JPH0428249A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0428249A
JPH0428249A JP13321590A JP13321590A JPH0428249A JP H0428249 A JPH0428249 A JP H0428249A JP 13321590 A JP13321590 A JP 13321590A JP 13321590 A JP13321590 A JP 13321590A JP H0428249 A JPH0428249 A JP H0428249A
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
wiring
silicon film
fusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13321590A
Other languages
Japanese (ja)
Other versions
JP2913768B2 (en
Inventor
Shigeru Murakami
茂 村上
Yasuji Yamagata
保司 山縣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13321590A priority Critical patent/JP2913768B2/en
Publication of JPH0428249A publication Critical patent/JPH0428249A/en
Application granted granted Critical
Publication of JP2913768B2 publication Critical patent/JP2913768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To fuse-cut promptly a wiring for fusing use at a specified place by a method wherein a wiring for heating use, which is arranged so as to intersect the wiring for fusing use, is provided and one part of the wiring for fusing use is heated by making a current flow through this wiring for heating use. CONSTITUTION:A polycrystalline silicon film 3 for heating use is formed on an insulating film 2 provided on the surface of a semiconductor substrate 1, a second insulating layer 4 is formed on this film 3 and a polycrystalline silicon film 5 for fusing use, which is used as a programmable element, is formed on this film 4 so as to intersect the film 3. A third insulating film 6 is formed on the film 5, contact holes 7 and 8 are respectively formed in the films 4 and 6 and Al wirings 9 and 10 are respectively connected to the films 3 and 5 through the holes 7 and 8. In the case of correction of defective semiconductor devices, when a current is made to flow through the film 3 through the wiring 9, the intersection part of the film 5 is heated with heat which is generated in the film 3. Simultaneously, when a current is made to flow through the film 5, heat which is generated in the film 5 itself is applied and a fusing of the film 5 becomes possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に冗長ビットにつながる
プログラマブル素子を有する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device having a programmable element connected to a redundant bit.

〔従来の技術〕[Conventional technology]

近年の半導体装置、特に半導体記憶装置では大容量化が
進められているが、チップ当たりの記憶容量が増加する
のに伴い製造歩留りを実用的な水準以上に保持すること
が次第に困難になりつつある。この歩留り低下は、全記
憶容量のうちの僅かに数ビットの記憶素子が動作してい
ないことが原因となる場合が多く、このような不良を救
済して歩留りの向上を図るために装置の一部に冗長ビッ
トおよびプログラマブル素子を設け、このプログラマブ
ル素子を例えば断線させることで不良ビットを冗長ビッ
トに切り替えるようにした技術が採用されている。
In recent years, the capacity of semiconductor devices, especially semiconductor memory devices, has been increasing, but as the storage capacity per chip increases, it is becoming increasingly difficult to maintain manufacturing yields above a practical level. . This decrease in yield is often caused by the fact that only a few bits of memory elements out of the total memory capacity are not operating. A technique has been adopted in which a redundant bit and a programmable element are provided in a section, and a defective bit is switched to a redundant bit by, for example, disconnecting the programmable element.

例えば、第5図にはこの種の冗長ビットにつながるプロ
グラマブル素子を示しており、半導体基板1に形成する
アルミニウム配線の一部を、多結晶シリコン膜5で構成
している。この多結晶シリコン膜5はその両端において
コンタクト8によりアルミニウム配線10に電気接続さ
れている。
For example, FIG. 5 shows a programmable element connected to this type of redundant bit, in which a part of the aluminum wiring formed on the semiconductor substrate 1 is made of a polycrystalline silicon film 5. This polycrystalline silicon film 5 is electrically connected to aluminum wiring 10 by contacts 8 at both ends thereof.

そして、不良救済時には、このアルミニウム配線10を
通して多結晶シリコン膜5に過電流を通流させることで
、多結晶シリコン膜5の抵抗によって発生される熱によ
り多結晶シリコン膜5自身が溶断されることになる。
Then, when repairing a defect, by passing an overcurrent through the polycrystalline silicon film 5 through this aluminum wiring 10, the polycrystalline silicon film 5 itself is fused due to the heat generated by the resistance of the polycrystalline silicon film 5. become.

