JPH04279862A - Automatic analyzer - Google Patents

Automatic analyzer

Info

Publication number
JPH04279862A
JPH04279862A JP12328791A JP12328791A JPH04279862A JP H04279862 A JPH04279862 A JP H04279862A JP 12328791 A JP12328791 A JP 12328791A JP 12328791 A JP12328791 A JP 12328791A JP H04279862 A JPH04279862 A JP H04279862A
Authority
JP
Japan
Prior art keywords
reaction
dispensing
reagent
line
automatic analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12328791A
Other languages
Japanese (ja)
Inventor
Kazutomi Yokota
横田 和富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tectron Instruments Corp
Original Assignee
Japan Tectron Instruments Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tectron Instruments Corp filed Critical Japan Tectron Instruments Corp
Priority to JP12328791A priority Critical patent/JPH04279862A/en
Publication of JPH04279862A publication Critical patent/JPH04279862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To downsize a device and increase its processing capacity by arranging two reaction lines on the same reaction table, and using a pipet device having plural number of nozzles. CONSTITUTION:On liquid to be examined 1, a pipet device P having four nozzles carries out absorption (P1), measurement of electric potential (P2), dispensing (P3) into reaction tubes and cleaning (P4), and is again turned to the (P1) position. Assuming, for example, that the first half up to 80 among reaction tubes 1-160 arranged on the outer periphery of a reactor table H is the first reaction line H1 and the latter half is the second reaction line H2, reagent is dispensed by means of the first and the second reagent pipets 4 and 5 having three nozzles for absorption, dispensing and cleaning. The line H1 starts by injecting the liquid to be examined into No.1 reaction tube, and injects the reagent after the table H has made a half turn, and injects the liquid to be examined into No.2 when the table H has advanced further by one pitch. Furthermore, the line H2 is started by injecting the reagent partially into No.81 when the No.1 has been started, and during that time, photometry on the reacted liquid to be measured is carried out automatically by means of a colorimeter 6.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は自動分析装置に係り、特
に生化学分析、電解質分析などを高速で実施可能な自動
分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic analyzer, and more particularly to an automatic analyzer capable of performing biochemical analysis, electrolyte analysis, etc. at high speed.

【0002】0002

【従来の技術】複数の反応容器を搬送して分析を実施す
る自動分析装置において、反応テーブルに配した反応容
器のラインは1ラインであり、反応容器に検液の分注、
第1試薬分注、第2試薬分注を行い順次光学的測定を実
施する方法が用いられ、また検液の分注は1本ノズルを
通常とし、吸入、分注、洗浄が順次行われる。さらに、
試薬の分注ピペットも通常は1本ノズルで、吸入、分注
、洗浄の操作が順次実施された。
[Prior Art] In an automatic analyzer that transports a plurality of reaction vessels to carry out analysis, there is one line of reaction vessels arranged on a reaction table, and a test liquid is dispensed into the reaction vessels.
A method is used in which a first reagent is dispensed, a second reagent is dispensed, and optical measurements are performed sequentially.A test liquid is usually dispensed through one nozzle, and suction, dispensing, and washing are performed sequentially. moreover,
The reagent dispensing pipette usually had one nozzle, and the operations of suction, dispensing, and washing were carried out sequentially.

【0003】0003

【発明が解決しようとする課題】上記従来技術には下記
の問題点がある。すなわち、装置サイズを決定する主要
因に反応テーブルのサイズがある。しかし、反応容器が
外縁に一列に配列してあるために、装置の処置能力を大
きくしたいときは反応テーブル数の増加、ユニットの増
設で対応せざるを得ず、処理能力の増加に比例して装置
サイズが大型化する。このため、装置を大型化せず、コ
ンパクトな状態で分注操作、反応操作、測光操作を行う
ことを目的としたものである。同時に、検体分注ピペッ
ト、並びに第1試薬ピペット、第2試薬ピペットは1本
ノズルを通常としたため分注効率が劣るためこの効率化
を図った。
[Problems to be Solved by the Invention] The above-mentioned prior art has the following problems. That is, the size of the reaction table is the main factor that determines the device size. However, because the reaction vessels are arranged in a line along the outer edge, if you want to increase the treatment capacity of the device, you have no choice but to increase the number of reaction tables and units, and the increase in treatment capacity is proportional to the increase in treatment capacity. Equipment size increases. Therefore, the objective is to perform dispensing operations, reaction operations, and photometry operations in a compact state without increasing the size of the apparatus. At the same time, since the sample dispensing pipette, the first reagent pipette, and the second reagent pipette usually have one nozzle, the dispensing efficiency is poor, so this efficiency was improved.

