JPH04282407A - Measuring device of three-dimensional shape - Google Patents

Measuring device of three-dimensional shape

Info

Publication number
JPH04282407A
JPH04282407A JP4632491A JP4632491A JPH04282407A JP H04282407 A JPH04282407 A JP H04282407A JP 4632491 A JP4632491 A JP 4632491A JP 4632491 A JP4632491 A JP 4632491A JP H04282407 A JPH04282407 A JP H04282407A
Authority
JP
Japan
Prior art keywords
laser
light
laser beam
light receiving
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4632491A
Other languages
Japanese (ja)
Other versions
JP2595821B2 (en
Inventor
Masayuki Yoshima
與島 政幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4632491A priority Critical patent/JP2595821B2/en
Publication of JPH04282407A publication Critical patent/JPH04282407A/en
Application granted granted Critical
Publication of JP2595821B2 publication Critical patent/JP2595821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enable a three-dimensional shape of an object where a position close to a mirror surface such as a lead surface and a position with a rough surface such as a soldering surface and projecting and recessed portions are mixed to be measured with a high S/N ratio. CONSTITUTION:By switching one laser beam time-multiplexedly or performing its spectral analysis by polarization or allowing laser to be emitted to an object to be measured 9 from vertical and skew directions for scanning and then focusing a reflection light from a skew upward direction in a direction which crosses the scanning direction and then forming an image on a light-receiving element 13, vertical incidence at a same scanning position and a received quantity of skew incidence light are compared. Then, the height of the object to be measured is obtained by the one with a larger quantity of received light, thus enabling the height to be measured with a high S/N ratio from an object with a rough surface to an object closer to a mirror surface.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は三次元形状測定装置に関
し、特に表面状態が鏡面に近い物から、凹凸や傾斜のあ
る面まで混在する物の三次元形状測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional shape measuring device, and more particularly to a three-dimensional shape measuring device for objects whose surface conditions range from near-mirror to uneven and inclined surfaces.

【0002】0002

【従来の技術】図9は、従来の三次元形状測定装置を説
明する斜視図である。
2. Description of the Related Art FIG. 9 is a perspective view illustrating a conventional three-dimensional shape measuring device.

【0003】図9の三次元形状測定装置は一軸ステージ
を有する測定台50に裁置された測定対象物55を走査
する走査光学系を備えている。
The three-dimensional shape measuring apparatus shown in FIG. 9 is equipped with a scanning optical system that scans a measurement object 55 placed on a measurement table 50 having a uniaxial stage.

【0004】この走査光学系は、レーザ51と、レーザ
51のビーム径を所要のビーム径に拡大するビーム拡大
器52と、レーザ光を測定台50の真上から測定台50
の送り方向と直交する方向に走査させるガルバノミラー
53と、ガルバノミラー53で走査されたレーザ光を測
定台50の測定面上で所要のビーム径に集光させかつ定
速度で走査させるfθレンズ54とを有する。
This scanning optical system includes a laser 51, a beam expander 52 that expands the beam diameter of the laser 51 to a required beam diameter, and a laser beam that is directed from directly above the measurement table 50 to the measurement table 50.
a galvano mirror 53 that scans in a direction perpendicular to the feeding direction of the galvano mirror 53; and an fθ lens 54 that focuses the laser beam scanned by the galvano mirror 53 to a required beam diameter on the measurement surface of the measurement table 50 and scans it at a constant speed. and has.

【0005】走査されたレーザ光の測定対象物55の反
射光の中で走査方向に直交する方向に反射する光の一部
を斜め上方から集光レンズ57で集光し、集光レンズ5
7を通過したレーザ光をシリンドリカルレンズ58で走
査方向に集光し、さらにこのレーザ光を集光レンズ57
と、シリンドリカルレンズ58の焦点位置に置かれた受
光素子59で受光する。
Among the reflected light of the scanned laser beam from the object to be measured 55, a part of the light reflected in the direction perpendicular to the scanning direction is condensed from diagonally above by the condenser lens 57.
7 is condensed in the scanning direction by a cylindrical lens 58, and further this laser beam is condensed by a condensing lens 57.
Then, the light is received by the light receiving element 59 placed at the focal position of the cylindrical lens 58.

【0006】図10は、測定対象物55の高さ測定の原
理を説明するための平面図である。
FIG. 10 is a plan view for explaining the principle of measuring the height of the object 55 to be measured.

【0007】測定対象物55に真上からレーザ光を当て
測定対象物55からの反射光をレーザの入射方向から角
度θ傾いた方向で集光レンズ57を介して受光素子59
で受光した場合、集光レンズ57の倍率をmとすると、
測定対象物55の高さtと受光素子59上での距離d(
高さtからの反射光の受光位置と測定台50の表面から
の反射光での受光位置との間の距離)との関係は
A laser beam is applied to the object to be measured 55 from directly above, and the reflected light from the object to be measured 55 is transmitted to the light receiving element 59 through the condenser lens 57 at an angle θ from the direction of incidence of the laser.
When light is received at , if the magnification of the condensing lens 57 is m, then
The height t of the measurement object 55 and the distance d on the light receiving element 59 (
The relationship between the distance between the receiving position of the reflected light from the height t and the receiving position of the reflected light from the surface of the measuring table 50 is

【00
08】
00
08]

【0009】で与えられる。従って受光素子59上の受
光位置の変位を測ることで測定対象物55の高さが測定
できる。
It is given by: Therefore, by measuring the displacement of the light receiving position on the light receiving element 59, the height of the object to be measured 55 can be measured.

【0010】図11(a),(b)は、面が粗い測定対
象物55′と、鏡面に近い測定対象物55″それぞれの
レーザ光60の反射の様子を示した平面図である。
FIGS. 11A and 11B are plan views showing how the laser beam 60 is reflected by a measurement object 55' having a rough surface and a measurement object 55'' having a nearly mirror surface, respectively.

【0011】図11(a)のように面が粗い測定対象物
55′の場合、レーザ光は乱反射するため、斜めに設定
された受光方向61へ比較的多くの反射が起こるが、図
11(b)のように面が鏡面に近い測定対象物55″の
場合、正反射成分が多くなり受光方向61への反射が少
なくなる。従って図9に示す従来の三次元形状測定装置
では、鏡面に近い面の高さ測定はS/N比が悪くなり測
定が困難である。
In the case of a measurement object 55' with a rough surface as shown in FIG. 11(a), the laser beam is diffusely reflected, so a relatively large amount of reflection occurs in the obliquely set light receiving direction 61. In the case of a measuring object 55'' whose surface is close to a mirror surface as shown in b), the specular reflection component increases and the reflection in the receiving direction 61 decreases.Therefore, in the conventional three-dimensional shape measuring device shown in FIG. It is difficult to measure the height of a nearby surface because the S/N ratio deteriorates.

【0012】0012

【発明が解決しようとする課題】この従来の三次元形状
測定装置では、レーザを測定対象物の真上から走査し斜
め上方から乱反射光の一部を利用して高さ測定を行って
いるため、表面が鏡面に近い測定対象物は受光方向への
乱反射成分が少なく反射光量のS/N比が悪くなり測定
が困難であるという課題があった。
[Problem to be Solved by the Invention] This conventional three-dimensional shape measuring device scans the laser from directly above the object to be measured and measures the height by using part of the diffusely reflected light from diagonally above. However, there is a problem in that a measurement object whose surface is close to a mirror surface has a small amount of diffusely reflected components in the receiving direction, resulting in a poor S/N ratio of the amount of reflected light, making measurement difficult.

