JPH0428203A - Non-contact potentiometer - Google Patents

Non-contact potentiometer

Info

Publication number
JPH0428203A
JPH0428203A JP13342390A JP13342390A JPH0428203A JP H0428203 A JPH0428203 A JP H0428203A JP 13342390 A JP13342390 A JP 13342390A JP 13342390 A JP13342390 A JP 13342390A JP H0428203 A JPH0428203 A JP H0428203A
Authority
JP
Japan
Prior art keywords
resistance layer
layer
current
magnetic powder
potentiometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13342390A
Other languages
Japanese (ja)
Inventor
Koji Tanabe
功二 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13342390A priority Critical patent/JPH0428203A/en
Publication of JPH0428203A publication Critical patent/JPH0428203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adjustable Resistors (AREA)

Abstract

PURPOSE:To obtain a highly reliable potentiometer which can be used at a high temperature and requiring no special additive circuit by a method wherein a resistance layer and a current collecting layer are opposingly provided, and liquid-like substance in which conductive magnetic powder is dispersed is filled up between the above- mentioned two layers. CONSTITUTION:Ordinarily, the conductive magnetic powder 2 in a liquid-like substance is disorderly arranged between the resistance layer 4 on a substrate 3a and the current- collecting layer 5 of a substrate 3b, but when a magnetic field 6a is locally given by a magnet 6, the conductive magnetic powder 2 is arranged in an orderly manner while the grains are brought into contact with each other between the resistance layer 4 and the current-collecting layer 5, and the above-mentioned part only is turned into an electrically connected state. By having the concentration position of the magnetic field 6a formed into relatively movable structure against the resistance layer 4 and the current-collecting layer 5, the above-mentioned state of arrangement can be moved in accordance with the movement of the concentration position of the magnetic field 6a. As a result, the electrically connected part on the resistance layer 4 can be changed arbitrarily, and the function of a potentiometer can be accomplished.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種の回転角検出センサー、機械的直線変位
量センサー、さらには電気回路中の可変抵抗器として用
いられる無接触ポテンショメータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to various rotation angle detection sensors, mechanical linear displacement sensors, and contactless potentiometers used as variable resistors in electric circuits.

従来の技術 従来、一般に用いられている可動接点式のポテンショメ
ータでは、抵抗体上を摺動する可動接点22、 の位置によって抵抗値が決まるが、抵抗体と可動接点と
の間の接触抵抗値が不安定で、いわゆる摺動雑音を発生
し寿命も短い。これに対し無接触ポテンショメータには
、硫化カドミウム(CdS)。
BACKGROUND OF THE INVENTION Conventionally, in a commonly used movable contact type potentiometer, the resistance value is determined by the position of the movable contact 22, which slides on the resistor, but the contact resistance between the resistor and the movable contact is It is unstable, produces so-called sliding noise, and has a short lifespan. On the other hand, contactless potentiometers are made of cadmium sulfide (CdS).

硫化鉛(pbs)などの光導電性を利用した光導電式の
ものや、ビヌマヌ、アンチモンなどの研究抵抗効果を利
用した研究式のものがあり、いずれも抵抗値が無接点で
変化する(t/1造になっている。
There are photoconductive types that utilize photoconductivity such as lead sulfide (PBS), and research type types that utilize the research resistance effect of binumanu and antimony, and in both cases, the resistance value changes without contact (t /1 construction.

このような無接触ポテンショメータは、可動接点式のも
のと比べ極めて高寿命であるがために高信頼性であり1
位置1回転角、変位量等のセンサーとして多用されてい
る。
This type of non-contact potentiometer has an extremely long life compared to a movable contact type, so it is highly reliable.
It is often used as a sensor for position, rotation angle, displacement, etc.

発明が解決しようとする課題 しかしながらCdSを用いたものは、素子そのものは高
信頼性であるが、作動させるための光源の寿命が概して
短い欠点を有し1寸たホール1子や硼啜抵抗素子を用い
たものは、温度補償や演算のための回路を別に必要とし
、かつ回路に耐熱性を持たせることが困備であった。
Problems to be Solved by the Invention However, although the devices themselves using CdS are highly reliable, they have the drawback that the light source used to operate them generally has a short lifespan, and they are not suitable for use with 1-inch Hall elements or resistor elements. Those using 200 MHz required separate circuits for temperature compensation and calculations, and it was difficult to provide heat resistance to the circuit.

本発明は、特別な付加回路を必要とせず、高温3ヘー/ 丑で使用できる高寿命、高信頼性のポテンショメータを
提供することを目的としている。
The object of the present invention is to provide a potentiometer with a long life and high reliability that can be used at high temperatures of 3 h/m without requiring any special additional circuits.