【0004】0004

【課題を解決するための手段】本発明では、少くとも一
部を共通した反応容器を搬送するようにして、反応テー
ブルの外縁に配列した反応ラインの前半及び後半の2ラ
インを具え、前半の第1反液ラインは検液分注、試薬分
注の順序で分注し、後半の第2反応ラインは試分注、検
液分注の順序で分注を行ない、反応テーブルの回転を1
/2回転より1ピッチ進めて回動制御し、上述の各々の
分注を繰返して行い、その間、吸光度の測定を自動的に
実施して、順次新らしい検体の測定を可能として分析の
処理能力を大幅に増大させたものである。
[Means for Solving the Problems] The present invention includes two reaction lines, a first half and a second half, which are arranged on the outer edge of a reaction table so as to convey a reaction vessel having at least a part in common. The first anti-liquid line performs dispensing in the order of test solution dispensing and reagent dispensing, and the second reaction line in the latter half performs dispensing in the order of test dispensing and test solution dispensing, and the reaction table rotates once.
The rotation is controlled by advancing one pitch from /2 rotations, and each of the above-mentioned dispensing is repeated. During this time, the absorbance is automatically measured, making it possible to sequentially measure new samples, increasing the analytical throughput. This is a significant increase in .

【0005】同時に検液の分注を行うピペット装置にお
いて、4本ノズルのピペットを用い、そのおのおのが第
1ポットで検液の吸入、第2ポットの電解質ポットにお
ける比較電極と基準電極を備え、測定液の電位差と予め
コンピュータに記憶した校正液との電位差との差を求め
て電解質濃度が算出でき、更に第3ポットで検液の反応
容器への分注、第4のポットでピペットの洗浄を行うこ
とによってピペットを多目的で高速処理できるようにし
た。
[0005] A pipette device that simultaneously dispenses a test solution uses a four-nozzle pipette, each of which has a first pot for inhaling the test solution, a second pot for an electrolyte pot, and a comparison electrode and a reference electrode. The electrolyte concentration can be calculated by finding the difference between the potential difference of the measurement solution and the potential difference between the calibration solution and the calibration solution stored in advance in the computer, and the third pot dispenses the test solution into the reaction container, and the fourth pot washes the pipette. By doing this, we have made pipettes versatile and capable of high-speed processing.

【0006】さらに、試薬は第1試薬と第2試薬の分注
用のピペットはそれぞれ3本ノズルのものを採用し、試
薬の吸入、反応容器への分注、洗浄の3操作が交互に行
える方式を完成し、第1試薬並びに第2試薬の分注の高
速化が実現できた。
Furthermore, the pipettes for dispensing the first reagent and the second reagent each have three nozzles, and the three operations of suctioning the reagent, dispensing into the reaction container, and washing can be performed alternately. The method was completed and the dispensing of the first and second reagents was achieved at high speed.

【0007】[0007]

【実施例】図1は本発明に係る自動分析装置に関する。 この自動分析装置は、検体が所要量毎に収容された容器
1を所要数保持するサンプルカセット2が所要数配置さ
れ、同カセット2が所要タイミングで順次検体秤取位置
まで間けつ移送されるように構成されるオートサンプラ
ーSからなり、容器1の検体にはバーコードによりその
履歴および検査項目が読取り可能で、ランダムアクセス
可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 relates to an automatic analyzer according to the present invention. In this automatic analyzer, a required number of sample cassettes 2 holding a required number of containers 1 each containing a required amount of specimen are arranged, and the cassettes 2 are sequentially transported to a specimen weighing position at a required timing. The history and test items of the sample in the container 1 can be read using a bar code, and random access is possible.