なお、この他にもレーザにより配線一部を断線させるよ
うにしたプログラマブル素子も提案されているが、ここ
ではその説明は省略する。
In addition, a programmable element in which a portion of the wiring is disconnected using a laser has also been proposed, but a description thereof will be omitted here.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような多結晶シリコン膜5をプログラマブル素子と
する半導体装置では、不良救済時に多結晶シリコン膜5
に電流を流して溶断を行っているが、実際には多結晶シ
リコン膜5において発生された熱の殆ど(99,9%)
は周辺に放散され、多結晶シリコン膜5を溶断する熱と
して有効に作用していない。このため、溶断するのに必
要な熱量を発生させるためには、極めて大きな電力を長
時間にわたって供給する必要がある。この不良救済は通
常半導体装置の選別試験時等に行われるが、このように
長時間にわたって電流を供給しなげればならないために
、選別スループットが低下されるという問題が生じてい
る。
In a semiconductor device using such a polycrystalline silicon film 5 as a programmable element, the polycrystalline silicon film 5 is
However, in reality, most of the heat generated in the polycrystalline silicon film 5 (99.9%)
is dissipated to the periphery and does not effectively act as heat to melt down the polycrystalline silicon film 5. Therefore, in order to generate the amount of heat necessary for fusing, it is necessary to supply an extremely large amount of electric power over a long period of time. This defect relief is normally performed during a screening test of semiconductor devices, but since current must be supplied for such a long period of time, a problem arises in that the screening throughput is reduced.

また、従来のプログラマブル素子では、多結晶シリコン
膜5のいずれの箇所で溶断されるかが特定されないため
、多結晶シリコン膜5が延設される領域にはこれと交差
して他の配線を配置することができず、配線の自由度を
低下させるという問題もある。
In addition, in conventional programmable elements, since it is not specified at which point on the polycrystalline silicon film 5 the polycrystalline silicon film 5 is fused, other wiring is placed in the region where the polycrystalline silicon film 5 is extended to intersect therewith. There is also the problem that the degree of freedom in wiring is reduced.

本発明の目的は、プログラマブル素子の溶断を容易に行
い、かつ配線の自由度を高めることを可能にした半導体
装置を提供することにある。
An object of the present invention is to provide a semiconductor device in which programmable elements can be easily blown out and wiring can be more flexible.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、冗長回路につながるプログラマ
ブル素子としての溶断用配線に交差配置される加熱用配
線を設け、この加熱用配線への通電によって溶断用配線
の一部を加熱するように構成している。
The semiconductor device of the present invention is configured such that a heating wiring is provided to intersect with the fusing wiring as a programmable element connected to a redundant circuit, and a part of the fusing wiring is heated by applying current to the heating wiring. ing.

〔作用〕[Effect]

本発明によれば、加熱用配線に通電して発生される熱に
より溶断用配線の一部を加熱することにより、溶断用配
線の特定箇所における熱量を高め、この部分ににおいて
溶断用配線を迅速に溶断することが可能となる。
According to the present invention, by heating a part of the fusing wiring with the heat generated when the heating wiring is energized, the amount of heat at a specific point of the fusing wiring is increased, and the fusing wiring is quickly installed in this part. This makes it possible to melt the material.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1実施例を示す図であり、同図(a
)は平面図、同図(b)はそのA−A線に沿う断面図で
ある。図において、1は半導体基板であり、図示しない
領域に記憶素子を形成しである。この半導体基板1の表
面に設けた絶縁膜2上には、0.2μmの厚さの加熱用
多結晶シリコン膜3を所要パターンに形成している。こ
の加熱用多結晶シリコン膜3上にはPSG等の第2の絶
縁膜4を0.1μmの厚さに形成し、この上にプログラ
マブル素子としての溶断用多結晶シリコン膜5を所要パ
ターンにかつ前記加熱用多結晶シリコン膜3と交差する
ように形成する。この溶断用多結晶シリコン膜5上には
0.5μmの厚さのPSGかなる第3の絶縁膜6を形成
する。しかる上で、前記第2の絶縁膜4および第3の絶
縁膜6にそれぞれコンタクトホール7.8を開設し、こ
のコンタクトホール7.8を通して加熱用多結晶シリコ
ン膜3と溶断用多結晶シリコン膜5にそれぞれアルミニ
ウム配線9,10を接続する。
FIG. 1 is a diagram showing a first embodiment of the present invention, and FIG.
) is a plan view, and figure (b) is a sectional view taken along the line A-A. In the figure, 1 is a semiconductor substrate, on which a memory element is formed in an area not shown. On an insulating film 2 provided on the surface of this semiconductor substrate 1, a polycrystalline silicon film 3 for heating with a thickness of 0.2 μm is formed in a desired pattern. On this polycrystalline silicon film 3 for heating, a second insulating film 4 such as PSG is formed to a thickness of 0.1 μm, and on this, a polycrystalline silicon film 5 for fusing as a programmable element is formed in a desired pattern. It is formed to intersect with the heating polycrystalline silicon film 3. A third insulating film 6 made of PSG and having a thickness of 0.5 μm is formed on this polycrystalline silicon film 5 for fusing. Then, contact holes 7.8 are formed in the second insulating film 4 and the third insulating film 6, respectively, and the polycrystalline silicon film 3 for heating and the polycrystalline silicon film for fusing are connected through the contact holes 7.8. 5 are connected to aluminum wirings 9 and 10, respectively.