課題を解決するだめの手段 上記目的を達成するために、本発明の無接触ポテンショ
メータは、抵抗層と集電層とを対向して配設し、その間
を導電性磁性粉を分散させた液状物で満たして構成した
ものであり、可動磁石による磁界によって磁性粉体粒子
の向きが揃えられ。
Means for Solving the Problems In order to achieve the above objects, the non-contact potentiometer of the present invention has a resistance layer and a current collection layer disposed facing each other, and a liquid material having conductive magnetic powder dispersed therebetween. The magnetic powder particles are oriented in the same direction by the magnetic field generated by the moving magnet.

粒子が互に連なることによって抵抗層と集電層とが電気
的に接続されるようにしたものである。
The resistance layer and the current collecting layer are electrically connected by the particles being connected to each other.

作用 本発明の作用を図面を用いて説明する。action The operation of the present invention will be explained using the drawings.

本発明においては5通常は第1図に示すように液状物1
中の導電性磁性粉2が基板3 a J二の抵抗層4と基
板3b上の集電層6との間で無秩序に配列しているが、
第2図に示すように磁石6により局所的に磁界6aを与
えると、導電性磁性粉2は抵抗層4と集電層5の間に粒
子同志が接触しながら整然と配列し、その部分だけが電
電的接続状態となる。磁界6aの集中位置を抵抗層4お
よび集電層6に対し相対的に可動構造とすることによっ
て!L:、記の整然とした配列状態が磁界6aの集中位
置の移動に従って移動する結果、抵抗層4上の電電的接
続部位が任意に可変でき、ポテンショメータ機能が達成
される。
In the present invention, 5 usually uses a liquid material 1 as shown in FIG.
The conductive magnetic powder 2 inside is arranged randomly between the resistance layer 4 on the substrate 3a and the current collecting layer 6 on the substrate 3b.
As shown in FIG. 2, when a magnetic field 6a is applied locally by the magnet 6, the conductive magnetic powder 2 is arranged in an orderly manner between the resistance layer 4 and the current collection layer 5 with the particles in contact with each other, and only that part is It becomes electrically connected. By making the concentration position of the magnetic field 6a movable relative to the resistance layer 4 and the current collecting layer 6! L: As a result of the orderly array state moving as the concentration position of the magnetic field 6a moves, the electrical connection portion on the resistance layer 4 can be changed arbitrarily, and a potentiometer function is achieved.

ここで上記の導電性磁性粉2と1〜では1次の構成のも
のがある。
Here, some of the conductive magnetic powders 2 and 1~ have a linear configuration.

(1)導電部分と磁性部分とが混在したもの。(1) A mixture of conductive parts and magnetic parts.

(2)母体が雲母、グラファイト、窒化ボロン、鱗片状
アルミ粉またはその他の絶縁物で、その表面が磁性金層
でコーティングされ、さらに貴金属でコーティングされ
ているもの。この場合。
(2) The matrix is mica, graphite, boron nitride, flaky aluminum powder, or other insulating material, and the surface is coated with a magnetic gold layer and further coated with a noble metal. in this case.

粉体の慣性質量を小さくでき、磁界6aの移動に対し、
すみやかに配列状態を変化できる。
The inertial mass of the powder can be reduced, and against the movement of the magnetic field 6a,
Array status can be changed quickly.

(3)母体が磁性粉で、その表面が導電性物質でコーテ
ィングされているもの。
(3) The base material is magnetic powder and the surface is coated with a conductive material.

そして導電性磁性粉2は磁界6a下での電気的接続を安
定化させる目的において針状または鱗片状であることが
望ましい。さらにまた抵抗層側では抵抗層4と整列した
導電性磁性粉2の電気的液6 べ−2 続を安定化させるために第3図に示すように抵抗層4に
重ね合わせて部分電極7を形成しても良い。
The conductive magnetic powder 2 is preferably needle-shaped or scale-shaped for the purpose of stabilizing electrical connection under the magnetic field 6a. Furthermore, on the resistance layer side, in order to stabilize the connection between the electrical liquid 6 and the conductive magnetic powder 2 aligned with the resistance layer 4, a partial electrode 7 is placed over the resistance layer 4 as shown in FIG. It may be formed.

実施例 以下本発明の実施例について第4図の図面とともに説明
する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIG. 4.