【0008】容器1より検体を所要量秤取するサンプル
ピペット装置Pと同ピペットで秤取された検体が所要位
置で注入される反応容器3(図1ではNo.1〜160
)が所要数所要間隔で反応テーブルHに配設されている
A sample pipette device P for weighing a required amount of a specimen from a container 1 and a reaction container 3 (No. 1 to 160 in FIG. 1) into which the specimen weighed by the pipette is injected at a required position
) are arranged on the reaction table H at required intervals.

【0009】つぎに、ピペット装置は図1に示すように
ターレット状のピペットホルダーに所定間隔毎に4本保
持されており、図示されないモータおよび公知のカム装
置などにより90°づつ間欠運動するように回動制御さ
れる。すなわち、上記各ピペットはP1位置で一般検体
を所要量吸引して回動し、P2位置では比較電極と基準
電極とを保持する電解質分析用ポットに入り、測定液の
電位差を求め、予め校正液の電位差を図示しないコンピ
ュータに記憶させ、その差から電解質(Na、K、Cl
)濃度の算定ができるようになっている。さらにP3で
は反応管3に一般用または緊急用検体を分注し、P4で
は洗浄が行われ、その後再びP1位置まで回動する。 各ピペットは公知の図示しない吸引ポンプと排出ポンプ
を備え、信号処理装置によって回動制御される吸上用カ
ムと排出用カムとが係合して作動するようにセットされ
ている。
Next, as shown in FIG. 1, four pipette devices are held at predetermined intervals in a turret-shaped pipette holder, and are moved intermittently in 90° increments by a motor (not shown) and a known cam device. Rotation is controlled. That is, each pipette described above aspirates the required amount of general sample at the P1 position and rotates, enters the electrolyte analysis pot that holds the comparison electrode and the reference electrode at the P2 position, determines the potential difference of the measurement solution, and pre-fills the calibration solution with the The potential difference is stored in a computer (not shown), and electrolytes (Na, K, Cl
) It is now possible to calculate the concentration. Further, at P3, a general or emergency sample is dispensed into the reaction tube 3, and at P4, cleaning is performed, and then the tube rotates again to the P1 position. Each pipette is equipped with a well-known suction pump and a discharge pump (not shown), and is set to operate when a suction cam and a discharge cam, which are rotationally controlled by a signal processing device, engage with each other.

【0010】このように検体を分注する反応管3は、例
えばジェネバ機構などの駆動装置により間欠的に回動す
る反応テーブルHの外縁に配設し、図1では160個の
反応容器を保持し、例として前半のNo.1からNo.
80を第1反応ラインH1として、後半のNo.81か
らNo.160を第2反応ラインH2とする。第1反応
ライン4の反応管3には検液分注をPにより行った後、
第1試薬ピペット4、第2試薬ピペット5を用いて試薬
の分注を行い、第2反応ラインH2の反応管3には第1
試薬ピペット4、第2試薬ピペット5を用いて先に試薬
分注を行い、後に検体用ピペットPからの検体分注を行
う。
The reaction tube 3 for dispensing the sample as described above is disposed at the outer edge of the reaction table H, which is rotated intermittently by a drive device such as a Geneva mechanism, and in FIG. 1, it holds 160 reaction vessels. For example, the first half No. 1 to No.
80 as the first reaction line H1, and No. 80 in the second half as the first reaction line H1. 81 to no. 160 is the second reaction line H2. After dispensing the test solution into the reaction tube 3 of the first reaction line 4 using P,
Reagents are dispensed using the first reagent pipette 4 and the second reagent pipette 5, and the first reagent pipette is
A reagent is first dispensed using the reagent pipette 4 and a second reagent pipette 5, and then a sample is dispensed from the sample pipette P.

