JPH04282871A - Thin film solar cell - Google Patents

Thin film solar cell

Info

Publication number
JPH04282871A
JPH04282871A JP3045274A JP4527491A JPH04282871A JP H04282871 A JPH04282871 A JP H04282871A JP 3045274 A JP3045274 A JP 3045274A JP 4527491 A JP4527491 A JP 4527491A JP H04282871 A JPH04282871 A JP H04282871A
Authority
JP
Japan
Prior art keywords
film
thin film
solar cell
zinc
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3045274A
Other languages
Japanese (ja)
Inventor
Takuro Ihara
井原 卓郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3045274A priority Critical patent/JPH04282871A/en
Publication of JPH04282871A publication Critical patent/JPH04282871A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Abstract

PURPOSE:To simply form a well texturized transparent electrode which makes excellent contact with a CdZnS thin film which forms junction with a chalcopyrite crystal thin film by using zinc oxide on the CdZnS thin film. CONSTITUTION:A ZnO film which has <002> orientation which allows excellent contact with a CdZnS film is brought into contact with the CdZnS film and a well texturized film which has <110> or <100> orientation is laminated on the ZnO film or after forming the <002> orientation ZnO on the CdZnS film, the film is texturized by sputter etching. The orientation is quantitatively prescribed by the ratio of the peak intensity of X-ray diffraction.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は太陽光等の光エネルギー
を、CuInSe2 のようなカルコパイライト型化合
物を光電変換層とする半導体接合により電気エネルギー
に変換する薄膜太陽電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film solar cell that converts light energy such as sunlight into electrical energy by a semiconductor junction using a chalcopyrite type compound such as CuInSe2 as a photoelectric conversion layer.

【0002】0002

【従来の技術】CuInSe2 ( 以下CISと略す
) は直接遷移型のバンド構造を有し、そのバンドギャ
ップが約1eVであってシリコンの1.7 eVより小
さいことから、太陽光スペクトルを長波長側まで有効に
活用できるため、高効率の太陽電池として期待されてい
る。またCu/Inの組成比で伝導型が制御できるため
、PN接合形成が容易である。このような利点により、
現在活発な研究開発が行われている。
[Prior Art] CuInSe2 (hereinafter abbreviated as CIS) has a direct transition type band structure, and its band gap is about 1 eV, which is smaller than silicon's 1.7 eV, so it shifts the solar spectrum to the long wavelength side. It is expected to be used as a highly efficient solar cell because it can be used effectively up to Furthermore, since the conductivity type can be controlled by the composition ratio of Cu/In, it is easy to form a PN junction. With these advantages,
Active research and development is currently underway.

【0003】CISを用いた太陽電池でよく知られてい
るのは、光入射側の窓層に、バンドギャップ2.4 e
Vで、CISとは格子の不整合が1%以下であるn型C
dSを用いてp型CISとヘテロ接合を形成したもので
ある。 このような薄膜太陽電池は図2に示すように、ガラス,
 アルミナなどの基板1上にMoなどのオーム性接触用
の金属電極2を形成し、その上にp型CIS膜3, n
型CdS膜4を順次積層し、さらにZnOなどの透明電
極5を形成してなるものがあげられる。CIS薄膜の形
成方法としては、Cu, In, Seを基板の一面上
の金属電極の上に各々層状に形成してその後に加熱して
形成する方法、セレン源としてセレン化水素 (SeH
2) を用い、その雰囲気中でCu, In積層膜を加
熱することにより作成する方法、あるいはこれらとは異
なり、各々の元素を含むソースより同時に蒸着, スパ
ッタリングを行って基板上にCIS膜形成を行う方法が
知られている。
A well-known solar cell using CIS has a bandgap of 2.4 e in the window layer on the light incident side.
CIS is an n-type C with a lattice mismatch of 1% or less.
A heterojunction with p-type CIS is formed using dS. As shown in Figure 2, such thin-film solar cells are made of glass,
A metal electrode 2 such as Mo for ohmic contact is formed on a substrate 1 such as alumina, and a p-type CIS film 3, n
An example is one in which CdS type CdS films 4 are sequentially laminated and a transparent electrode 5 made of ZnO or the like is further formed. The CIS thin film can be formed by forming layers of Cu, In, and Se on a metal electrode on one surface of the substrate and then heating them, or by using hydrogen selenide (SeH) as a selenium source.
2) A method of forming a CIS film on a substrate by heating a stacked film of Cu and In in that atmosphere using There are known ways to do it.