ここで、前記溶断用多結晶シリコン膜5の幅寸法は溶断
され易いように可及的に細くし、加熱用多結晶シリコン
膜3の幅寸法は可及的に太くしている。
Here, the width of the polycrystalline silicon film 5 for melting is made as thin as possible so that it can be easily cut by melting, and the width of the polycrystalline silicon film 3 for heating is made as thick as possible.

この構成によれば、半導体装置の不良救済に際しては、
アルミニウム配線9を通して加熱用多結晶シリジン膜3
に電流を通流すれば、該加熱用多結晶シリコン膜3で発
生される熱によって溶断用多結晶シリコン膜5の交差部
、ここでは中央部が加熱される。これと同時に、溶断用
多結晶シリコン膜5に通電を行えば、溶断用多結晶シリ
コン膜5自身が発生する熱が加えられ、これらの熱によ
って溶断用多結晶シリコン膜5の溶断が可能となる。こ
の場合、溶断用多結晶シリコン膜5の溶断箇所は加熱用
多結晶シリコン膜3と交差されている箇所となることは
言うまでもない。
According to this configuration, when repairing a defective semiconductor device,
Polycrystalline silidine film 3 for heating is passed through aluminum wiring 9
When a current is passed through the heating polycrystalline silicon film 3, the intersection of the fusing polycrystalline silicon film 5, here the central part, is heated by the heat generated in the heating polycrystalline silicon film 3. At the same time, if the polycrystalline silicon film 5 for fusing is energized, the heat generated by the polycrystalline silicon film 5 itself for fusing is applied, and the polycrystalline silicon film 5 for fusing can be fused by this heat. . In this case, it goes without saying that the melting point of the polycrystalline silicon film 5 for melting is the part where the polycrystalline silicon film 3 for heating intersects.

したがって、この半導体装置では、加熱用多結晶シリコ
ン膜3と溶断用多結晶シリコン膜5に同時に電流を通流
し、それぞれで発生される熱により溶断用多結晶シリコ
ン膜5を溶断するため、極めて短い時間で溶断を行うこ
とができ、選別スル−プント等を向上することができる
Therefore, in this semiconductor device, current is passed through the heating polycrystalline silicon film 3 and the fusing polycrystalline silicon film 5 at the same time, and the heat generated in each fuses the fusing polycrystalline silicon film 5, so that the current is extremely short. Cutting can be done in a short amount of time, and the sorting throughput can be improved.

また、溶断用多結晶シリコン膜5は溶断箇所が特定され
るため、他の箇所において他の配線を交差配置すること
が可能となり、配線の自由度を向上させることができる
Further, since the melting point of the polycrystalline silicon film 5 for blowing is specified, it becomes possible to cross-arrange other wires at other points, and the degree of freedom of wiring can be improved.