実施例(1) 平均粒径o4μmの針状酸化第二鉄(Fe203)粉末
表面に6重量%の銀を化学メツキして導電性磁性粉2を
得た。ガラス基板2枚のうち一方にカーボン・レジン系
の抵抗層4を、他方に銀ペーストにより集電層5を形成
した。導電性磁性粉2重量%およびヌペーザ用の粒径2
0μmのシリカ粉末0.2重it%ヲ沸点366°Cの
フルオロカーボン系の溶剤に均一に分散させ抵抗層4と
集電層5をそれぞれ形成したガラス基板3a 、3bを
対向させてその間を導電性磁性粉2およびスペーサ粉を
分散させた液状物1で満たし、ヌベーサによシ間隙を保
持させながらガラス基板2枚を貼り合わせ。
Example (1) Conductive magnetic powder 2 was obtained by chemically plating 6% by weight of silver on the surface of acicular ferric oxide (Fe203) powder having an average particle diameter of 4 μm. A carbon-resin resistance layer 4 was formed on one of the two glass substrates, and a current collecting layer 5 was formed on the other using silver paste. Conductive magnetic powder 2% by weight and particle size 2 for Nupeza
Glass substrates 3a and 3b on which a resistive layer 4 and a current collecting layer 5 were formed by uniformly dispersing 0.2 weight % of 0 μm silica powder in a fluorocarbon solvent with a boiling point of 366°C are placed facing each other to conduct conductivity between them. It is filled with liquid material 1 in which magnetic powder 2 and spacer powder are dispersed, and two glass substrates are bonded together while maintaining the gap between Nubesa.

周囲をエポキシ樹脂などの制止剤8で封止して第4図(
a)に見られるような本発明による無接触ボテ6 ・・ ンショメータを得た。第4図(b)はその等何回路であ
る。図において、9a 、91)、90はそれぞれ端子
、10は抵抗、11は導体を示す。抵抗層4の端子9a
および9bの両端子間に所定電圧を印加し、ヌリット状
の磁石6を両端子間を移動させて集電層6に発生する電
位を調べた結果、ポテンショメータとして作動している
ことを確認した。
The surrounding area is sealed with an inhibitor 8 such as epoxy resin, and as shown in Fig. 4 (
A non-contact meter according to the present invention as shown in a) was obtained. FIG. 4(b) shows such a circuit. In the figure, 9a, 91) and 90 are terminals, 10 is a resistor, and 11 is a conductor. Terminal 9a of resistance layer 4
A predetermined voltage was applied between both terminals of 9b and 9b, and the null-shaped magnet 6 was moved between both terminals to examine the potential generated in the current collecting layer 6. As a result, it was confirmed that the magnet 9 was operating as a potentiometer.

実施例(2) 平均粒径2.6μmの雲母粉に1o重量%のニッケル(
N1)を化学メツキし、さらに金のフランシュメツキを
行って導電性磁性粉2を得た。本粉末について実施例(
1)と同様の構成で無接触ポテンショメータを製作、評
価した結果、ポテンショメータとして作動することが確
認された。
Example (2) 10% by weight of nickel (
Conductive magnetic powder 2 was obtained by chemically plating N1) and further performing gold flanche plating. Examples of this powder (
As a result of fabricating and evaluating a contactless potentiometer with the same configuration as 1), it was confirmed that it operates as a potentiometer.

発明の効果 以上の実施例から明らかなように本発明によれば、作動
源に礎石を用いるために従来のCdSなどを用いる光導
電方式のように光源の寿命の問題もなく、またホール素
子や磁気抵抗素子を用いる方法のように温度補償や演算
のだめの回路も必要7 ・\ なく、かつ導電性磁性粉を分散させる液体状分散媒に耐
熱性や化学的安定性の高いものを選定すれば、通常要求
される連続150’C程度の耐熱性も具備することが可
能であり、産業上極めて有用である。
Effects of the Invention As is clear from the above embodiments, according to the present invention, since a foundation stone is used as the operating source, there is no problem of the life of the light source unlike the conventional photoconductive method using CdS, etc., and there is no problem with the life of the light source. Unlike methods using magnetoresistive elements, temperature compensation and calculation circuits are not required. It is also possible to provide the normally required continuous heat resistance of about 150'C, making it extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による無接触ポテンショメータの基本構
成部分の断面図、第2図は同基本構成部分に可動磁石を
作用させたときの断面図、第3図は同ポテンショメータ
の他の基本構成部分の断面図、第4図(a) 、 (b
)は本発明による無接触ポテンショメータの一実施例の
断面図およびその等価回路図である。 1・・・・・・液状物、2・・・・・・導電性磁性粉、
 3a 、 sb・・・・・・基板、4・・・・・・抵
抗層、5・・・・・集電層。
Fig. 1 is a cross-sectional view of the basic constituent parts of a non-contact potentiometer according to the present invention, Fig. 2 is a cross-sectional view when a movable magnet is applied to the same basic constituent part, and Fig. 3 is another basic constituent part of the same potentiometer. Cross-sectional view of Figure 4 (a), (b
) are a sectional view and an equivalent circuit diagram of an embodiment of a contactless potentiometer according to the present invention. 1... Liquid substance, 2... Conductive magnetic powder,
3a, sb...substrate, 4...resistance layer, 5...current collection layer.