【0013】[0013]

【課題を解決するための手段】本発明の三次元形状測定
装置は、(A)測定対象物を裁置し一方向にステップ送
りされる測定台と、(B)レーザと、前記レーザのビー
ム径を所要のビーム径に拡大するビーム拡大器と、前記
ビーム拡大器を通過したレーザ光を前記測定台の送り方
向と直交する方向に走査するスキャナと、前記スキャナ
で走査されたレーザ光を最終的に前記測定台の測定面上
で所要のビーム径に集光しかつ走査速度を一定するfθ
レンズと、前記fθレンズを通過したレーザ光の光路を
2方向に前記スキャナの走査に同期して切換えるガルバ
ノミラーと、前記ガルバノミラーの切換運動の一終点で
反射されたレーザ光を前記測定台の真上から鉛直下方に
走査軌跡が前記測定台の送り方向と直交するように反射
する第1の反射ミラーと、前記ガルバノミラーの切換運
動の他終点で反射されたレーザ光を前記測定台の斜め上
方から走査軌跡が前記第1の反射ミラーによる走査軌跡
と一致するように反射しかつ前記ガルバノミラーから前
記測定台の測定面上までの光路長が前記第1の反射ミラ
ーでの同光路長と等しくなるように反射する第2の反射
ミラーとで構成される走査光学系と、(C)前記第2の
反射ミラーによるレーザ入射角に大きさが等しい角度の
反射角方向に反射するレーザ光を集光する集光レンズと
、前記集光レンズの光軸上にあり前記集光レンズを通過
したレーザ光を走査方向に集光するシリンドリカルレン
ズと、前記集光レンズと前記シリンドリカルレンズの焦
点位置に置かれレーザ光を受光する受光素子とで構成さ
れる受光光学系と、(D)前記スキャナの走査に同期し
て走査毎に前記測定台をステップ送りするステージ制御
回路とレーザ光を前記第1の反射ミラーで反射して走査
した時の前記受光素子の受光位置から測定対象物の高さ
を求める第1の高さ演算回路と、レーザ光を前記第2の
反射ミラーで反射して走査した時の前記受光素子の受光
位置から測定対象物の高さを求める第2の高さ演算回路
と前記第1および第2の反射ミラーで反射されたレーザ
光で走査した時の同一位置における前記受光素子の受光
量を比較し受光量の多い方の前記第1または第2の反射
ミラーで反射した時の前記第1または第2の高さ演算回
路の高さ演算結果を選択する高さ判定回路とで構成され
る信号処理回路とを備えている。
[Means for Solving the Problems] The three-dimensional shape measuring device of the present invention includes (A) a measuring table on which an object to be measured is placed and fed stepwise in one direction, (B) a laser, and a beam of the laser. a beam expander that expands the beam diameter to a required beam diameter; a scanner that scans the laser beam that has passed through the beam expander in a direction perpendicular to the feeding direction of the measurement table; fθ that focuses the beam to the required beam diameter on the measurement surface of the measurement table and keeps the scanning speed constant.
a galvanometer mirror that switches the optical path of the laser light that has passed through the fθ lens in two directions in synchronization with the scanning of the scanner; A first reflecting mirror that reflects vertically downward from directly above so that the scanning locus is orthogonal to the feeding direction of the measuring table, and a laser beam reflected at the end point of the switching movement of the galvano mirror is reflected diagonally on the measuring table. Reflected from above so that the scanning locus coincides with the scanning locus of the first reflecting mirror, and the optical path length from the galvanometer mirror to the measurement surface of the measuring table is the same optical path length at the first reflecting mirror. a scanning optical system composed of a second reflecting mirror that reflects the light equally, and (C) a laser beam that is reflected in the direction of a reflection angle whose magnitude is equal to the laser incident angle by the second reflecting mirror; a condenser lens that condenses light; a cylindrical lens that is on the optical axis of the condenser lens and condenses the laser beam that has passed through the condenser lens in the scanning direction; (D) a stage control circuit that moves the measuring table step by step for each scan in synchronization with the scanning of the scanner; a first height calculation circuit that calculates the height of the object to be measured from the light receiving position of the light receiving element when the laser beam is reflected by the second reflecting mirror and scanned; a second height calculation circuit that calculates the height of the object to be measured from the light receiving position of the light receiving element at the time; and the light receiving at the same position when scanning with laser light reflected by the first and second reflecting mirrors. a height determination circuit that compares the amount of light received by the element and selects the height calculation result of the first or second height calculation circuit when reflected by the first or second reflecting mirror, whichever receives a larger amount of light; and a signal processing circuit consisting of.

【0014】本発明の三次元形状測定装置は、(A)測
定対象物を裁置する測定台と、(B)第1のレーザと、
前記第1のレーザのビーム径を所要のビーム径に拡大す
る第1のビーム拡大器と、前記第1のレーザと波長の異
なる第2のレーザと、前記第2のレーザのビーム径を所
要のビーム径に拡大する第2のビーム拡大器と、前記第
1のビーム拡大器および前記第2のビーム拡大器で拡大
された2本のレーザ光を1本に重ね合わせる重ね合わせ
光学系と、この重ね合わせ光学系により重ね合わせされ
たレーザ光を前記測定台の送り方向と直交する方向に走
査するスキャナと、前記スキャナで走査されたレーザ光
を最終的に前記測定台の測定面上で所要のビーム径に集
光しかつ走査速度を一定にするfθレンズと、前記fθ
レンズを通過した前記第1のレーザのレーザ光と前記第
2のレーザのレーザ光のいずれか一方のレーザ光を透過
し他方のレーザ光を前記測定台の斜め上方から走査軌跡
が前記測定台の送り方向と直交するように反射する第1
のフィルタと、前記第1のフィルタを通過した一方のレ
ーザ光を前記測定台の真上から鉛直下方に走査軌跡が前
記第1のレーザ光の軌跡と一致するように反射する反射
ミラーとで構成される走査光学系と、(C)前記第1の
フィルタで反射された他のレーザ光の入斜角に大きさが
等しい角度の反射角方向に反射するレーザ光を集光する
集光レンズと、前記集光レンズの光軸上にあり前記集光
レンズを通過したレーザ光を走査方向に集光するシリン
ドリカルレンズと、前記シリンドリカルレンズを通過し
た前記一方および他方のレーザ光を分光する第2のフィ
ルタと、前記第2のフィルタで分光された前記一方およ
び他方のレーザ光をそれぞれ前記集光レンズおよび前記
シリンドリカルレンズの焦点位置で受光する第1および
第2の受光素子とで構成される受光光学系と、(D)前
記第1の受光素子の受光位置から高さを求める第1の高
さ演算回路と、前記第2の受光素子の受光位置から高さ
を求める第2の高さ演算回路と、前記第1の受光素子と
前記第2の受光素子の受光量を比較し受光量の多い方の
受光素子の信号を受ける前記第1また第2の高さ演算回
路の高さ演算結果を選択する高さ判定回路とで構成され
る信号処理回路とを備えている。
The three-dimensional shape measuring device of the present invention includes (A) a measuring table on which an object to be measured is placed, (B) a first laser,
a first beam expander that expands the beam diameter of the first laser to a required beam diameter; a second laser that has a different wavelength from the first laser; and a second laser that expands the beam diameter of the second laser to the required beam diameter. a second beam expander that expands to a beam diameter; a superposition optical system that superimposes two laser beams expanded by the first beam expander and the second beam expander into one; A scanner that scans laser beams superimposed by a superimposing optical system in a direction perpendicular to the feeding direction of the measuring table; an fθ lens that focuses light to a beam diameter and keeps the scanning speed constant;
Either the laser light of the first laser or the laser light of the second laser that has passed through the lens is transmitted, and the other laser light is scanned from diagonally above the measuring table so that the scanning locus is on the measuring table. The first reflected perpendicular to the feeding direction
and a reflecting mirror that reflects one of the laser beams that has passed through the first filter vertically downward from directly above the measurement table so that the scanning trajectory matches the trajectory of the first laser beam. (C) a condensing lens that condenses the laser beam reflected in a reflection angle direction having a magnitude equal to the incident angle of the other laser beam reflected by the first filter; , a cylindrical lens that is on the optical axis of the condensing lens and condenses the laser beam that has passed through the condensing lens in the scanning direction; and a second cylindrical lens that separates the one and the other laser beams that have passed through the cylindrical lens. Light-receiving optics comprising a filter, and first and second light-receiving elements that receive the one and the other laser beams separated by the second filter at focal positions of the condenser lens and the cylindrical lens, respectively. (D) a first height calculation circuit that calculates the height from the light receiving position of the first light receiving element; and a second height calculating circuit that calculates the height from the light receiving position of the second light receiving element. and a height calculation result of the first or second height calculation circuit which compares the amount of light received by the first light receiving element and the second light receiving element and receives the signal from the light receiving element which receives a larger amount of light. and a signal processing circuit configured with a height determination circuit for selection.