【0011】第1反応ラインH1のNo.1の反応管に
は検体を分注してスタートし、反応テーブルHが1/2
回転後に試薬注入を行い、反応テーブルHが1/2回転
から1ピッチ進んだ時、No.2の反応管に検体を分注
としてスタートし、反応テーブルHが1/2回転後、試
薬分注を行い、さらに1ピッチ進んだ時、同様な操作を
No.3に行い、順次1ピッチ進むごとに操作をすゝめ
No.80まで同様に繰り返す。
No. 1 of the first reaction line H1. Start by dispensing the sample into reaction tube 1, and reaction table H is 1/2
After the rotation, the reagent was injected, and when the reaction table H advanced one pitch from 1/2 rotation, No. Start by dispensing the sample into the reaction tube of No. 2, and after the reaction table H rotates 1/2, perform the reagent dispensing, and when it advances one more pitch, repeat the same operation. 3, and proceed with the operation each time you advance one pitch. Repeat until 80.

【0012】第2反応ラインH2においては、第1反応
ラインH1の反応管No.1のスタート時にNo.81
の反応管に試薬ピペット4から試薬分注を行い、反応テ
ーブルHが1/2回転後、検液分注ピペットPよりNo
.81に検体が分注される。更に1ピッチ反応テーブル
Hが進むと、つぎのNo.82に試薬分注が行われ、反
応テーブルHの1/2回転後に検液を分注し、同様にN
o.83から始まってNo.160繰返し操作が終る。 本操作は第1反応ラインH1のNo.1の動きと第2反
応ラインH2のNo.81の動きが同時に行われ、同様
にNo.2とNo.82から始まりNo.80とNo.
160までが同一のタイムチャートに従って反応テーブ
ルを回動し、光学測定が比色検出器6によって反応管3
中の反応検体を測光し、図示しない信号処理装置、対数
変換器、A/Dコンバータ、インターフェースを経て、
信号をメモリーするマイクロコンピュータに処理される
[0012] In the second reaction line H2, the reaction tube No. 1 of the first reaction line H1. No. 1 at the start. 81
Dispense the reagent from the reagent pipette 4 into the reaction tube, and after the reaction table H has rotated 1/2, pipette No.
.. The sample is dispensed into 81. When the reaction table H advances one pitch further, the next No. 82, the reagent is dispensed, and after 1/2 rotation of the reaction table H, the test solution is dispensed, and the N
o. Starting from 83 and No. The 160-iteration operation ends. This operation is carried out using No. 1 of the first reaction line H1. 1 movement and No. 1 of the second reaction line H2. 81 movements are performed at the same time, and similarly No. 81 movements are performed simultaneously. 2 and no. Starting from 82 and No. 80 and no.
The reaction table is rotated according to the same time chart up to 160, and the optical measurement is carried out by the colorimetric detector 6 in the reaction tube 3.
The reaction sample inside is photometered, and passes through a signal processing device, logarithmic converter, A/D converter, and interface (not shown).
The signal is processed by a microcomputer that stores it in memory.

【0013】第1試薬テーブル7および第2試薬テーブ
ル8は、第1試薬ならびに第2試薬を内蔵し、ターレッ
ト状に構成され、図2に示すように中央部14は固定軸
12を有し、40bで軸支され、試薬ボトル30、32
の収納ケース21を示し、円筒状の内側板21C、外側
板21aで円環状をなし、これらはバーコードによって
各々の試薬が選択できるシステムであり、内接歯車22
と外接歯車24とはかみ合い、駆動装置38で回動が正
逆回転でき、室温保存部55と冷却保存部60とに分け
られている。
The first reagent table 7 and the second reagent table 8 contain a first reagent and a second reagent, and are configured in a turret shape, and as shown in FIG. 2, the central portion 14 has a fixed shaft 12. 40b, and the reagent bottles 30, 32
The storage case 21 is formed into an annular shape with a cylindrical inner plate 21C and an outer plate 21a, and these are a system in which each reagent can be selected by a bar code.
It meshes with the external gear 24, can be rotated in forward and reverse directions by a drive device 38, and is divided into a room temperature storage section 55 and a cooling storage section 60.