【0004】CdS膜はEB (エレクトロン・ビーム
) 蒸着法, スパッタ法, 浸漬法などで、ZnO膜
はスパッタ法でそれぞれ形成するのが一般的である。ま
た最近では、CdS層4による光吸収ロスを極力低減す
るために、CdS層の膜厚を1000Å以下に薄くした
り、Cdの一部をZnで置換して硫化亜鉛カドミウム 
(CdZnS) とすることにより光学ギャップを広げ
る (この時、同時に膜の電気抵抗は増加する) こと
が一般的になりつつある。この場合透明電極のZnO膜
がn+ 層として一部n膜の役割を担い、CdZnS膜
はZnOとCISの中間で両者の格子接合を取るための
バッファ層的な役割を担うことになる。
[0004] CdS films are generally formed by EB (electron beam) evaporation, sputtering, dipping, etc., and ZnO films are generally formed by sputtering. Recently, in order to reduce the light absorption loss due to the CdS layer 4 as much as possible, the thickness of the CdS layer has been reduced to 1000 Å or less, and some of the Cd has been replaced with Zn to replace zinc cadmium sulfide.
(CdZnS) to widen the optical gap (at this time, the electrical resistance of the film increases at the same time) is becoming common. In this case, the ZnO film of the transparent electrode partially plays the role of an n film as an n+ layer, and the CdZnS film plays a role of a buffer layer between ZnO and CIS to form a lattice junction between the two.

【0005】[0005]

【発明が解決しようとする課題】前記CIS/CdZn
S/ZnO構造の薄膜太陽電池の高効率化を図るために
は、入射した太陽光を光電変換層であるCIS膜で有効
に吸収することが重要である。例えば他の薄膜太陽電池
であるアモルファス太陽電池においては、ガラス基板上
に主に熱CVD法により形成するSnO2 からなる透
明電極の表面に形成条件の適正化によりテクスチャ化と
呼ばれる微細な凹凸をつけ、入射光を光電変換層に入射
する前に散乱させて太陽電池効率を高める技術がほぼ確
立している。CIS太陽電池においても同様のテクスチ
ャ化により変換効率向上が期待できる。しかしながら、
CIS太陽電池の場合には以下の点においてアモルファ
ス太陽電池の場合とは異なる。すなわち、CIS太陽電
池はアモルファス太陽電池に比べて長波長光を利用する
が、材料的にSnO2 はZnOに比べて長波長光の透
過率が劣るため、CIS太陽電池では透明電極にSnO
2 ではなくZnOを利用する必要がある。また、アモ
ルファス太陽電池においては、まず透明絶縁性基板上S
nO2 からなる透明電極を形成し、その上にアモルフ
ァスSiからなる光電変換層を形成するが、CIS太陽
電池の場合には逆に基板上にCIS膜, CdZnSを
形成した後、その上に透明電極としてのZnO膜を形成
するプロセス順序となる。したがって、テクスチャ化Z
nO膜を形成する場合に、下地であるCdZnSとの接
触が電気的接触を含めて良好で、かつCdZnSやCI
Sに損傷を加えないことが必要である。
[Problem to be solved by the invention] The CIS/CdZn
In order to improve the efficiency of a thin film solar cell having an S/ZnO structure, it is important that incident sunlight be effectively absorbed by a CIS film, which is a photoelectric conversion layer. For example, in an amorphous solar cell, which is another type of thin-film solar cell, fine irregularities called texturing are created by optimizing the formation conditions on the surface of a transparent electrode made of SnO2, which is formed mainly by thermal CVD on a glass substrate. The technology for increasing solar cell efficiency by scattering incident light before it enters the photoelectric conversion layer has almost been established. Similar texturing can also be expected to improve conversion efficiency in CIS solar cells. however,
CIS solar cells differ from amorphous solar cells in the following points. In other words, CIS solar cells use longer wavelength light than amorphous solar cells, but since SnO2 has a lower transmittance for long wavelength light than ZnO, CIS solar cells use SnO2 in the transparent electrode.
It is necessary to use ZnO instead of 2. In addition, in an amorphous solar cell, the S
A transparent electrode made of nO2 is formed, and a photoelectric conversion layer made of amorphous Si is formed on it, but in the case of a CIS solar cell, on the contrary, after forming a CIS film and CdZnS on a substrate, a transparent electrode is formed on it. This is the process order for forming a ZnO film. Therefore, texturing Z
When forming an nO film, the contact with the underlying CdZnS, including electrical contact, is good, and CdZnS and CI
It is necessary not to damage S.