第2図は本発明の第2実施例の平面図であり、第1実施
例と同一部分には同一符号を付しである。
FIG. 2 is a plan view of a second embodiment of the present invention, in which the same parts as in the first embodiment are given the same reference numerals.

この実施例では、加熱用多結晶シリコン膜3の幅寸法を
溶断用多結晶シリコン膜5の幅寸法に比較して十分に太
くする一方で、加熱用多結晶シリコン族3と溶断用多結
晶シリコン膜5に接続されるアルミニウム配線9.10
の一部をアルミニウム配線10で共用化し、電流供給ラ
インを共通にしている。
In this embodiment, while the width dimension of the heating polycrystalline silicon film 3 is made sufficiently thicker than the width dimension of the fusing polycrystalline silicon film 5, the heating polycrystalline silicon group 3 and the fusing polycrystalline silicon Aluminum wiring 9.10 connected to membrane 5
A part of the aluminum wiring 10 is used in common to provide a common current supply line.

この場合には加熱用多結晶シリコン膜3と溶断用多結晶
シリコン膜5に同時に同じ電流を通流させて溶断用多結
晶シリコン膜5の溶断を行うことになる。このように同
じ電流を通流しても、加熱用多結晶シリコン膜3は幅寸
法を大きくして耐熱性を高めているため、自身が溶断さ
れることばない。これにより、アルミニウム配線の簡略
化を図ることができる。
In this case, the same current is made to flow through the heating polycrystalline silicon film 3 and the fusing polycrystalline silicon film 5 at the same time to blow out the fusing polycrystalline silicon film 5. Even when the same current is passed through the heating polycrystalline silicon film 3, the heating polycrystalline silicon film 3 is not blown out because its width is increased to improve its heat resistance. Thereby, the aluminum wiring can be simplified.

第3図は本発明の第3実施例を示す平面図である。この
実施例では、溶断用多結晶シリコン膜5の上層にさらに
第3の絶縁膜6を挟んで第2の加熱用多結晶シリコン膜
11を形成し、その両端をコンタクトボール12を介し
てアルミニウム配線13に接続している。また、下層の
加熱用多結晶シリコン膜3と第2の加熱用多結晶シリコ
ン膜11とはそれぞれ平面形状を逆向きの7字型に形成
し、それぞれの中間部で溶断用多結晶シリコン膜5の中
央部分を上下方向に挟むように配置している。
FIG. 3 is a plan view showing a third embodiment of the present invention. In this embodiment, a second polycrystalline silicon film 11 for heating is formed on the polycrystalline silicon film 5 for fusing with a third insulating film 6 interposed therebetween, and aluminum wiring is connected to both ends of the polycrystalline silicon film 11 via contact balls 12. It is connected to 13. Further, the lower polycrystalline silicon film 3 for heating and the second polycrystalline silicon film 11 for heating are each formed in a figure 7 shape with opposite directions in plan view, and the polycrystalline silicon film 5 for fusing is formed in the middle of each. They are arranged so that the central part of the is sandwiched between them in the vertical direction.

この構成によれば、加熱用多結晶シリコン膜3および第
2の加熱用多結晶シリコン膜11にそれぞれ電流を通流
することで、溶断用多結晶シリコン膜5の中央部を上下
から加熱し、この部分における溶断用多結晶シリコン膜
5の溶断をさらに迅速に行うことが可能となる。
According to this configuration, by passing current through the heating polycrystalline silicon film 3 and the second heating polycrystalline silicon film 11, the central portion of the fusing polycrystalline silicon film 5 is heated from above and below, The polycrystalline silicon film 5 for melting in this portion can be cut more quickly.