【0015】本発明の三次元形状測定装置は、(A)測
定対象物を裁置する測定台と、(B)レーザと、前記レ
ーザのビーム径を所要のビーム径に拡大するビーム拡大
器と、このビーム拡大器により拡大されたレーザ光を前
記測定台の送り方向と直交する方向に走査するスキャナ
と、前記スキャナで走査されたレーザ光を最終的に前記
測定台の測定面上で所要のビーム径に集光しかつ走査速
度を一定にするfθレンズと、前記fθレンズを通過し
たレーザ光を分光する第1の偏光ビームスプリッタと、
前記偏光ビームスプリッタを通過したP偏光のレーザ光
を前記測定台の真上から鉛直下方に走査軌跡が前記測定
台の送り方向と直交するように反射する第1の反射ミラ
ーと、前記偏光ビームスプリッタで反射されS偏光のレ
ーザ光を前記測定台の斜め上方から走査軌跡が前記第1
の反射ミラーの走査軌跡と一致するように反射しかつ前
記偏光ビームスプリッタから前記測定台の測定面までの
光路長が前記第1の反射ミラーによる前記P偏光のレー
ザ光の光路長と等しくなるように反射する第2の反射ミ
ラーとで構成される走査光学系と、(C)前記第2の反
射ミラーにより反射された前記S偏光のレーザ光の入斜
角に大きさが等しい角度の反射角方向に反射するレーザ
光を集光する集光レンズと、前記集光レンズの光軸上に
あり前記集光レンズを通過したレーザ光を走査方向に集
光するシリンドリカルレンズと、前記シリンドリカルレ
ンズを通過したレーザ光を分光する第2の偏光ビームス
プリッタと、前記第2の偏光ビームスプリッタで分光さ
れたP偏光のレーザ光およびS偏光のレーザ光それぞれ
を前記集光レンズおよび前記シリンドリカルレンズの焦
点位置で受光する第1および第2の受光素子とで構成さ
れる受光光学系と、(D)前記第1の受光素子の受光位
置から高さを求める第1の高さ演算回路と、前記第2の
受光素子の受光位置から高さを求める第2の高さ演算回
路と、前記第1の受光素子の前記第2の受光素子の受光
量を比較し受光量の多い方の受光素子の信号を受ける前
記第1または第2の高さ演算回路の高さ演算結果を選択
する高さ判定回路とで構成される信号処理回路とを備え
ている。
The three-dimensional shape measuring device of the present invention includes (A) a measuring table on which an object to be measured is placed, (B) a laser, and a beam expander for expanding the beam diameter of the laser to a required beam diameter. , a scanner that scans the laser beam expanded by the beam expander in a direction perpendicular to the feeding direction of the measuring table; and a scanner that scans the laser beam expanded by the beam expander in a direction perpendicular to the feeding direction of the measuring table; an fθ lens that focuses the light to a beam diameter and keeps the scanning speed constant; a first polarizing beam splitter that separates the laser beam that has passed through the fθ lens;
a first reflecting mirror that reflects the P-polarized laser beam that has passed through the polarizing beam splitter vertically downward from directly above the measuring table so that the scanning locus is orthogonal to the feeding direction of the measuring table; and the polarizing beam splitter. The scanning locus of the S-polarized laser beam reflected by
The beam is reflected so as to match the scanning trajectory of the reflecting mirror, and the optical path length from the polarizing beam splitter to the measurement surface of the measuring table is equal to the optical path length of the P-polarized laser beam by the first reflecting mirror. (C) a reflection angle having a magnitude equal to the incident angle of the S-polarized laser beam reflected by the second reflection mirror; a condenser lens that condenses laser light reflected in the direction; a cylindrical lens that is on the optical axis of the condenser lens and condenses the laser beam that has passed through the condenser lens in the scanning direction; a second polarizing beam splitter that separates the polarized laser beam, and a P-polarized laser beam and an S-polarized laser beam separated by the second polarized beam splitter, respectively, at focal positions of the condenser lens and the cylindrical lens. (D) a first height calculation circuit that calculates the height from the light receiving position of the first light receiving element; A second height calculation circuit that calculates the height from the light receiving position of the light receiving element compares the amount of light received by the second light receiving element of the first light receiving element and receives a signal from the light receiving element that receives a larger amount of light. and a signal processing circuit configured with a height determination circuit that selects a height calculation result of the first or second height calculation circuit.

【0016】[0016]

【実施例】次に本発明について図面を参照して説明する
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings.

【0017】図1および図2はそれぞれ本発明の一実施
例を示す斜視図および信号処理回路のブロック図である
FIGS. 1 and 2 are a perspective view and a block diagram of a signal processing circuit, respectively, showing an embodiment of the present invention.

【0018】本実施例は一軸ステージを有する測定台1
に裁置された測定対象物6を走査する走査光学系ならび
にこの走査光学系により走査されたレーザ光の測定対象
物からの反射光を受光する受光光学系を備えている。
In this embodiment, a measuring table 1 having a uniaxial stage is used.
It is equipped with a scanning optical system that scans the measuring object 6 placed on the surface of the measuring object 6, and a light-receiving optical system that receives the reflected light from the measuring object of the laser beam scanned by the scanning optical system.

【0019】この走査光学系は、レーザ2と、レーザ2
のビーム径を所要のビーム径に拡大するビーム拡大器3
と、ビーム拡大器3を通過したレーザ光を測定台1と平
行な面内で測定台1の送り方向と直交する方向に走査す
る第1のガルバノミラー4と、第1のガルバノミラー4
で走査されたレーザ光を最終的に測定台1の測定面上で
所要のビーム径に収束しかつ走査速度を一定にするfθ
レンズ5と、fθレンズ5を通過したレーザ光の光路を
間欠的に正逆の回転運動をして2方向にガルバノミラー
4による走査に同期して周期的に切換える第2のガルバ
ノミラー6と、ガルバノミラー6の回転運動の一終点で
反射されたレーザ光を測定台1の真上から鉛真下方に走
査軌跡が測定台1の送り方向と直交するように反射する
第1の反射ミラー7と、第2のガルバノミラー6の回転
運動の他終点で反射されたレーザ光を測定台1の斜め上
方から走査軌跡が第1の反射ミラー7による走査軌跡と
一致するように反射し、かつ第2のガルバノミラー6か
ら測定台1の測定面上までの光路長が第1の反射ミラー
7での同光路長と等しい第2の反射ミラー8を有する。
This scanning optical system includes a laser 2 and a laser 2
Beam expander 3 that expands the beam diameter to the required beam diameter
, a first galvano mirror 4 that scans the laser beam that has passed through the beam expander 3 in a plane parallel to the measurement table 1 in a direction perpendicular to the feeding direction of the measurement table 1;
fθ to make the laser beam scanned by finally converge to the required beam diameter on the measurement surface of the measurement table 1 and keep the scanning speed constant.
a second galvanometer mirror 6 that periodically rotates the optical path of the laser beam that has passed through the lens 5 and the fθ lens 5 in two directions in synchronization with the scanning by the galvanometer mirror 4 by rotating forward and backward intermittently; a first reflecting mirror 7 that reflects the laser beam reflected at one end point of the rotational movement of the galvanometer mirror 6 from directly above the measuring table 1 vertically downward so that the scanning locus is perpendicular to the feeding direction of the measuring table 1; , reflects the laser beam reflected at the other end point of the rotational movement of the second galvanometer mirror 6 from diagonally above the measuring table 1 so that the scanning locus coincides with the scanning locus of the first reflecting mirror 7, and The second reflecting mirror 8 has an optical path length from the galvanometer mirror 6 to the measurement surface of the measuring table 1 that is equal to the optical path length at the first reflecting mirror 7.