【0006】本発明の目的は、上述の観点に立って有効
かつ簡便にZnO膜のテクスチャ化を図ることができる
実用的な薄膜太陽電池を提供することにある。
[0006] An object of the present invention is to provide a practical thin film solar cell in which a ZnO film can be textured effectively and easily from the above-mentioned viewpoint.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、一方の面に金属電極が接触するカルコ
パイライト型結晶薄膜の他方の面側にその薄膜との間に
接合を形成する硫化亜鉛カドミウム薄膜および酸化亜鉛
膜を順に積層してなる薄膜太陽電池において、酸化亜鉛
膜が硫化亜鉛カドミウム薄膜に近い側の<002>配向
膜と遠い側の<110>配向膜よりなるものとする。ま
た、酸化亜鉛膜が硫化亜鉛カドミウム薄膜に近い側の<
002>配向膜と遠い側の<100>配向膜よりなるも
のとする。あるいは、酸化亜鉛膜が<002>配向膜で
ありかつ成膜後表面をスパッタエッチングすることによ
りテクスチャ化してなる膜であるものとする。さらに、
酸化亜鉛膜が表面をスパッタエッチングすることにより
テクスチャ化された<002>配向膜を複数積層化され
てなるものであることも有効である。<002>配向酸
化亜鉛膜は銅のKα線を光源とするX線回折における<
002>ピーク強度が<110>ピーク強度および<1
00>ピーク強度のそれぞれの10倍以上であること、
<110>配向酸化亜鉛膜は銅のKα線を光源とするX
線回折における<110>ピーク強度が<002>ピー
ク強度の10倍以上であること、また<100>配向酸
化亜鉛膜は銅のKα線を光源とするX線回折における<
100>ピーク強度が<002>ピーク強度の10倍以
上であることが望ましい。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a bond between the other surface of a chalcopyrite crystal thin film that is in contact with a metal electrode on one surface. A thin film solar cell formed by sequentially laminating a zinc cadmium sulfide thin film and a zinc oxide film, in which the zinc oxide film consists of a <002> oriented film on the side close to the zinc sulfide cadmium thin film and a <110> oriented film on the far side shall be. In addition, the zinc oxide film is located on the side closer to the zinc sulfide cadmium thin film.
002> alignment film and a <100> alignment film on the far side. Alternatively, it is assumed that the zinc oxide film is a <002> oriented film and that the surface is textured by sputter etching after film formation. moreover,
It is also effective that the zinc oxide film is formed by laminating a plurality of <002> orientation films whose surfaces are textured by sputter etching. <002> Oriented zinc oxide film has <
002> peak intensity is <110> peak intensity and <1
00> Each peak intensity is 10 times or more,
<110> Oriented zinc oxide film
The <110> peak intensity in line diffraction is 10 times or more than the <002> peak intensity, and the <100> oriented zinc oxide film has
It is desirable that the 100> peak intensity is 10 times or more the <002> peak intensity.

【0008】[0008]

【作用】六方柱CdZnSは一般に強い<002>配向
を示す。そして<002>配向の六方柱ZnO膜はこれ
と良好な接触性を示すが、<110>もしくは<100
>配向を有するZnO膜はCdZnSとの接触性は劣る
。そこでCdZnS薄膜の上にまず接触性の良い<00
2>配向ZnO膜を形成する。しかし、この膜は鏡面性
を有し、テクスチャ度が低いので、その上にテクスチャ
度の高い<110>もしくは<100>配向を有するZ
nO膜を積層するか、あるいは表面をスパッタエッチン
グしてテクスチャ化する。
[Operation] Hexagonal columnar CdZnS generally exhibits a strong <002> orientation. A hexagonal columnar ZnO film with <002> orientation shows good contact with this, but <110> or <100>
>A ZnO film having an orientation has poor contact with CdZnS. Therefore, on top of the CdZnS thin film, we first applied
2> Form an oriented ZnO film. However, since this film has specularity and low texture, Z
Either an nO film is laminated or the surface is textured by sputter etching.

【0009】[0009]