【0014】室温保存部は収納ケース21の一部を区画
材34a、34b、34cにより、冷却保存部60と区
画し、室温保存部55は底板21bの外面に発熱体36
が抑え材37で固着し、断熱材38により放熱防止する
ようになり、電気的接点41a、41bが設けられ、制
御回路を介して通電し室温的温度が保持される。
The room temperature storage section 55 has a heating element 36 on the outer surface of the bottom plate 21b.
is fixed by a restraining material 37, and heat radiation is prevented by a heat insulating material 38. Electrical contacts 41a and 41b are provided, and electricity is supplied through a control circuit to maintain room temperature.

【0015】冷却保存部60は、収納ケース21と囲い
材50の側壁50aの内周面との間隙47と、試薬ボト
ル32の頂壁50との間隙48と中空部14により順次
形成される冷却通路70により冷気域46を形成し、送
風手段43により冷気を連通し、熱電素子52aを有す
る電気冷却手段52を設けて冷却源とし、外部放熱器5
3aを台板53に付設する。また、試薬ボトル30,3
2はそれぞれの吸引口31、33から所要量の試薬を吸
引して、対応する反応管に分注できるようになっている
The cooling storage section 60 is a cooling storage section formed sequentially by a gap 47 between the storage case 21 and the inner peripheral surface of the side wall 50a of the enclosure member 50, a gap 48 between the top wall 50 of the reagent bottle 32, and the hollow section 14. A cold air area 46 is formed by the passage 70, cold air is communicated by the blowing means 43, an electric cooling means 52 having a thermoelectric element 52a is provided as a cooling source, and an external radiator 5
3a is attached to the base plate 53. In addition, reagent bottles 30, 3
2 can suck a required amount of reagent from the respective suction ports 31 and 33 and dispense it into the corresponding reaction tube.

【0016】図4は150,151,152は、3本ノ
ズルから成るピペットノズルであり、154は保持具で
三端で取付具で垂直方向に保持される。52は主軸で、
保持具154は長さ方向の中心部にあり回転自在に軸受
に支承される。ピペットノズル150,151,152
は図示しないチューブに接続され、電磁弁により試薬ポ
ンプに接続し、ポンプ内のマイクロシリンジを満水し、
空気を介して試薬と水を隔離した状態で計量を行う。
In FIG. 4, 150, 151, and 152 are pipette nozzles consisting of three nozzles, and 154 is a holder, and the three ends thereof are held vertically by fittings. 52 is the main axis,
The holder 154 is located at the center in the longitudinal direction and is rotatably supported by a bearing. Pipette nozzle 150, 151, 152
is connected to a tube (not shown), connected to a reagent pump by a solenoid valve, and the microsyringe inside the pump is filled with water.
Weighing is performed with the reagent and water separated by air.

【0017】ピペットノズルは加温手段と試薬液面を検
知する液面センサを設ける。主軸53とピベットノズル
150,151,152は上下動し、中間位置にブッシ
ュ180,180,180を設け178が貫通し、部材
176、上部レバー177、支柱178,178、17
8は固定し、保持具154の回動のため、力の伝達が行
われる。
The pipette nozzle is provided with a heating means and a liquid level sensor for detecting the reagent liquid level. The main shaft 53 and the pivot nozzles 150, 151, 152 move up and down, and bushes 180, 180, 180 are provided at intermediate positions, through which the member 176, the upper lever 177, the columns 178, 178, 17 pass through.
8 is fixed, and force is transmitted due to the rotation of the holder 154.

【0018】主軸153の上下させるため、上下駆動手
段はパルスモータ156をはじめとする駆動伝達要素か
らなり、回転は歯車列158,160,162,164
により166からラック168へ伝達し、回転駆動手段
は、パルスモータ170が歯車例172,174により
部材76を回転させ154を回転するように伝達する。
In order to move the main shaft 153 up and down, the up and down driving means consists of drive transmission elements including a pulse motor 156, and rotation is performed by gear trains 158, 160, 162, 164.
166 to the rack 168 , and the rotation drive means transmits the pulse motor 170 to rotate the member 76 through the gears 172 and 174 to rotate the member 154 .