なお、第4図に示すように、下層の加熱用多結晶シリコ
ン膜3と上層の第2の加熱用多結晶シリコン膜11とを
上下方向に重ねたパターンに形成し、コンタクトホール
7によって各多結晶シリコン膜3,11をアルミニウム
配線9に共通に接続させてもよい。このようにすれば、
アルミニウム配線9を通して双方の加熱用多結晶シリコ
ン膜3゜11に同時に通電を行うことができ、かつ溶断
用多結晶シリコン膜5の中央部分を上下方向からそれぞ
れ加熱させることができ、アルミニウム配線の簡略化を
図ることができる。
As shown in FIG. 4, the lower heating polycrystalline silicon film 3 and the upper heating second polycrystalline silicon film 11 are formed in a vertically overlapping pattern, and each polycrystalline silicon film is The crystalline silicon films 3 and 11 may be commonly connected to the aluminum wiring 9. If you do this,
It is possible to energize both heating polycrystalline silicon films 3° 11 through the aluminum wiring 9 at the same time, and to heat the central portion of the fusing polycrystalline silicon film 5 from above and below, respectively, which simplifies the aluminum wiring. It is possible to aim for

なお、加熱用多結晶シリコン膜で構成した加熱用配線は
多結晶シリコン以外の素材で構成してもよい。
Note that the heating wiring made of the heating polycrystalline silicon film may be made of a material other than polycrystalline silicon.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、プログラマブル素子とし
ての溶断用配線に交差配置した加熱用配線に通電するこ
とにより溶断用配線の一部を加熱するように構成してい
るので、溶断用配線を特定箇所において迅速に溶断する
ことが可能となり、スループットの向上および配線自由
度の向上を図ることができる。
As explained above, the present invention is configured to heat a part of the fusing wiring by energizing the heating wiring arranged to intersect with the fusing wiring as a programmable element, so that the fusing wiring can be specified. It becomes possible to quickly melt the wire at a certain point, thereby improving throughput and wiring flexibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示し、同図(a)は平面
図、同図(b)′はそのl−A線に沿う断面図、第2図
は本発明の第2実施例の平面図、第3図は本発明の第3
実施例の平面図、第4図は第3実施例の変形例を示す平
面図、第5図は従来のプログラマブル素子の平面図であ
る。 1・・・半導体基板、2・・・絶縁膜、3・・・加熱用
多結晶シリコン膜、4・・・第2の絶縁膜、訃・・溶断
用多結晶シリコン膜、6・・・第3の絶縁膜、7,8・
・・コンタクトホール、9.IO・・・アルミニウム配
線、11・・・第2の加熱用多結晶シリコン膜、12・
・・コンタクトホール、13・・・アルミニウム配線。 ■ U) の
FIG. 1 shows a first embodiment of the present invention, FIG. 1A is a plan view, FIG. The plan view of the example, FIG. 3, is the third embodiment of the present invention.
FIG. 4 is a plan view showing a modification of the third embodiment, and FIG. 5 is a plan view of a conventional programmable element. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Insulating film, 3... Polycrystalline silicon film for heating, 4... Second insulating film, 2... Polycrystalline silicon film for fusing, 6... Th. 3 insulating film, 7, 8.
...Contact hole, 9. IO...aluminum wiring, 11...second polycrystalline silicon film for heating, 12.
...Contact hole, 13...Aluminum wiring. ■ U) of

Claims (1)

【特許請求の範囲】[Claims] 1、冗長回路につながる配線の一部を溶断用配線で構成
し、該配線に通電することで前記溶断用配線を溶断する
ように構成した半導体装置において、前記溶断用配線と
交差配置される加熱用配線を設け、この加熱用配線への
通電によって前記溶断用配線の一部を加熱するように構
成したことを特徴とする半導体装置。
1. In a semiconductor device configured such that a part of the wiring connected to a redundant circuit is made up of a fusing wiring, and the fusing wiring is fused by supplying current to the wiring, a heating device arranged to intersect with the fusing wiring 1. A semiconductor device, characterized in that a heating wiring is provided, and a part of the fusing wiring is heated by energizing the heating wiring.
JP13321590A 1990-05-23 1990-05-23 Semiconductor device Expired - Lifetime JP2913768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13321590A JP2913768B2 (en) 1990-05-23 1990-05-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13321590A JP2913768B2 (en) 1990-05-23 1990-05-23 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0428249A true JPH0428249A (en) 1992-01-30
JP2913768B2 JP2913768B2 (en) 1999-06-28