【0020】受光光学系は、測定台1に対し第2の反射
ミラー8によるレーザ入射角に等しい反射角方向に反射
するレーザ光を集光する集光レンズ11と、集光レンズ
11の光軸上にあり集光レンズ11を通過したレーザ光
を走査方向に集光するシリンドリカルレンズ12と、集
光レンズ11およびシリンドリカルレンズ12の焦点位
置に置かれレーザ光を受光する受光素子13とを有する
The light-receiving optical system includes a condenser lens 11 that condenses the laser beam reflected by the second reflection mirror 8 in the direction of a reflection angle equal to the laser incidence angle with respect to the measurement table 1, and an optical axis of the condenser lens 11. It includes a cylindrical lens 12 located above and condensing the laser beam that has passed through the condenser lens 11 in the scanning direction, and a light receiving element 13 placed at the focal position of the condenser lens 11 and the cylindrical lens 12 and receiving the laser beam.

【0021】図2に示す信号処理回路は、第1のガルバ
ノミラー4の走査に同期して2走査毎に測定台1をステ
ップ送りさせるステージ制御回路14と、第1の反射ミ
ラー7で走査した時の受光素子13の受光位置から測定
対象物9の高さを求める第1の高さ演算回路16と、第
2の反射ミラー8で走査した時の受光素子13の受光位
置から測定対象物9の高さを求める第2の高さ演算回路
17と、第1のガルバノミラー4に同期して第1の高さ
演算回路16と第2の高さ演算回路17とを切換える切
換え回路15と、第1の反射ミラー7および第2の反射
ミラー8で走査した時の同一位置における受光素子13
の受光量を比較し受光量の多い方で求めた高さ演算結果
を選択する高さ判定回路18とを有する。
The signal processing circuit shown in FIG. 2 includes a stage control circuit 14 that moves the measuring table 1 step by step every two scans in synchronization with the scanning of the first galvanometer mirror 4, and a first reflecting mirror 7 that performs scanning. A first height calculation circuit 16 calculates the height of the object to be measured 9 from the light receiving position of the light receiving element 13 at the time, and a height calculation circuit 16 calculates the height of the object to be measured 9 from the light receiving position of the light receiving element 13 when scanning with the second reflecting mirror 8. a second height calculation circuit 17 that calculates the height of , and a switching circuit 15 that switches between the first height calculation circuit 16 and the second height calculation circuit 17 in synchronization with the first galvanometer mirror 4; Light receiving element 13 at the same position when scanning with the first reflecting mirror 7 and the second reflecting mirror 8
and a height determination circuit 18 that compares the amount of received light and selects the height calculation result obtained based on the amount of received light.

【0022】この信号処理回路の制御により、測定台1
の各位置においてレーザ光のガルバノミラー4の走査を
2回ずつ行い、その2回の走査のうちの1回の走査中は
レーザ光がガルバノミラー6から反射ミラー7を介して
測定台1を真上から入射し、受光素子13の出力を演算
回路16に伝えるように切換えるようにし、他の1回の
走査中は、レーザ光がガルバノミラー6から反射ミラー
8を介して測定台1を斜めから入射し受光素子13の出
力を演算回路17に伝えるようにする。また判定回路1
8は上記の1回の走査での受光素子13の受光量が他の
1回の走査での受光素子13の受光量より多い時は演算
回路16の演算結果を、逆の時は演算回路17の演算結
果を測定対象物9の高さとして選択する。
By controlling this signal processing circuit, the measuring table 1
The laser beam scans the galvano mirror 4 twice at each position, and during one of the two scans, the laser beam travels directly from the galvano mirror 6 to the measuring table 1 via the reflection mirror 7. The laser beam enters from above and is switched so that the output of the light receiving element 13 is transmitted to the arithmetic circuit 16. During one other scan, the laser beam passes from the galvanometer mirror 6 to the reflection mirror 8, and then passes through the measuring table 1 from an angle. The output of the light receiving element 13 is transmitted to the arithmetic circuit 17. Also, the judgment circuit 1
8 indicates the calculation result of the arithmetic circuit 16 when the amount of light received by the light receiving element 13 in one scan is greater than the amount of light received by the light receiving element 13 in another scan, and the calculation result of the arithmetic circuit 17 in the opposite case. The calculation result is selected as the height of the measurement object 9.

【0023】図3は垂直入射および斜め入射光学系の高
さ測定原理を説明するための平面図である。
FIG. 3 is a plan view for explaining the height measurement principle of the vertical incidence and oblique incidence optical systems.

【0024】反射ミラー8で反射して入射されるレーザ
光の入射角度および集光レンズ11を通して受光するレ
ーザ光の受光角度をθ、測定対象物9の受光素子13に
おける像の倍率をmとすれば測定対象物9の高さtは、
Let θ be the incident angle of the laser beam reflected by the reflecting mirror 8 and the acceptance angle of the laser beam received through the condenser lens 11, and m be the magnification of the image of the object to be measured 9 on the light receiving element 13. For example, the height t of the measurement object 9 is

【0025】[0025]

【0026】で与えられる。演算回路16は上記の式(
1)に従い測定対象物9の高さを求め、演算回路17は
式(2)に従い測定対象物9の高さを求める。
It is given by: The arithmetic circuit 16 calculates the above equation (
1), and the arithmetic circuit 17 calculates the height of the measurement object 9 according to equation (2).

【0027】図4(a),(b)は斜面での反射を説明
するための平面図である。
FIGS. 4(a) and 4(b) are plan views for explaining reflection on a slope.

【0028】図4(a)は垂直入射、図4(b)は斜め
入射の場合である。測定面20が角度αの傾きを持って
いた場合の受光方向21と最も強い反射方向22,22
′とのずれ角△θ1,△θ2は 垂直入射:△θ1=θ−2α 斜め入射:△θ2=2α となる。ここで△θ1=△θ2として解くとα=θ/4
となる。すなわち、測定面20の傾きがθ/4より小さ
い場合は△θ2≦△θ1となり斜め入射光学系の方がよ
り多くの反射光を受光でき、一方測定面20の傾きがθ
/4より大きい場合は△θ2≧△θ1となり垂直入射光
学系の方がより多くの反射光を受光できる。従って測定
台1の同一位置を垂直入射および斜め入射の両方で交互
に走査し、受光素子13の受光量の多い方で高さを求め
ることにより各斜面に対してより高いS/N比で高さ測
定ができる上、フラット鏡面に近い物から凹凸や傾斜の
ある物まで幅広く対応できる。
FIG. 4(a) shows the case of normal incidence, and FIG. 4(b) shows the case of oblique incidence. Light receiving direction 21 and strongest reflection direction 22, 22 when the measurement surface 20 has an inclination of angle α
The deviation angles △θ1 and △θ2 with respect to Here, if we solve by setting △θ1=△θ2, α=θ/4
becomes. That is, when the inclination of the measurement surface 20 is smaller than θ/4, △θ2≦△θ1, and the oblique incidence optical system can receive more reflected light.
If it is larger than /4, △θ2≧△θ1, and the vertical incidence optical system can receive more reflected light. Therefore, by scanning the same position on the measuring table 1 alternately with both vertical incidence and oblique incidence, and determining the height using the one that receives more light from the light-receiving element 13, a higher S/N ratio can be obtained for each slope. In addition to being able to measure the surface area, it can also handle a wide range of objects, from near-flat mirror surfaces to uneven and sloping objects.

【0029】図5および図6はそれぞれ本発明の他の実
施例の斜視図および信号処理回路のブロック図である。 本実施例も測定台1,走査光学系および受光光学系を備
えている。
FIGS. 5 and 6 are a perspective view and a block diagram of a signal processing circuit of another embodiment of the present invention, respectively. This embodiment also includes a measuring table 1, a scanning optical system, and a light receiving optical system.

