing anisotropic polymer magnetic composite
US20140377915A1 (en) * 2013-06-20 2014-12-25 Infineon Technologies Ag Pre-mold for a magnet semiconductor assembly group and method of producing the same
JP2015082554A (en) * 2013-10-22 2015-04-27 日東電工株式会社 Soft magnetic resin composition, and soft magnetic film
WO2015158768A1 (en) * 2014-04-17 2015-10-22 Basf Se Epoxy resins for use in shaped bodies
CN107413520B (en) * 2017-09-21 2019-04-12 郑平珍 Ferromagnetic mineral recycling magnetic soft net and its manufacturing method in a kind of bed-silt
CN109778074B (en) * 2019-01-29 2021-01-08 重庆科技学院 High-coercivity alnico permanent magnet alloy and preparation method thereof
JP7413786B2 (en) * 2020-01-15 2024-01-16 セイコーエプソン株式会社 Manufacturing method of powder magnetic core and powder magnetic core
JP2021162687A (en) * 2020-03-31 2021-10-11 デクセリアルズ株式会社 Antireflection film laminate and product including the same
CN112863801B (en) * 2021-01-14 2022-09-27 安徽大学 Composite material with high magnetic conductivity and low magnetic loss and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143405A (en) * 1988-11-24 1990-06-01 Koei Chem Co Ltd Resin-bonded permanent magnet and binder therefor
JPH0427102A (en) * 1990-05-23 1992-01-30 Sumitomo Metal Mining Co Ltd Resin magnet and its manufacturing method
US20040074564A1 (en) * 2001-11-14 2004-04-22 Markus Brunner Inductive component and method for producing same
US20090096561A1 (en) * 2007-10-12 2009-04-16 Minebea Co., Ltd. Rare earth bonded magnet and production method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151128A (en) * 1992-11-12 1994-05-31 Kanegafuchi Chem Ind Co Ltd Blended substance for bond magnet
JPH10303009A (en) * 1997-04-30 1998-11-13 Sankyo Seiki Mfg Co Ltd Rare-earth bonded magnet
CN1194357C (en) * 2002-11-19 2005-03-23 李延军 Soft magnetic iron core press formed from powdered iron in automobile ignition coil and its manufacturing method
US7390579B2 (en) * 2003-11-25 2008-06-24 Magnequench, Inc. Coating formulation and application of organic passivation layer onto iron-based rare earth powders
JP2006124777A (en) * 2004-10-28 2006-05-18 Kobe Steel Ltd Powder mixture for powder metallurgy and green compact molding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143405A (en) * 1988-11-24 1990-06-01 Koei Chem Co Ltd Resin-bonded permanent magnet and binder therefor
US5114604A (en) * 1988-11-24 1992-05-19 Koei Chemical Co., Ltd. Resin bonded permanent magnet and a binder therefor
JPH0427102A (en) * 1990-05-23 1992-01-30 Sumitomo Metal Mining Co Ltd Resin magnet and its manufacturing method
US20040074564A1 (en) * 2001-11-14 2004-04-22 Markus Brunner Inductive component and method for producing same
JP2005510049A (en) * 2001-11-14 2005-04-14 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト Induction component and manufacturing method thereof
US20090096561A1 (en) * 2007-10-12 2009-04-16 Minebea Co., Ltd. Rare earth bonded magnet and production method thereof
JP2009099580A (en) * 2007-10-12 2009-05-07 Minebea Co Ltd Rare earth bond magnet and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198237A1 (en) * 2018-04-13 2019-10-17 日立化成株式会社 Compound and molded body
KR20210003741A (en) * 2018-04-13 2021-01-12 쇼와덴코머티리얼즈가부시끼가이샤 Compound and molded body
JPWO2019198237A1 (en) * 2018-04-13 2021-04-22 昭和電工マテリアルズ株式会社 Compounds and moldings
KR102422919B1 (en) * 2018-04-13 2022-07-20 쇼와덴코머티리얼즈가부시끼가이샤 compound and molded body
JP7222394B2 (en) 2018-04-13 2023-02-15 株式会社レゾナック Compounds and moldings
JP2021009930A (en) * 2019-07-01 2021-01-28 株式会社豊田中央研究所 Dust core
JP7356270B2 (en) 2019-07-01 2023-10-04 株式会社豊田中央研究所 powder magnetic core
WO2022070789A1 (en) * 2020-09-30 2022-04-07 Ntn株式会社 Magnetic core material and magnetic core

Also Published As

Publication number Publication date
WO2011117783A3 (en) 2012-07-26
CN102906827A (en) 2013-01-30
WO2011117783A2 (en) 2011-09-29
TW201203292A (en) 2012-01-16
EP2550666A2 (en) 2013-01-30
TWI462125B (en) 2014-11-21
KR20130051930A (en) 2013-05-21

Similar Documents

Publication Publication Date Title
JP2013522441A (en) Composition for producing magnetic or magnetized molded article, and method for producing the composition
KR100187347B1 (en) Power magnetic core
TWI604473B (en) Non-corrosive soft-magnetic powder
US10537938B2 (en) Magnetic core and method for manufacturing same
JP2012134244A (en) Manufacturing method of dust core, and dust core obtained by the same
JP2022116173A (en) compound and tablet
KR20160083908A (en) Temperature-stable soft-magnetic powder
JP2022109291A (en) compound powder
US8496725B2 (en) Composition for producing magnetic or magnetizable moldings, and process for producing the same
JP2020205455A (en) Method of producing bonded magnet and compound for bonded magnet
JP6117504B2 (en) Manufacturing method of magnetic core
WO2019106812A1 (en) Compound powder
WO2022220295A1 (en) Magnetic powder, compound, molded body, bonded magnet, and powder magnetic core
JP2006310873A (en) Powder magnetic core and method for manufacturing it
JP2757040B2 (en) Method for producing Nd-Fe-B bonded magnet
JP2022146468A (en) Granulated powder and method for manufacturing bonded magnet
JP7298804B1 (en) Method for manufacturing magnetic compact and method for manufacturing anisotropic bonded magnet
JP2022146469A (en) Granulated powder, compound, mold and bond magnet
JPH0774012A (en) Manufacture of bonded permanent magnet and raw material powder therefor
KR102623788B1 (en) Compound, molded body, cured product of compound, and method of manufacturing compound
JP4116690B2 (en) Rare earth bonded magnet composition and rare earth bonded magnet
JP6415621B2 (en) Magnetic core
US20230302534A1 (en) Granulated powder for making green body with high strength
CN117558546A (en) Composite magnetic powder and inductor
JP2019016806A (en) Magnetic core and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141110

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150407