【実施例】次に本発明を実施例に基づいて説明する。図
1に実施例の太陽電池の構造を模式的に示し、図2と共
通の部分には同一の符号が付されている。本構造は次の
ように形成される。ガラス基板1上にオーム性接触用と
してスパッタ法によりMo膜2を1μmの厚さで形成す
る。次に基板を350 〜450 ℃に保持した状態で
、3個のるつぼ内に各々別々に保持したCu,In, 
Seの蒸発源から基板に三元素を同時に加熱蒸着してカ
ルコパイライト型CIS薄膜3を1.5 μmの厚さで
形成する。さらにこの上にCdZnS膜4をEB蒸着法
により1000Åの厚さで形成する。CdZnS膜は<
002>配向の強い六方柱結晶として成長する。ZnO
膜は一般に六方柱結晶として成長するが、製造方法, 
製造条件により配向性を制御できること、並びに配向性
によりZnO膜の性質が異なることが実験の結果明らか
になってきた。すなわち、最も広い条件で生成する<0
02>配向膜は、面が平滑な鏡面となり、基板に垂直な
方向、すなわち膜厚方向の抵抗率が水平な方向の抵抗率
に比べて小さい。一方<100>および<110>配向
を有するZnO膜は、比較的限定された製造条件範囲内
でのみ生成し、表面はテクスチャ化を示し、基板に水平
な方向の抵抗率が垂直な方向の抵抗率に比べ小さい。本
実施例ではZnO膜を2層構造とし、CdZnSに接す
る第一層5に<002>配向の強い鏡面膜、その上の第
二層6に<110>配向の強いテクスチャ膜を次のよう
な方法で各々1μmの厚さで形成した。<002>配向
の強い第一層5は、ここでは通常のスパッタ法で200
 ℃で形成したが、その他の方法でも容易に得ることが
できる。一方、<110>配向の強い第二層は、図3に
構成を模式的に示す有機金属CVD (MOCVD) 
装置により形成した。このMOCVD装置の反応室11
内のヒータ12を備えた基台13に基板を置いて150
 ℃に加熱し、ジエチル亜鉛14を収容したバブラ15
と純水16を収容したバブラ17にアルゴンガス供給系
18からアルゴンガスを吹き込むことにより、排気系1
9で真空排気された反応室11にジエチル亜鉛と水を供
給して基板上の第一層5の上に第二層6を成膜した。得
られた2種類の膜5, 6の配向性は、CuのKα線を
光源とするX線回折により評価した。<002>と<1
10>のピーク強度比 (<110>ピーク強度/<0
02>ピーク強度) の値は第一層で10−2以下、第
二層では約50であり、第一層5が<002>配向、第
二層6が<110>配向が強いことが確認された。
EXAMPLES Next, the present invention will be explained based on examples. FIG. 1 schematically shows the structure of a solar cell according to an example, and parts common to those in FIG. 2 are given the same reference numerals. This structure is formed as follows. A Mo film 2 with a thickness of 1 μm is formed on a glass substrate 1 by sputtering for ohmic contact. Next, with the substrate held at 350 to 450°C, Cu, In, and
A chalcopyrite type CIS thin film 3 with a thickness of 1.5 μm is formed by simultaneously heating and vapor-depositing three elements onto a substrate from a Se evaporation source. Furthermore, a CdZnS film 4 is formed thereon to a thickness of 1000 Å by EB evaporation. The CdZnS film is <
002>Grows as a strongly oriented hexagonal columnar crystal. ZnO
Films generally grow as hexagonal crystals, but the manufacturing method,
Experiments have revealed that the orientation can be controlled by controlling the manufacturing conditions and that the properties of the ZnO film differ depending on the orientation. In other words, <0 generated under the widest conditions
02> The alignment film has a smooth mirror surface, and the resistivity in the direction perpendicular to the substrate, that is, in the film thickness direction, is smaller than the resistivity in the horizontal direction. ZnO films with <100> and <110> orientations, on the other hand, are produced only within a relatively limited range of manufacturing conditions, exhibit textured surfaces, and exhibit a resistivity in the direction horizontal to the substrate that is higher than that in the direction perpendicular to the substrate. It is small compared to the rate. In this example, the ZnO film has a two-layer structure, and the first layer 5 in contact with CdZnS is a mirror film with a strong <002> orientation, and the second layer 6 above it is a textured film with a strong <110> orientation as follows. Each layer was formed to a thickness of 1 μm using a method. The first layer 5 with a strong <002> orientation is formed here by a normal sputtering method with a
Although it was formed at °C, it can also be easily obtained by other methods. On the other hand, the second layer with strong <110> orientation is formed by metal organic CVD (MOCVD) whose structure is schematically shown in FIG.
It was formed by a device. Reaction chamber 11 of this MOCVD apparatus
Place the substrate on a base 13 equipped with a heater 12 inside
Bubbler 15 heated to ℃ and containing diethylzinc 14
By blowing argon gas from the argon gas supply system 18 into the bubbler 17 containing deionized water 16, the exhaust system 1
Diethyl zinc and water were supplied to the reaction chamber 11 which was evacuated in step 9 to form a second layer 6 on the first layer 5 on the substrate. The orientation of the two types of films 5 and 6 obtained was evaluated by X-ray diffraction using Cu Kα rays as a light source. <002> and <1
10> peak intensity ratio (<110> peak intensity/<0
02> peak intensity) is less than 10-2 in the first layer and approximately 50 in the second layer, confirming that the first layer 5 has a strong <002> orientation and the second layer 6 has a strong <110> orientation. It was done.