【0030】本実施例の走査光学系は、第1のレーザ2
と、第1のレーザ2のビーム径を所要のビーム径に拡大
する第1のビーム拡大器3と、第1のレーザ2と波長の
異なる第2のレーザ30と、第2のレーザ30のビーム
径を所要のビーム径に拡大する第2のビーム拡大器31
と、第1のレーザ2および第2のレーザ30のレーザ光
を1本に重ね合わせるミラー32およびビームスプリッ
タ33で構成された重ね合わせ光学系と、重ね合わされ
たレーザ光を測定台1と平行な面内で測定台1の送り方
向と直交する方向に走査するガルバノミラー4と、ガル
バノミラー4で走査されたレーザ光を最終的に測定台1
の測定面上で所要のビーム径に収光しかつ走査速度を一
定にするfθレンズ5と、fθレンズ5を通過した第1
のレーザ2と第2のレーザ30のレーザ光のうち第2の
レーザ30のレーザ光を透過し第1のレーザ2のレーザ
光を測定台1の斜め上方から走査軌跡が測定台1の送り
方向と直交するように反射する第1のフィルタ34と、
第1のフィルタ34を通過した第2のレーザ30のレー
ザ光を測定台1の真上から鉛直下方に走査軌跡が第1の
レーザ2の軌跡と一致するように反射する反射ミラー3
5とを有する。
The scanning optical system of this embodiment has a first laser 2
, a first beam expander 3 that expands the beam diameter of the first laser 2 to a required beam diameter, a second laser 30 having a different wavelength from the first laser 2, and a beam of the second laser 30. A second beam expander 31 that expands the diameter to a required beam diameter.
A superimposing optical system includes a mirror 32 and a beam splitter 33 that superimpose the laser beams of the first laser 2 and the second laser 30 into one, and A galvano mirror 4 scans within the plane in a direction perpendicular to the feeding direction of the measuring table 1, and the laser beam scanned by the galvano mirror 4 is finally sent to the measuring table 1.
an fθ lens 5 that converges the light to a required beam diameter on the measurement surface and keeps the scanning speed constant;
Among the laser beams of the laser 2 and the second laser 30, the laser beam of the second laser 30 is transmitted, and the laser beam of the first laser 2 is scanned from diagonally above the measuring table 1.The scanning locus is in the feeding direction of the measuring table 1. a first filter 34 that reflects at right angles to;
Reflection mirror 3 that reflects the laser beam of the second laser 30 that has passed through the first filter 34 from directly above the measurement table 1 vertically downward so that the scanning trajectory matches the trajectory of the first laser 2
5.

【0031】受光光学系は、測定対象物9の反射光の中
で第1のフィルタ34により反射されたレーザ2のレー
ザ光の入射角に等しい反射角方向に反射するレーザ光を
集光する集光レンズ11と、集光レンズ11の光軸上に
あり集光レンズ11を通過したレーザ光を走査方向に集
光するシリンドリカルレンズ12と、シリンドリカルレ
ンズ12を通過した第1のレーザ2と第2のレーザ30
のレーザ光のうち第2のレーザ30のレーザ光を透過し
第1のレーザ2のレーザ光を反射する第2のフィルタ3
6と、第2のフィルタ36で分光された第1,第2のレ
ーザ2,30のレーザ光をそれぞれ集光レンズ11およ
びシリンドリカルレンズ12の焦点位置で受光する第1
の受光素子37、第2の受光素子13とを有する。
The light-receiving optical system is a condenser for condensing the laser light reflected from the measurement object 9 in the direction of the reflection angle equal to the incident angle of the laser light of the laser 2 reflected by the first filter 34. an optical lens 11; a cylindrical lens 12 that is on the optical axis of the condenser lens 11 and condenses the laser beam that has passed through the condenser lens 11 in the scanning direction; and a first laser 2 and a second laser that have passed through the cylindrical lens 12; laser 30
a second filter 3 that transmits the laser beam of the second laser 30 and reflects the laser beam of the first laser 2;
6 and a first laser beam that receives the laser beams of the first and second lasers 2 and 30 separated by the second filter 36 at the focal positions of the condenser lens 11 and the cylindrical lens 12, respectively.
It has a light receiving element 37 and a second light receiving element 13.

【0032】図6に示す信号処理回路は、第1の受光素
子37の受光位置から高さを求める第1の高さ演算回路
38と、第2の受光素子13の受光位置から高さを求め
る第2の高さ演算回路39と、第1の受光素子37と第
2の受光素子13の受光量を比較し受光量の多い方の受
光素子13または37の信号を受ける高さ演算回路38
または39の高さ演算結果を最終的に決定する測定対象
物9の高さとして選択する高さ判定回路18とで構成さ
れる。高さ演算回路16は式(2)に従い測定対象物9
の高さを求め、高さ演算回路17は式(1)に従い測定
対象物9の高さを求める。
The signal processing circuit shown in FIG. 6 includes a first height calculation circuit 38 that calculates the height from the light receiving position of the first light receiving element 37 and a height calculating circuit 38 that calculates the height from the light receiving position of the second light receiving element 13. A second height calculation circuit 39 and a height calculation circuit 38 which compares the amount of light received by the first light receiving element 37 and the second light receiving element 13 and receives a signal from the light receiving element 13 or 37 which receives a larger amount of light.
Alternatively, the height determination circuit 18 selects the height calculation result of step 39 as the height of the object to be measured 9 to be finally determined. The height calculation circuit 16 calculates the measurement target 9 according to equation (2).
The height calculating circuit 17 calculates the height of the object to be measured 9 according to equation (1).

【0033】図7および図8はそれぞれ本発明のさらに
他の実施例の斜視図および信号処理回路のブロック図で
ある。
FIGS. 7 and 8 are a perspective view and a block diagram of a signal processing circuit of still another embodiment of the present invention, respectively.

【0034】本実施例の走査光学系は、レーザ2,ビー
ム拡大器3,ガルバノミラー4およびfθレンズ5を備
え、さらにfθレンズ5を通過したレーザ光を分光する
第1の偏光ビームスプリッタ40と、偏光ビームスプリ
ッタ40を通過したレーザ光(以下P偏光のレーザ光と
称す)を測定台1の真上から鉛直下方に走査軌跡が測定
台1の送り方向と直交するように反射する第1の反射ミ
ラー42と、偏光ビームスプリッタ40で反射されたレ
ーザ光(以下S偏光のレーザ光と称す)を測定台1の斜
め上方から走査軌跡が第1の反射ミラー42と一致する
ように反射しかつ偏光ビームスプリッタ40から測定台
1の測定面までの光路長が第1の反射ミラー42におけ
る同光路長と等しい第2の反射ミラー41とで構成され
る。
The scanning optical system of this embodiment includes a laser 2, a beam expander 3, a galvanometer mirror 4, and an fθ lens 5, and further includes a first polarizing beam splitter 40 that separates the laser beam that has passed through the fθ lens 5. , a first reflector that reflects the laser beam (hereinafter referred to as P-polarized laser beam) that has passed through the polarizing beam splitter 40 from directly above the measuring table 1 vertically downward so that the scanning locus is orthogonal to the feeding direction of the measuring table 1. The laser beam reflected by the reflecting mirror 42 and the polarizing beam splitter 40 (hereinafter referred to as S-polarized laser beam) is reflected from diagonally above the measuring table 1 so that the scanning locus coincides with the first reflecting mirror 42. It is composed of a second reflecting mirror 41 whose optical path length from the polarizing beam splitter 40 to the measurement surface of the measuring table 1 is equal to the optical path length of the first reflecting mirror 42 .