Claims (2)

【特許請求の範囲】[Claims] (1)一方の基板上に形成した抵抗層と他方の基板上に
形成した集電層とを対抗して配置し、前記抵抗層と集電
層との間に電気的接続体として導電性磁性粉を分散させ
た液状物を介在させた無接触ポテンショメータ。
(1) A resistive layer formed on one substrate and a current collecting layer formed on the other substrate are arranged facing each other, and a conductive magnetic material is used as an electrical connection between the resistive layer and the current collecting layer. A non-contact potentiometer with a liquid substance in which powder is dispersed.
(2)導電性磁性粉が、針状または鱗片状である請求項
1記載の無接触ポテンショメータ。
(2) The non-contact potentiometer according to claim 1, wherein the conductive magnetic powder is needle-shaped or scale-shaped.
JP13342390A 1990-05-23 1990-05-23 Non-contact potentiometer Pending JPH0428203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13342390A JPH0428203A (en) 1990-05-23 1990-05-23 Non-contact potentiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13342390A JPH0428203A (en) 1990-05-23 1990-05-23 Non-contact potentiometer

Publications (1)

Publication Number Publication Date
JPH0428203A true JPH0428203A (en) 1992-01-30

Family

ID=15104428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13342390A Pending JPH0428203A (en) 1990-05-23 1990-05-23 Non-contact potentiometer

Country Status (1)

Country Link
JP (1) JPH0428203A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445778A2 (en) * 2003-02-05 2004-08-11 Metallux GmbH Electrically conductive magnetic powder
DE10323765B4 (en) * 2003-05-22 2012-10-18 Frank Dietrich Electrical component and use of an electrically conductive, magnetic powder
JP2016171103A (en) * 2015-03-11 2016-09-23 株式会社栗本鐵工所 Electrical resistance variable fluid and variable resistance device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445778A2 (en) * 2003-02-05 2004-08-11 Metallux GmbH Electrically conductive magnetic powder
EP1445778A3 (en) * 2003-02-05 2005-05-04 Metallux AG Electrically conductive magnetic powder
DE10323765B4 (en) * 2003-05-22 2012-10-18 Frank Dietrich Electrical component and use of an electrically conductive, magnetic powder
JP2016171103A (en) * 2015-03-11 2016-09-23 株式会社栗本鐵工所 Electrical resistance variable fluid and variable resistance device using the same

Similar Documents

Publication Publication Date Title
US4113981A (en) Electrically conductive adhesive connecting arrays of conductors
JP3499877B2 (en) Force detection ink
JP7132234B2 (en) print temperature sensor
US3286161A (en) Magneto-resistive potentiometer
Carcia et al. Electrical conduction and strain sensitivity in RuO2 thick film resistors
GB2465077A (en) Polymer composition with electrically-conductive filler
WO2010113341A1 (en) Current detection metal plate resistor and method of producing same
JPS6022726B2 (en) displacement detector
JPS6166391A (en) Self-temperature control type heater
JPH0428203A (en) Non-contact potentiometer
JP6799908B2 (en) Temperature sensitive element
US20170001388A1 (en) A body comprising a particle structure and method for making the same
JP7348959B2 (en) Composite materials that sense force or pressure
JP5493278B2 (en) Ferromagnetic ceramic, and magnetoresistive element and magnetic sensor constructed using the same
US3863116A (en) New capacitor construction
US3906425A (en) Oxide semiconductor-metal contact resistance elements
US3056938A (en) Micro-molecular resistor
KR100418449B1 (en) Resistor and variable resistor using the same
FI129739B (en) Improved negative temperature coefficient thermistor
JP6684076B2 (en) Thermoelectric conversion element
WO2019075685A1 (en) Surface mounted fuse device having positive temperature coefficient body
JPH05190219A (en) Liquid alloy for electrical connecting device
JPH0262005A (en) Sheet-shaped varistor
JPH113641A (en) Temperature switch element
JPS6230301A (en) Variable resistor