【0019】自動分析装置の作動により試薬ピペット装
置4、5の作動を開始すると、反応管3が試薬吐出位置
に来ると試薬ボトルをバーコードの読取りにより回転し
て、測定項目に応じた試薬吸引位置まで移送し、上下動
と回転駆動手段でピペットノズル50は試薬吸引位置に
ある試薬ボトル内に挿入し、液面サンサの働きで下降移
動を停止し、試薬ポンプで所要量計量吸引し、引継き、
ピペットノズル150は上昇し、試薬ボトルから引出し
、試薬吐出位置に回送され、その位置の反応管3に挿入
され試薬ポンプの押出しで分注し、さらに次段階でピペ
ットノズル150は、洗浄トラフWの洗浄位置で、洗浄
液によりノズルの内外面を洗浄する。
When the automatic analyzer starts operating the reagent pipette devices 4 and 5, when the reaction tube 3 comes to the reagent discharge position, the reagent bottle is rotated by reading the bar code to aspirate the reagent according to the measurement item. The pipette nozzle 50 is inserted into the reagent bottle at the reagent suction position using the vertical movement and rotation drive means, and the downward movement is stopped by the action of the liquid level sensor, and the required amount is measured and aspirated by the reagent pump, and the pipette nozzle 50 is transferred. tree,
The pipette nozzle 150 is raised, pulled out from the reagent bottle, sent to the reagent discharge position, inserted into the reaction tube 3 at that position, and dispensed by the extrusion of the reagent pump. At the cleaning position, the inside and outside surfaces of the nozzle are cleaned with cleaning liquid.

【0020】いま、ピペットノズル150が試薬吸引時
には、ノズル151は反応容器3に試薬を分注し、ノズ
ル152は洗浄工程Wにある。このサイクルはピペット
ノズル150、151、152で順次3交代を繰返して
実施されるため効果的である。第1試薬ピペット4と第
2試薬ピペット5の働きは同様なタイムスケジュールを
持つ。
Now, when the pipette nozzle 150 is sucking the reagent, the nozzle 151 is dispensing the reagent into the reaction container 3, and the nozzle 152 is in the washing step W. This cycle is effective because the pipette nozzles 150, 151, and 152 are sequentially repeated in three shifts. The functions of the first reagent pipette 4 and the second reagent pipette 5 have similar time schedules.

【0021】図1で洗浄部はA,B2部を有し、第1反
応ラインで検液分注、第1試薬分注、第2試薬分注、比
色測定を完了した反応容器は洗浄部Aで洗浄を行い、第
2反応ラインで第1試薬分注、検液分注、第2試薬分注
、比色測定を完了した反応容器は洗浄部Bで洗浄を行う
In FIG. 1, the cleaning section has two sections A and B, and the reaction vessel that has completed the dispensing of the test liquid, the dispensing of the first reagent, the dispensing of the second reagent, and the colorimetric measurement in the first reaction line is in the cleaning section. The reaction vessel that has been cleaned in A and completed the first reagent dispensing, test liquid dispensing, second reagent dispensing, and colorimetric measurement in the second reaction line is then cleaned in cleaning section B.

【0022】光学的測定は、反応テーブル1/2回転と
1ピッチ回転するごとに全反応管の各項目ごとの吸光度
測定を行い、第1次、第2次攪拌後の反応管洗浄位置の
最初のノズル位置まで各ステップ毎の吸光度測定を行い
、反応のタイムコースが得られ、各測定項目の最適測定
点で測定が行える。比色測定終了後反応管洗浄を行い、
反応容器は再使用される。
[0022] For optical measurement, the absorbance was measured for each item of all reaction tubes every 1/2 rotation and 1 pitch rotation of the reaction table, and at the beginning of the reaction tube cleaning position after the first and second stirring. By measuring the absorbance at each step up to the nozzle position, the time course of the reaction can be obtained, and measurements can be made at the optimal measurement point for each measurement item. After completing the colorimetric measurement, wash the reaction tube.
The reaction vessel is reused.