【0035】受光光学系は、第2の反射ミラー41によ
り反射されたS偏光のレーザ光のレーザ入射角に等しい
反射角方向に反射するレーザ光を集光する集光レンズ1
1およびシリンドリカルレンズ10と、シリンドリカル
レンズ10を通過したレーザ光を分光する第2の偏光ビ
ームスプリッタ11と、第2の偏光ビームスプリッタ1
1で分光されたP偏光のレーザ光およびS偏光のレーザ
光をそれぞれ集光レンズ9およびシリンドリカルレンズ
10の焦点位置で受光する第1の受光素子13および第
2の受光素子37とで構成される。
The light receiving optical system includes a condenser lens 1 that condenses the laser beam reflected by the second reflection mirror 41 in a reflection angle direction equal to the laser incidence angle of the S-polarized laser beam.
1, a cylindrical lens 10, a second polarizing beam splitter 11 that separates the laser beam that has passed through the cylindrical lens 10, and a second polarizing beam splitter 1.
It is composed of a first light receiving element 13 and a second light receiving element 37 that receive the P-polarized laser light and the S-polarized laser light separated by the laser beam 1 at the focal positions of the condenser lens 9 and the cylindrical lens 10, respectively. .

【0036】図8の信号処理回路は、第1の受光素子1
3の受光位置から高さを求める第1の高さ演算回路16
と、第2の受光素子37の受光位置から高さを求める第
2の高さ演算回路17と、高さ判定回路18とで構成さ
れる。
The signal processing circuit shown in FIG.
The first height calculation circuit 16 calculates the height from the light receiving position of No. 3.
, a second height calculating circuit 17 that calculates the height from the light receiving position of the second light receiving element 37, and a height determining circuit 18.

【0037】[0037]

【発明の効果】以上説明したように本発明は、1つの走
査光学系で垂直入射と斜め入射の走査を交互に高速に切
換えて、または同時に行うことにより、同一走査位置に
おける両走査の反射光量を比較し、反射光量の多い方で
高さ測定を行うことにより、表面状態が鏡面に近い物か
ら傾斜のある物まで幅広く高いS/N比で高精度かつ高
速に三次元形状を測定できるという効果を有する。
Effects of the Invention As explained above, the present invention can reduce the amount of reflected light in both scans at the same scanning position by alternately switching vertically incident and obliquely incident scanning at high speed or performing them simultaneously using one scanning optical system. By comparing height measurements using the side with a greater amount of reflected light, it is possible to measure three-dimensional shapes with high precision and high speed over a wide range of surfaces, from near-mirror to inclined surfaces, with a high S/N ratio. have an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示す斜視図である。FIG. 1 is a perspective view showing one embodiment of the present invention.

【図2】図1に示した実施例の信号処理回路のブロック
図である。
FIG. 2 is a block diagram of the signal processing circuit of the embodiment shown in FIG. 1;

【図3】図1に示した実施例の高さ測定原理を説明する
平面図である。
FIG. 3 is a plan view illustrating the height measurement principle of the embodiment shown in FIG. 1;

【図4】図1に示した実施例の垂直方向および斜め方向
の入射による受光素子13の受光量の比較を説明するた
めの平面図である。
FIG. 4 is a plan view for explaining a comparison of the amount of light received by the light receiving element 13 when incident in the vertical direction and in the oblique direction in the embodiment shown in FIG. 1;

【図5】本発明の他の実施例を示す斜視図である。FIG. 5 is a perspective view showing another embodiment of the present invention.

【図6】図5に示した実施例の信号処理回路のブロック
図である。
FIG. 6 is a block diagram of the signal processing circuit of the embodiment shown in FIG. 5;

【図7】本発明のさらに他の実施例を示す斜視図である
FIG. 7 is a perspective view showing still another embodiment of the present invention.

【図8】図7に示した実施例の信号処理回路のブロック
図である。
FIG. 8 is a block diagram of the signal processing circuit of the embodiment shown in FIG. 7;

【図9】従来の三次元形状測定装置を示す斜視図である
FIG. 9 is a perspective view showing a conventional three-dimensional shape measuring device.

【図10】図9に示す三次元形状測定装置の測定対象物
の高さ測定原理を説明する図である。
10 is a diagram illustrating the principle of measuring the height of the object to be measured by the three-dimensional shape measuring device shown in FIG. 9. FIG.

【図11】図9に示す三次元形状測定装置で表面状態の
異なる測定対象物を測定した場合の反射光の違いを説明
する図である。
11 is a diagram illustrating differences in reflected light when measuring objects with different surface conditions are measured by the three-dimensional shape measuring apparatus shown in FIG. 9. FIG.

【符号の説明】[Explanation of symbols]

1,50    測定台 2,30,51    レーザ 3,31,52    ビーム拡大器 4,6,53    ガルバノミラー 5,54    fθレンズ 7,8,32,35,41,42    反射ミラー9
,55,55′,55″    測定対象物11,57
    集光レンズ 12,58    シリンドリカルレンズ13,37,
59    受光素子 14    ステージ制御回路 15    切換え回路 16,17,38,39    高さ演算回路18  
  高さ判定回路 19,60    レーザ光 20    測定面 21,61    受光方向 22,22′    最も強い反射方向33    ビ
ームスプリッタ 34,36    フィルタ 40,43    偏光ビームスプリッタ62,62′
    反射強度分布
1, 50 Measuring table 2, 30, 51 Laser 3, 31, 52 Beam expander 4, 6, 53 Galvanometer mirror 5, 54 fθ lens 7, 8, 32, 35, 41, 42 Reflection mirror 9
, 55, 55', 55'' Measurement object 11, 57
Condensing lens 12, 58 Cylindrical lens 13, 37,
59 Light receiving element 14 Stage control circuit 15 Switching circuit 16, 17, 38, 39 Height calculation circuit 18
Height judgment circuit 19, 60 Laser beam 20 Measurement surface 21, 61 Light receiving direction 22, 22' Strongest reflection direction 33 Beam splitter 34, 36 Filter 40, 43 Polarizing beam splitter 62, 62'
Reflection intensity distribution