【0010】次に、実施例2の太陽電池の形成方法につ
いて図4に基づいて説明する。ガラス基板1上にMo膜
2, CIS膜3, CdZnS膜4を実施例1と全く
同様の方法によた形成する。次に、この上に実施例1と
同様、スパッタ法により<002>配向の強いZnO膜
5を、この場合2.5 μmの厚さで形成する。このま
まではZnO膜5の表面は前述した通り鏡面状態である
。この状態で基板を一対の電極の陰極側に置き、アルゴ
ンガスを用いてプラズマを発生させ、アルゴンイオンの
スパッタ効果で表面から約0.5 μmの部分をスパッ
タエッチングする。スパッタエッチングされたZnO膜
5の表面7は、元の状態に比べてテクスチャ化した。さ
らにテクスチャ度を上げるためには必要に応じてZnO
膜5のスパッタによる形成と形成された膜表面のスパッ
タエッチングを交互に繰り返すことが有効である。
Next, a method for forming the solar cell of Example 2 will be explained based on FIG. 4. A Mo film 2, a CIS film 3, and a CdZnS film 4 are formed on a glass substrate 1 in exactly the same manner as in Example 1. Next, as in Example 1, a ZnO film 5 having a strong <002> orientation is formed thereon by sputtering to a thickness of 2.5 μm in this case. In this state, the surface of the ZnO film 5 remains in a mirror-like state as described above. In this state, the substrate is placed on the cathode side of the pair of electrodes, plasma is generated using argon gas, and a portion approximately 0.5 μm from the surface is sputter-etched by the sputtering effect of argon ions. The sputter-etched surface 7 of the ZnO film 5 is textured compared to the original state. To further increase the degree of texture, use ZnO as necessary.
It is effective to alternately repeat forming the film 5 by sputtering and sputter etching the surface of the formed film.

【0011】本発明の実施例1および実施例2のCIS
太陽電池を、下記の2種類の従来例の太陽電池と一緒に
ソーラシミュレータを用いて特性評価した。従来例1は
図2のように実施例のZnO膜のかわりに通常の<00
2>配向を有するZnO膜5を2μmの厚さで付けた太
陽電池であり、従来例2は代わりに<110>配向を有
するZnO膜を2μmの厚さで形成した太陽電池である
。特性を表1に示す。
CIS of Example 1 and Example 2 of the present invention
The characteristics of the solar cell were evaluated using a solar simulator along with the following two types of conventional solar cells. As shown in FIG. 2, Conventional Example 1 uses a normal <00
This is a solar cell in which a ZnO film 5 having a <110> orientation is formed with a thickness of 2 μm, whereas Conventional Example 2 is a solar cell in which a ZnO film 5 having a <110> orientation is formed with a thickness of 2 μm instead. The characteristics are shown in Table 1.

【0012】0012

【表1】[Table 1]

【0013】表1からわかるように、実施例は従来例1
に比べ短絡電流密度JSCが向上し、従来例2に比べV
OC, FFが優れる。これは、<002>配向ZnO
膜は鏡面状であるため光の散乱が不十分であり、逆に<
110>配向が強いZnO膜はテクスチャ度が高く光を
充分散乱するためにJSCは大きくなるが、<002>
配向を示すCdZnS膜との接触が悪く、そのためVO
C, FFが低下するためと考えられる。
As can be seen from Table 1, the embodiment is based on conventional example 1.
The short circuit current density JSC is improved compared to conventional example 2, and V
Excellent OC and FF. This is <002> oriented ZnO
Because the film is mirror-like, light scattering is insufficient;
A ZnO film with strong 110> orientation has a high degree of texture and scatters light sufficiently, resulting in a large JSC, but <002>
The contact with the CdZnS film showing orientation is poor, and therefore the VO
This is thought to be due to a decrease in C and FF.

【0014】配向性の強さは、例えば前述したようにC
uのKα線を光源とするX線回折のピーク強度を比較す
ることにより定量的に表すことができる。そこで実施例
1と同様の構造において第一層5および第二層6の配向
性、すなわちγ=<110>ピーク強度/<002>ピ
ーク強度と太陽電池特性の関係を調べると、第一層でγ
<10−1でかつ第二層でγ>10であれば表1に示し
た実施例の特性と同等であるが、第一層でγ>10−1
のときはVOC, FFの低下が起こり、第二層でγ<
10の時はJSCの低下が起こることがわかった。実施
例2の構造の太陽電池においても同様にZnO膜のγ値
は10−1以下とする必要がある。
The strength of the orientation is determined by, for example, C as mentioned above.
It can be expressed quantitatively by comparing the peak intensities of X-ray diffraction using Kα rays of u as a light source. Therefore, when we investigated the relationship between the orientation of the first layer 5 and the second layer 6, that is, γ = <110> peak intensity/<002> peak intensity, and the solar cell characteristics in the same structure as in Example 1, we found that the first layer γ
<10-1 and γ>10 in the second layer, the characteristics are equivalent to those of the example shown in Table 1, but if γ>10-1 in the first layer
When , VOC and FF decrease, and γ<
It was found that JSC decreases when the age is 10. Similarly, in the solar cell having the structure of Example 2, the γ value of the ZnO film must be 10 −1 or less.