【0023】この自動分析装置の制御装置は、図示しな
い電源部、マイクロコンピュータ、操作パネル、データ
処理のためのパソコンで構成され、コンピュータはキー
ボード、CRTディスプレイ、磁気ディスク記憶装置、
印字プリンタなどで構成され、記憶装置には、試験項目
、患者情報、統計各種データなど臨床検査に必要なデー
タをすべて保持する。
The control device of this automatic analyzer is composed of a power supply unit (not shown), a microcomputer, an operation panel, and a personal computer for data processing, and the computer includes a keyboard, a CRT display, a magnetic disk storage device,
It consists of a printer, etc., and a storage device that holds all the data necessary for clinical tests, such as test items, patient information, and various statistical data.

【0024】[0024]

【発明の効果】本発明は上記の実施例より明らかなよう
に、多数の試料、多種類の試薬を用い、多項目の測定項
目に対応して自動分析を行うに際して、同時に反応テー
ブル内に第1反応ラインと第2反応ラインの分注、測定
が施行されるため、迅速性、正確性の向上と、装置のコ
ンパクト化の向上並びに分析能力の著しい向上が見られ
る。
Effects of the Invention As is clear from the above embodiments, the present invention enables automatic analysis to be performed using a large number of samples and various types of reagents in response to a large number of measurement items. Since dispensing and measurement are carried out in the first reaction line and the second reaction line, improvements in speed and accuracy, improvements in the compactness of the apparatus, and significant improvements in analytical ability can be seen.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例にもとづく自動分析装置の平
面図である。
FIG. 1 is a plan view of an automatic analyzer according to an embodiment of the present invention.

【図2】試薬テーブルの矢示の透示図である。FIG. 2 is a transparent diagram of an arrow in a reagent table.

【図3】試薬テーブルの断面図である。FIG. 3 is a cross-sectional view of a reagent table.

【図4】試薬ピペット装置の断面図である。FIG. 4 is a cross-sectional view of a reagent pipetting device.

【符号の説明】[Explanation of symbols]

S  サンプラー A,B  洗浄部 H  反応テーブル P  検体ピペット 1  容器 2  カセット 3  反応容器 4,5  試薬ピペット 6  比色検出器 7  一次試薬テーブル 8  2次試薬テーブル 21  収納ケース 30,32  試薬ボトル 36  発熱体 52  電子冷却手段 S Sampler A, B Cleaning section H Reaction table P Sample pipette 1 Container 2 Cassette 3 Reaction container 4,5 Reagent pipette 6 Colorimetric detector 7 Primary reagent table 8 Secondary reagent table 21 Storage case 30, 32 Reagent bottle 36 Heating element 52 Electronic cooling means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  複数の反応容器を搬送して分析を実施
する自動分析装置におてい、少くとも一部を共通した反
応容器搬送手段によって反応容器を搬送するようにして
反応テーブルの外縁に配置した反応ラインの前半及び後
半の反応容器に対してニラインを具え、前半の第1反応
ラインは検液分注、試薬分注の順序で分注し、後半の第
2反応ラインは試薬分注、検液分注の順序で分注を行い
、該反応テーブルが1/2回転より1ピッチだけ反応容
器を進めて回動制御し、順次上記の各分注を繰返して検
体の光学的測定を行うことを特徴とする自動分析装置。
Claim 1: In an automatic analyzer that carries a plurality of reaction vessels for analysis, the reaction vessels are arranged at the outer edge of a reaction table so that at least some of the reaction vessels are carried by a common reaction vessel carrying means. Two lines are provided for the reaction containers in the first and second half of the reaction line, and the first reaction line in the first half performs dispensing in the order of test solution dispensing and reagent dispensing, and the second reaction line in the second half dispensing reagents, Dispensing is performed in the order of sample liquid dispensing, and the reaction table advances the reaction container by 1 pitch from 1/2 rotation to control rotation, repeating each of the above dispensing steps sequentially to optically measure the sample. An automatic analyzer characterized by:
【請求項2】  請求項1の自動分析装置において、4
本のノズル有し、それぞれが検液吸入、電解質測定、反
応管分注、洗浄操作が交互に可能であることを特徴とす
る検体分注ピペット装置。
[Claim 2] The automatic analyzer according to Claim 1, wherein 4
A sample dispensing pipette device having two nozzles, each of which can alternately perform sample liquid suction, electrolyte measurement, reaction tube dispensing, and cleaning operations.
【請求項3】  請求項1の自動分析装置において、3
本ノズルからなり、それぞれ試薬吸入、反応容器に分注
洗浄操作が交互に可能であることを特徴とする試薬ピペ
ット装置。
[Claim 3] In the automatic analyzer according to Claim 1, 3
A reagent pipette device consisting of the present nozzle, which is capable of alternately performing reagent suction and dispensing and cleaning operations into a reaction container.
JP12328791A 1991-03-07 1991-03-07 Automatic analyzer Pending JPH04279862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12328791A JPH04279862A (en) 1991-03-07 1991-03-07 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12328791A JPH04279862A (en) 1991-03-07 1991-03-07 Automatic analyzer