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(A)測定対象物を裁置し一方向にステッ
プ送りされる測定台と、(B)レーザと、前記レーザの
ビーム径を所要のビーム径に拡大するビーム拡大器と、
前記ビーム拡大器を通過したレーザ光を前記測定台の送
り方向と直交する方向に走査するスキャナと、前記スキ
ャナで走査されたレーザ光を最終的に前記測定台の測定
面上で所要のビーム径に集光しかつ走査速度を一定する
fθレンズと、前記fθレンズを通過したレーザ光の光
路を2方向に前記スキャナの走査に同期して切換えるガ
ルバノミラーと、前記ガルバノミラーの切換運動の一終
点で反射されたレーザ光を前記測定台の真上から鉛直下
方に走査軌跡が前記測定台の送り方向と直交するように
反射する第1の反射ミラーと、前記ガルバノミラーの切
換運動の他終点で反射されたレーザ光を前記測定台の斜
め上方から走査軌跡が前記第1の反射ミラーによる走査
軌跡と一致するように反射しかつ前記ガルバノミラーか
ら前記測定台の測定面上までの光路長が前記第1の反射
ミラーでの同光路長と等しくなるように反射する第2の
反射ミラーとで構成される走査光学系と、(C)前記第
2の反射ミラーによるレーザ入射角に大きさが等しい角
度の反射角方向に反射するレーザ光を集光する集光レン
ズと、前記集光レンズの光軸上にあり前記集光レンズを
通過したレーザ光を走査方向に集光するシリンドリカル
レンズと、前記集光レンズと前記シリンドリカルレンズ
の焦点位置に置かれレーザ光を受光する受光素子とで構
成される受光光学系と、(D)前記スキャナの走査に同
期して走査毎に前記測定台をステップ送りするステージ
制御回路とレーザ光を前記第1の反射ミラーで反射して
走査した時の前記受光素子の受光位置から測定対象物の
高さを求める第1の高さ演算回路と、レーザ光を前記第
2の反射ミラーで反射して走査した時の前記受光素子の
受光位置から測定対象物の高さを求める第2の高さ演算
回路と前記第1および第2の反射ミラーで反射されたレ
ーザ光で走査した時の同一位置における前記受光素子の
受光量を比較し受光量の多い方の前記第1または第2の
反射ミラーで反射した時の前記第1または第2の高さ演
算回路の高さ演算結果を選択する高さ判定回路とで構成
される信号処理回路とを備えることを特徴とする三次元
形状測定装置。
1. (A) a measuring table on which an object to be measured is placed and fed in steps in one direction; (B) a laser; and a beam expander for expanding the beam diameter of the laser to a required beam diameter.
a scanner that scans the laser beam that has passed through the beam expander in a direction perpendicular to the feeding direction of the measuring table; and a scanner that scans the laser beam that has passed through the beam expander in a direction perpendicular to the feeding direction of the measuring table; an f-theta lens that focuses light at a constant scanning speed and a galvanometer mirror that switches the optical path of the laser beam that has passed through the f-theta lens in two directions in synchronization with the scanning of the scanner, and one end point of the switching movement of the galvano mirror. a first reflecting mirror that reflects the laser beam reflected from directly above the measuring table vertically downward so that the scanning locus is perpendicular to the feeding direction of the measuring table; and another end point of the switching movement of the galvanometer mirror. The reflected laser beam is reflected from diagonally above the measuring table so that its scanning locus coincides with the scanning locus of the first reflecting mirror, and the optical path length from the galvanometer mirror to the measuring surface of the measuring table is as follows. a scanning optical system composed of a second reflecting mirror that reflects the light so that the optical path length is equal to the same optical path length at the first reflecting mirror; and (C) a laser incident angle having a size equal to the laser incident angle by the second reflecting mirror. a condenser lens that condenses the laser beam reflected in the direction of the reflection angle of the angle; a cylindrical lens that is on the optical axis of the condenser lens and condenses the laser beam that has passed through the condenser lens in the scanning direction; (D) a light-receiving optical system comprising a condenser lens and a light-receiving element placed at the focal position of the cylindrical lens to receive the laser beam; a stage control circuit that calculates the height of the object to be measured from the light receiving position of the light receiving element when the laser beam is reflected by the first reflecting mirror and scanned; a second height calculation circuit that calculates the height of the object to be measured from the light receiving position of the light receiving element when reflected by the second reflecting mirror and scanned; and a laser reflected by the first and second reflecting mirrors. The first or second height calculation circuit compares the amount of light received by the light receiving element at the same position when scanning with light, and when the light is reflected by the first or second reflecting mirror, whichever has a larger amount of light received. A three-dimensional shape measuring device comprising: a signal processing circuit configured with a height determination circuit that selects a height calculation result.
【請求項2】(A)測定対象物を裁置する測定台と、(
B)第1のレーザと、前記第1のレーザのビーム径を所
要のビーム径に拡大する第1のビーム拡大器と、前記第
1のレーザと波長の異なる第2のレーザと、前記第2の
レーザのビーム径を所要のビーム径に拡大する第2のビ
ーム拡大器と、前記第1のビーム拡大器および前記第2
のビーム拡大器で拡大された2本のレーザ光を1本に重
ね合わせる重ね合わせ光学系と、この重ね合わせ光学系
により重ね合わせされたレーザ光を前記測定台の送り方
向と直交する方向に走査するスキャナと、前記スキャナ
で走査されたレーザ光を最終的に前記測定台の測定面上
で所要のビーム径に集光しかつ走査速度を一定にするf
θレンズと、前記fθレンズを通過した前記第1のレー
ザのレーザ光と前記第2のレーザのレーザ光のいずれか
一方のレーザ光を透過し他方のレーザ光を前記測定台の
斜め上方から走査軌跡が前記測定台の送り方向と直交す
るように反射する第1のフィルタと、前記第1のフィル
タを通過した一方のレーザ光を前記測定台の真上から鉛
直下方に走査軌跡が前記第1のレーザ光の軌跡と一致す
るように反射する反射ミラーとで構成される走査光学系
と、(C)前記第1のフィルタで反射された他のレーザ
光の入斜角に大きさが等しい角度の反射角方向に反射す
るレーザ光を集光する集光レンズと、前記集光レンズの
光軸上にあり前記集光レンズを通過したレーザ光を走査
方向に集光するシリンドリカルレンズと、前記シリンド
リカルレンズを通過した前記一方および他方のレーザ光
を分光する第2のフィルタと、前記第2のフィルタで分
光された前記一方および他方のレーザ光をそれぞれ前記
集光レンズおよび前記シリンドリカルレンズの焦点位置
で受光する第1および第2の受光素子とで構成される受
光光学系と、(D)前記第1の受光素子の受光位置から
高さを求める第1の高さ演算回路と、前記第2の受光素
子の受光位置から高さを求める第2の高さ演算回路と、
前記第1の受光素子と前記第2の受光素子の受光量を比
較し受光量の多い方の受光素子の信号を受ける前記第1
また第2の高さ演算回路の高さ演算結果を選択する高さ
判定回路とで構成される信号処理回路とを備えることを
特徴とする三次元形状測定装置。
Claim 2: (A) a measuring table on which the object to be measured is placed;
B) a first laser, a first beam expander that expands the beam diameter of the first laser to a required beam diameter, a second laser having a different wavelength from the first laser, and the second laser. a second beam expander for expanding the beam diameter of the laser to a required beam diameter; the first beam expander and the second beam expander;
A superimposing optical system that superimposes two laser beams expanded by a beam expander into one, and a superimposing optical system that scans the superimposed laser beams in a direction perpendicular to the feeding direction of the measuring table. and a scanner that finally focuses the laser beam scanned by the scanner to a required beam diameter on the measurement surface of the measurement table and keeps the scanning speed constant.
A θ lens, and either one of the laser light of the first laser and the laser light of the second laser that has passed through the fθ lens is transmitted, and the other laser light is scanned from diagonally above the measurement table. A first filter that reflects the laser beam so that its trajectory is perpendicular to the feeding direction of the measuring table, and one laser beam that has passed through the first filter is scanned vertically downward from directly above the measuring table. (C) an angle whose magnitude is equal to the incident angle of another laser beam reflected by the first filter; a condenser lens that condenses the laser beam reflected in the direction of the reflection angle; a cylindrical lens that is on the optical axis of the condenser lens and condenses the laser beam that has passed through the condenser lens in the scanning direction; a second filter that separates the one and the other laser beams that have passed through the lens, and the one and the other laser beams that have been separated by the second filter at focal positions of the condenser lens and the cylindrical lens, respectively. (D) a first height calculation circuit that calculates the height from the light receiving position of the first light receiving element; a second height calculation circuit that calculates the height from the light receiving position of the light receiving element;
The first light receiving element compares the amount of light received by the first light receiving element and the second light receiving element and receives a signal from the light receiving element which receives a larger amount of light.
A three-dimensional shape measuring device further comprising: a signal processing circuit configured with a height determination circuit that selects a height calculation result of the second height calculation circuit.
【請求項3】(A)測定対象物を裁置する測定台と、(
B)レーザと、前記レーザのビーム径を所要のビーム径
に拡大するビーム拡大器と、このビーム拡大器により拡
大されたレーザ光を前記測定台の送り方向と直交する方
向に走査するスキャナと、前記スキャナで走査されたレ
ーザ光を最終的に前記測定台の測定面上で所要のビーム
径に集光しかつ走査速度を一定にするfθレンズと、前
記fθレンズを通過したレーザ光を分光する第1の偏光
ビームスプリッタと、前記偏光ビームスプリッタを通過
したP偏光のレーザ光を前記測定台の真上から鉛直下方
に走査軌跡が前記測定台の送り方向と直交するように反
射する第1の反射ミラーと、前記偏光ビームスプリッタ
で反射されS偏光のレーザ光を前記測定台の斜め上方か
ら走査軌跡が前記第1の反射ミラーの走査軌跡と一致す
るように反射しかつ前記偏光ビームスプリッタから前記
測定台の測定面までの光路長が前記第1の反射ミラーに
よる前記P偏光のレーザ光の光路長と等しくなるように
反射する第2の反射ミラーとで構成される走査光学系と
、(C)前記第2の反射ミラーにより反射された前記S
偏光のレーザ光の入斜角に大きさが等しい角度の反射角
方向に反射するレーザ光を集光する集光レンズと、前記
集光レンズの光軸上にあり前記集光レンズを通過したレ
ーザ光を走査方向に集光するシリンドリカルレンズと、
前記シリンドリカルレンズを通過したレーザ光を分光す
る第2の偏光ビームスプリッタと、前記第2の偏光ビー
ムスプリッタで分光されたP偏光のレーザ光およびS偏
光のレーザ光それぞれを前記集光レンズおよび前記シリ
ンドリカルレンズの焦点位置で受光する第1および第2
の受光素子とで構成される受光光学系と、(D)前記第
1の受光素子の受光位置から高さを求める第1の高さ演
算回路と、前記第2の受光素子の受光位置から高さを求
める第2の高さ演算回路と、前記第1の受光素子の前記
第2の受光素子の受光量を比較し受光量の多い方の受光
素子の信号を受ける前記第1または第2の高さ演算回路
の高さ演算結果を選択する高さ判定回路とで構成される
信号処理回路とを備えることを特徴とする三次元形状測
定装置。
Claim 3: (A) a measuring table on which the object to be measured is placed;
B) a laser, a beam expander that expands the beam diameter of the laser to a required beam diameter, and a scanner that scans the laser beam expanded by the beam expander in a direction perpendicular to the feeding direction of the measurement table; An fθ lens that finally converges the laser beam scanned by the scanner to a required beam diameter on the measurement surface of the measurement table and keeps the scanning speed constant, and the laser beam that has passed through the fθ lens is separated into spectra. a first polarizing beam splitter; and a first polarizing beam splitter that reflects the P-polarized laser beam that has passed through the polarizing beam splitter from directly above the measuring table vertically downward so that the scanning locus is orthogonal to the feeding direction of the measuring table. A reflecting mirror and a reflecting mirror reflect the S-polarized laser beam reflected by the polarizing beam splitter from diagonally above the measuring table so that the scanning locus coincides with the scanning locus of the first reflecting mirror, and transmitting the S-polarized laser beam from the polarizing beam splitter to the a scanning optical system comprising a second reflecting mirror that reflects the P-polarized laser beam so that the optical path length to the measurement surface of the measuring table is equal to the optical path length of the P-polarized laser beam by the first reflecting mirror; ) The S reflected by the second reflecting mirror
a condensing lens that condenses the laser beam reflected in the direction of a reflection angle whose magnitude is equal to the incident oblique angle of the polarized laser beam; and a laser beam that is on the optical axis of the condensing lens and passes through the condensing lens. A cylindrical lens that focuses light in the scanning direction,
a second polarizing beam splitter that separates the laser beam that has passed through the cylindrical lens; and a second polarizing beam splitter that splits the laser beam that has passed through the cylindrical lens; The first and second beams receive light at the focal position of the lens.
(D) a first height calculation circuit that calculates the height from the light receiving position of the first light receiving element; a second height arithmetic circuit that calculates the height, and a second height calculation circuit that compares the amount of light received by the second light receiving element with the first light receiving element, and receives a signal from the light receiving element that receives a larger amount of light. A three-dimensional shape measuring device comprising: a signal processing circuit comprising a height determination circuit that selects a height calculation result of a height calculation circuit;
JP4632491A 1991-03-12 1991-03-12 3D shape measuring device Expired - Lifetime JP2595821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4632491A JP2595821B2 (en) 1991-03-12 1991-03-12 3D shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4632491A JP2595821B2 (en) 1991-03-12 1991-03-12 3D shape measuring device