【0015】なお、実施例1では表面がテクスチャ化を
示すZnO膜として<110>配向膜を用いたが、<1
00>配向膜も<110>配向膜と全く同様の効果を持
つテクスチャ化ZnO膜として用いることができる。ま
た、以上の実施例ではカルコパイライト型結晶としてC
ISを取り上げたが、CdZnSと光電変換のための接
合を形成する他のカルコパイライト型結晶も取り上げる
ことができる。
In Example 1, a <110> oriented film was used as the ZnO film with a textured surface;
The 00> oriented film can also be used as a textured ZnO film having exactly the same effect as the <110> oriented film. In addition, in the above examples, C as a chalcopyrite crystal.
Although IS is discussed, other chalcopyrite-type crystals that form a junction for photoelectric conversion with CdZnS can also be discussed.

【0016】[0016]

【発明の効果】本発明によれば、カルコパイライト型結
晶薄膜と接合を形成するCdZnS薄膜上の透明導電性
のZnO膜を、第一層を<002>配向を有する膜、第
二層をテクスチャ度の強い<110>配向あるいは<1
00>配向を有する膜からなる2層構造にするか、<0
02>配向を有する膜をスパッタエッチングしたテクス
チャ化したものを単層であるいは複数層積層して用いる
ことにより、<002>配向ZnO膜のCdZnSとの
接触が良いことを利用し、テクスチャ化を行うことが可
能となり、簡便な方法でカルコパイライト型結晶薄膜を
用いた太陽電池特性を向上させることができる。そして
、配向性は、X線回折におけるピーク強度を用いて有効
に定量的に規定することが可能である。
According to the present invention, a transparent conductive ZnO film on a CdZnS thin film forming a junction with a chalcopyrite-type crystal thin film is formed by forming a first layer with a <002> orientation and a second layer with texture. Strong <110> orientation or <1
Either a two-layer structure consisting of a film with a 00> orientation or a <0
By using a textured sputter-etched film with 02> orientation as a single layer or in a stack of multiple layers, texturing is performed by taking advantage of the good contact of the <002> oriented ZnO film with CdZnS. This makes it possible to improve the characteristics of a solar cell using a chalcopyrite-type crystal thin film using a simple method. The orientation can be effectively and quantitatively defined using the peak intensity in X-ray diffraction.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例のCIS太陽電池の断面図FIG. 1: Cross-sectional view of a CIS solar cell according to an embodiment of the present invention.


図2】従来のCIS太陽電池の断面図
[
Figure 2: Cross-sectional view of a conventional CIS solar cell

【図3】図1に示
した太陽電池の製作に用いられるMOCVD装置の断面
[Figure 3] Cross-sectional view of MOCVD equipment used to manufacture the solar cell shown in Figure 1

【図4】本発明の異なる実施例のCIS太陽電池の断面
FIG. 4 is a cross-sectional view of a CIS solar cell according to different embodiments of the present invention.

【符号の説明】[Explanation of symbols]

1    ガラス基板 2    Mo膜 3    CIS膜 4    CdZnS膜 5    <002>配向ZnO膜 6    <110>配向ZnO膜 51    テクスチャ化面 1 Glass substrate 2 Mo film 3 CIS membrane 4 CdZnS film 5 <002> oriented ZnO film 6 <110> oriented ZnO film 51 Textured surface