Family

ID=15099421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13321590A Expired - Lifetime JP2913768B2 (en) 1990-05-23 1990-05-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2913768B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696812A1 (en) * 1994-08-10 1996-02-14 International Business Machines Corporation Thermally activated noise immune fuse
WO2005119779A1 (en) * 2004-06-03 2005-12-15 Semiconductor Energy Laboratory Co., Ltd. Memory device and manufacturing method of the same
JP2007305939A (en) * 2006-05-15 2007-11-22 Nec Electronics Corp Semiconductor device and method for blowing out electric fuse
US7714408B2 (en) 2006-10-04 2010-05-11 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and manufacturing method thereof
US7719872B2 (en) 2005-12-28 2010-05-18 Semiconductor Energy Laboratory Co., Ltd. Write-once nonvolatile memory with redundancy capability
US7782651B2 (en) 2006-10-24 2010-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including storage device and method for driving the same
US7994607B2 (en) 2007-02-02 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8759946B2 (en) 2006-11-17 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8981524B2 (en) 2007-03-14 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a plurality of antifuse memory cells

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696812A1 (en) * 1994-08-10 1996-02-14 International Business Machines Corporation Thermally activated noise immune fuse
WO2005119779A1 (en) * 2004-06-03 2005-12-15 Semiconductor Energy Laboratory Co., Ltd. Memory device and manufacturing method of the same
US8114719B2 (en) 2004-06-03 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Memory device and manufacturing method of the same
JP2011049593A (en) * 2004-06-03 2011-03-10 Semiconductor Energy Lab Co Ltd Memory device and data writing method
US7719872B2 (en) 2005-12-28 2010-05-18 Semiconductor Energy Laboratory Co., Ltd. Write-once nonvolatile memory with redundancy capability
JP2007305939A (en) * 2006-05-15 2007-11-22 Nec Electronics Corp Semiconductor device and method for blowing out electric fuse
US8372730B2 (en) 2006-05-15 2013-02-12 Renesas Electronics Corporation Method for cutting an electric fuse
US7714408B2 (en) 2006-10-04 2010-05-11 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and manufacturing method thereof
US8330249B2 (en) 2006-10-04 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with driver circuit and memory element
US7782651B2 (en) 2006-10-24 2010-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including storage device and method for driving the same
US8274814B2 (en) 2006-10-24 2012-09-25 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device including storage device and method for driving the same
US8687407B2 (en) 2006-10-24 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including storage device and method for driving the same
US8759946B2 (en) 2006-11-17 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7994607B2 (en) 2007-02-02 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8981524B2 (en) 2007-03-14 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a plurality of antifuse memory cells
US9356030B2 (en) 2007-03-14 2016-05-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device having antifuse with semiconductor and insulating films as intermediate layer

Also Published As

Publication number Publication date
JP2913768B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
EP0078165B1 (en) A semiconductor device having a control wiring layer
US8421186B2 (en) Electrically programmable metal fuse
US7705418B2 (en) Semiconductor device and fuse blowout method
US7732892B2 (en) Fuse structures and integrated circuit devices
EP0162145A1 (en) Method of melting a fuse using a laser beam
JPH0428249A (en) Semiconductor device
TW523873B (en) Semiconductor device provided with fuse and method of disconnecting fuse
US7176551B2 (en) Fuse structure for a semiconductor device
TW498495B (en) Method of and apparatus for cutting off fuse electrode, integrated circuit device, and method of manufacturing same
TW410443B (en) Semiconductor memory device
JP3728111B2 (en) Fuse device for semiconductor memory device
JPH0917872A (en) Semiconductor device
JP2004304002A (en) Semiconductor device
TW201729231A (en) Fuse structures
KR20080054791A (en) Fuse structure integrated in semiconductor device
JPS61241943A (en) Melting method for fuse for semiconductor integrated circuit device
JPH0669444A (en) Semiconductor integrated circuit device
JPH06244285A (en) Semiconductor device
JPS61147548A (en) Semiconductor integrated circuit device
JPS59148198A (en) Semiconductor device
JP2726993B2 (en) Semiconductor device
JPS58165342A (en) Semiconductor ic and programing method thereof
JPS5877097A (en) Programmable read-only memory element
JPS6392040A (en) Semiconductor memory device having redundant bit
JPH0728010B2 (en) Fuse blown PROM