Publications (1)

Publication Number Publication Date
JPH04279862A true JPH04279862A (en) 1992-10-05

Family

ID=14856828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12328791A Pending JPH04279862A (en) 1991-03-07 1991-03-07 Automatic analyzer

Country Status (1)

Country Link
JP (1) JPH04279862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075323A2 (en) * 2001-03-16 2002-09-26 Beckman Coulter, Inc. Method and system for automated immunochemistry analysis
JP2009216594A (en) * 2008-03-11 2009-09-24 Toshiba Corp Automatic analyzer, and arrangement method of reagent bottle of automatic analyzer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075323A2 (en) * 2001-03-16 2002-09-26 Beckman Coulter, Inc. Method and system for automated immunochemistry analysis
WO2002075323A3 (en) * 2001-03-16 2003-03-13 Beckman Coulter Inc Method and system for automated immunochemistry analysis
US6825041B2 (en) * 2001-03-16 2004-11-30 Beckman Coulter, Inc. Method and system for automated immunochemistry analysis
USRE46214E1 (en) 2001-03-16 2016-11-22 Beckman Coulter, Inc. Method and system for sample aliquot storage
JP2009216594A (en) * 2008-03-11 2009-09-24 Toshiba Corp Automatic analyzer, and arrangement method of reagent bottle of automatic analyzer

Similar Documents

Publication Publication Date Title
KR960009767B1 (en) Automatic analyzer
US5270211A (en) Sample tube entry port for a chemical analyzer
US4808380A (en) Automatic chemical analyzing apparatus
EP0216026B1 (en) Automatic analysis apparatus
EP0289789B1 (en) Automatic analysis apparatus
EP0041378B1 (en) Automatic analytical instrument
US4456037A (en) Process of delivering samples and reagents
US8257650B2 (en) Automated analyzer
US4451433A (en) Automatic chemical analyzer
JP3914837B2 (en) Automatic analyzer
EP2069799A2 (en) System for automatically storing and reprocessing patient sample's in an automatic clinical analyzer
JPH01187461A (en) Automatic chemical analyzer
JPH0526883A (en) Automatic analyzer
JPS62863A (en) Automatic analyzing instrument
JPH04279862A (en) Automatic analyzer
JPH0749350A (en) Automatic analyzer
JPH01250759A (en) Automatic apparatus for chemical analysis
JPS6168562A (en) Liquid sample analyzer
JPH04279861A (en) Biochemical automatic analyzer
JPH02311765A (en) Automatic biochemical analyzing apparatus
JPS61270661A (en) Automatic analyzing instrument
JPH04315055A (en) Automatic chemical analyzer
JPH0468589B2 (en)
JPS6385457A (en) Automatic analyzer for plural items
JPH0421140B2 (en)