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】一方の面に金属電極が接触するカルコパイ
ライト型結晶薄膜の他方の面側にその薄膜と接合を形成
する硫化亜鉛カドミウム薄膜および酸化亜鉛膜を順に積
層してなるものにおいて、酸化亜鉛膜が硫化亜鉛カドミ
ウム膜に近い側の<002>配向膜と遠い側の<110
>配向膜よりなることを特徴とする薄膜太陽電池。
Claim 1: A chalcopyrite-type crystal thin film in contact with a metal electrode on one surface, and a zinc cadmium sulfide thin film and a zinc oxide film that form a bond with the thin film on the other side of the thin film, in which oxidized The <002> oriented film on the side where the zinc film is close to the zinc sulfide cadmium film and the <110> oriented film on the far side
>A thin film solar cell characterized by comprising an alignment film.
【請求項2】一方の面に金属電極が接触するカルコパイ
ライト型結晶薄膜の他方の面側にその薄膜と接合を形成
する硫化亜鉛カドミウム薄膜および酸化亜鉛膜を順に積
層してなるものにおいて、酸化亜鉛膜が硫化亜鉛カドミ
ウム薄膜に近い側の<002>配向膜と遠い側の<10
0>配向膜よりなることを特徴とする薄膜太陽電池。
2. A chalcopyrite-type crystal thin film in contact with a metal electrode on one surface, and a zinc cadmium sulfide thin film and a zinc oxide film that form a bond with the thin film on the other side of the thin film, in which oxidized The <002> oriented film on the side where the zinc film is close to the zinc cadmium sulfide thin film and the <10> oriented film on the far side
A thin film solar cell comprising a 0> alignment film.
【請求項3】一方の面に金属電極が接触するカルコパイ
ライト型結晶薄膜の他方の面側にその薄膜と接合を形成
する硫化亜鉛カドミウム薄膜および酸化亜鉛膜を順に積
層してなるものにおいて、酸化亜鉛膜が<002>配向
膜でありかつ成膜後表面をスパッタエッチングすること
によりテクスチャ化してなる膜であることを特徴とする
薄膜太陽電池。
3. A chalcopyrite-type crystal thin film in contact with a metal electrode on one surface, and a zinc cadmium sulfide thin film and a zinc oxide film that form a bond with the thin film on the other side of the thin film, in which oxidized A thin film solar cell characterized in that the zinc film is a <002> oriented film and is textured by sputter etching the surface after film formation.
【請求項4】一方の面に金属電極が接触するカルコパイ
ライト型結晶薄膜の他方の面側にその薄膜と接合を形成
する硫化亜鉛カドミウム薄膜および酸化亜鉛膜を順に積
層してなるものにおいて、酸化亜鉛膜が表面をスパッタ
エッチングすることによりテクスチャ化された<002
>配向膜を複数積層化されてなるものであることを特徴
とする薄膜太陽電池。
4. A chalcopyrite-type crystal thin film in contact with a metal electrode on one surface, and a zinc cadmium sulfide thin film and a zinc oxide film that form a bond with the thin film on the other side of the thin film, in which oxidized The zinc film was textured by sputter etching the surface <002
>A thin film solar cell characterized by being formed by laminating a plurality of alignment films.
【請求項5】請求項1, 2,3あるいは4記載のもの
において、<002>配向酸化亜鉛膜は銅のKα線を光
源とするX線回折における<002>ピーク強度が<1
10>ピーク強度および<100>ピーク強度のそれぞ
れの10倍以上である薄膜太陽電池。
5. In the method according to claim 1, 2, 3, or 4, the <002> oriented zinc oxide film has a <002> peak intensity of <1 in X-ray diffraction using copper Kα rays as a light source.
A thin film solar cell having 10 times or more of each of the 10> peak intensity and the <100> peak intensity.
【請求項6】請求項1記載のものにおいて、<110>
配向酸化亜鉛膜は銅のKα線を光源とするX線回折にお
ける<110>ピーク強度が<002>ピーク強度の1
0倍以上である薄膜太陽電池。
Claim 6: The product according to claim 1, wherein <110>
The oriented zinc oxide film has a <110> peak intensity of 1 of the <002> peak intensity in X-ray diffraction using copper Kα rays as a light source.
A thin film solar cell that is 0 times or more.
【請求項7】請求項2記載のものにおいて、<100>
配向酸化亜鉛膜は銅のKα線を光源とするX線回折にお
ける<100>ピーク強度が<002>ピーク強度の1
0倍以上である薄膜太陽電池。
Claim 7: In the product according to claim 2, <100>
The oriented zinc oxide film has a <100> peak intensity of 1 of the <002> peak intensity in X-ray diffraction using copper Kα rays as a light source.
A thin film solar cell that is 0 times or more.
JP3045274A 1991-03-12 1991-03-12 Thin film solar cell Pending JPH04282871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3045274A JPH04282871A (en) 1991-03-12 1991-03-12 Thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3045274A JPH04282871A (en) 1991-03-12 1991-03-12 Thin film solar cell

Publications (1)

Publication Number Publication Date
JPH04282871A true JPH04282871A (en) 1992-10-07

Family

ID=12714735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3045274A Pending JPH04282871A (en) 1991-03-12 1991-03-12 Thin film solar cell

Country Status (1)