Publications (2)

Publication Number Publication Date
JPH04282407A true JPH04282407A (en) 1992-10-07
JP2595821B2 JP2595821B2 (en) 1997-04-02

Family

ID=12743980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4632491A Expired - Lifetime JP2595821B2 (en) 1991-03-12 1991-03-12 3D shape measuring device

Country Status (1)

Country Link
JP (1) JP2595821B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712529A (en) * 1993-06-22 1995-01-17 Nec Corp Shape inspection apparatus of bonding wire
JPH0749219A (en) * 1993-08-05 1995-02-21 Nec Corp Measuring device for ic lead height
JPH0783620A (en) * 1993-09-13 1995-03-28 Nec Corp Laser displacement meter
JP2010507089A (en) * 2006-10-18 2010-03-04 バルティオン テクニリーネン トゥトキムスケスクス Determination of surface and thickness
JP2012127887A (en) * 2010-12-17 2012-07-05 Keyence Corp Optical displacement meter
JP2013096859A (en) * 2011-11-01 2013-05-20 Kobe Steel Ltd Height measuring apparatus and height measuring method
JP2013186126A (en) * 2012-03-09 2013-09-19 Samsung Electro-Mechanics Co Ltd Three-dimensional measuring device and method
WO2014050319A1 (en) * 2012-09-25 2014-04-03 株式会社日立ハイテクノロジーズ Film-forming apparatus and film-forming method
DE102020116394A1 (en) 2020-06-22 2021-12-23 Pac Tech - Packaging Technologies Gmbh Method for monitoring a laser soldering process and laser soldering system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712529A (en) * 1993-06-22 1995-01-17 Nec Corp Shape inspection apparatus of bonding wire
JPH0749219A (en) * 1993-08-05 1995-02-21 Nec Corp Measuring device for ic lead height
JPH0783620A (en) * 1993-09-13 1995-03-28 Nec Corp Laser displacement meter
JP2010507089A (en) * 2006-10-18 2010-03-04 バルティオン テクニリーネン トゥトキムスケスクス Determination of surface and thickness
JP2012127887A (en) * 2010-12-17 2012-07-05 Keyence Corp Optical displacement meter
CN102564316A (en) * 2010-12-17 2012-07-11 株式会社其恩斯 Optical displacement meter
JP2013096859A (en) * 2011-11-01 2013-05-20 Kobe Steel Ltd Height measuring apparatus and height measuring method
JP2013186126A (en) * 2012-03-09 2013-09-19 Samsung Electro-Mechanics Co Ltd Three-dimensional measuring device and method
WO2014050319A1 (en) * 2012-09-25 2014-04-03 株式会社日立ハイテクノロジーズ Film-forming apparatus and film-forming method
DE102020116394A1 (en) 2020-06-22 2021-12-23 Pac Tech - Packaging Technologies Gmbh Method for monitoring a laser soldering process and laser soldering system
DE102020116394B4 (en) 2020-06-22 2022-03-24 Pac Tech - Packaging Technologies Gmbh Method for monitoring a laser soldering process and laser soldering system

Also Published As

Publication number Publication date
JP2595821B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
US8014002B2 (en) Contour sensor incorporating MEMS mirrors
US5834766A (en) Multi-beam scanning apparatus and multi-beam detection method for the same
JP2943499B2 (en) Height measuring method and device
JP2651093B2 (en) Shape detection method and device
US9013711B2 (en) Contour sensor incorporating MEMS mirrors
JP2510786B2 (en) Object shape detection method and apparatus
CN112789542A (en) Optical scanning device with beam compression and expansion
JP2595821B2 (en) 3D shape measuring device
US4892371A (en) Semiconductor laser array light source and scanner
US4425041A (en) Measuring apparatus
JPH0914935A (en) Measuring device for three-dimensional object
JP2500658B2 (en) Scanning laser displacement meter
JPH04282845A (en) Three-dimensional shape measuring instrument
JP2004020536A (en) Three-dimensional shape measuring apparatus
JP2003083723A (en) Three-dimensional shape measuring optical system
JPH0311401B2 (en)
US4739158A (en) Apparatus for the detection of pattern edges
JPH0658723A (en) Scanning type laser displacement meter
JPH11281473A (en) M2 measuring device
JPH0915518A (en) Laser scanning device
JPH03111707A (en) Detecting method of shape of object
JP2004117001A (en) Laser doppler vibrometer
JP2808713B2 (en) Optical micro displacement measuring device
JPH07120217A (en) Distance measurement method and device
JP2000321019A (en) Displacement measuring instrument

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961105