Country Link
JP (1) JPH04282871A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500690B1 (en) 1999-10-27 2002-12-31 Kaneka Corporation Method of producing a thin-film photovoltaic device
JP2004311704A (en) * 2003-04-07 2004-11-04 Kanegafuchi Chem Ind Co Ltd Substrate for thin film photoelectric converter and thin film photoelectric converter using the same
JP2005277339A (en) * 2004-03-26 2005-10-06 Ricoh Co Ltd Vertical transistor and light emitting device
JP2007027566A (en) * 2005-07-20 2007-02-01 Ricoh Co Ltd Vertical transistor and light emitting element
WO2009110092A1 (en) * 2008-03-07 2009-09-11 昭和シェル石油株式会社 Laminated structuer of cis-type solar battery and integrated structure
JP2014093370A (en) * 2012-11-01 2014-05-19 Toyota Central R&D Labs Inc Photoelectric element
JP2016026413A (en) * 2009-02-18 2016-02-12 クアルコム,インコーポレイテッド Photovoltaic cell and method of manufacturing the same
JP2016521016A (en) * 2013-06-17 2016-07-14 ジョン,ヨン−クォン Solar cell and manufacturing method thereof
WO2017126150A1 (en) * 2016-01-19 2017-07-27 国立研究開発法人物質・材料研究機構 ROLLING BODY ZnO-COATING METHOD, ROLLING BODY WITH ZnO-COATING, AND BEARING INCORPORATING SAME

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500690B1 (en) 1999-10-27 2002-12-31 Kaneka Corporation Method of producing a thin-film photovoltaic device
JP2004311704A (en) * 2003-04-07 2004-11-04 Kanegafuchi Chem Ind Co Ltd Substrate for thin film photoelectric converter and thin film photoelectric converter using the same
JP2005277339A (en) * 2004-03-26 2005-10-06 Ricoh Co Ltd Vertical transistor and light emitting device
JP2007027566A (en) * 2005-07-20 2007-02-01 Ricoh Co Ltd Vertical transistor and light emitting element
WO2009110092A1 (en) * 2008-03-07 2009-09-11 昭和シェル石油株式会社 Laminated structuer of cis-type solar battery and integrated structure
JP2016026413A (en) * 2009-02-18 2016-02-12 クアルコム,インコーポレイテッド Photovoltaic cell and method of manufacturing the same
JP2014093370A (en) * 2012-11-01 2014-05-19 Toyota Central R&D Labs Inc Photoelectric element
JP2016521016A (en) * 2013-06-17 2016-07-14 ジョン,ヨン−クォン Solar cell and manufacturing method thereof
WO2017126150A1 (en) * 2016-01-19 2017-07-27 国立研究開発法人物質・材料研究機構 ROLLING BODY ZnO-COATING METHOD, ROLLING BODY WITH ZnO-COATING, AND BEARING INCORPORATING SAME
JPWO2017126150A1 (en) * 2016-01-19 2018-11-15 国立研究開発法人物質・材料研究機構 Method of ZnO coating on rotator and rotator having ZnO coating and bearing incorporating the same
US10495146B2 (en) 2016-01-19 2019-12-03 National Institute For Materials Science ZnO coating method for rolling body, rolling body with ZnO coating, and bearing incorporating same

Similar Documents

Publication Publication Date Title
JP2999280B2 (en) Photovoltaic element
Nakada et al. High-efficiency cadmium-free Cu (In, Ga) Se/sub 2/thin-film solar cells with chemically deposited ZnS buffer layers
US8981200B2 (en) Method for obtaining high performance thin film devices deposited on highly textured substrates
KR101372536B1 (en) Tandem Thin Film Solar Cell And Fabrication Method Thereof
EP2469605A2 (en) Substrate for photoelectric conversion device, photoelectric conversion device, and stacked photoelectric conversion device
JPH0557746B2 (en)
TW201327875A (en) High efficiency multijunction solar cells
US8283187B2 (en) Photovoltaic device and method for making
KR102350885B1 (en) Solar cell
JP2918345B2 (en) Photovoltaic element
JP2962897B2 (en) Photovoltaic element
JPH04282871A (en) Thin film solar cell
Nakada et al. Improved efficiency of Cu (In, Ga) Se/sub 2/thin film solar cells with chemically deposited ZnS buffer layers by air-annealing-formation of homojunction by solid phase diffusion
Dhere Recent developments in thin film solar cells
JPH11150282A (en) Photovoltaic element and its manufacture
KR20080005779A (en) Photoelectric conversion device and method for manufacturing thereof
JPH0555615A (en) Manufacture of thin film solar battery
JP2008283075A (en) Manufacturing method of photoelectric conversion device
KR101300791B1 (en) Method for enhancing conductivity of molybdenum layer
Compaan The status of and challenges in CdTe thin-film solar-cell technology
JPH07283430A (en) Method for manufacturing solar cell
JP2845383B2 (en) Photovoltaic element
US20120080306A1 (en) Photovoltaic device and method for making
KR102212042B1 (en) Solar cell comprising buffer layer formed by atomic layer deposition and method of fabricating the same
Paudel et al. Improvements in ultra-thin CdS/CdTe solar cells