JPH04276059A - Method for modifying sprayed deposit - Google Patents

Method for modifying sprayed deposit

Info

Publication number
JPH04276059A
JPH04276059A JP3119632A JP11963291A JPH04276059A JP H04276059 A JPH04276059 A JP H04276059A JP 3119632 A JP3119632 A JP 3119632A JP 11963291 A JP11963291 A JP 11963291A JP H04276059 A JPH04276059 A JP H04276059A
Authority
JP
Japan
Prior art keywords
deposit
laser
cermet
carbon source
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3119632A
Other languages
Japanese (ja)
Inventor
Yusaku Shimoda
下田 有作
Nobuo Tanaka
信夫 田中
Kenichi Yuge
兼一 弓削
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Idemitsu Kosan Co Ltd filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP3119632A priority Critical patent/JPH04276059A/en
Publication of JPH04276059A publication Critical patent/JPH04276059A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To obtain cermet sprayed deposit having more excellent wear resistance and corrosion resistance by irradiating cermet sprayed deposit with lasers in the presence of a carbon source and modifying the surface of the above deposit. CONSTITUTION:Cermet sprayed deposit is formed on the surface of a substrate by using spray powder constituted of a mixture or a combined material of carbide and metal, and this deposit is irradiated with lasers in the presence of a carbon source to modify the wear resistant and corrosion resistant deposit. By modifying the surface of the deposit by irradiating the cermet sprayed deposit with lasers in the presence of a carbon source, the cermet sprayed deposit having more excellent wear resistance and corrosion resistance can be obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、耐摩耗・耐腐食性サー
メット溶射皮膜の改良に関するものである。さらに詳し
くいえば、本発明は、サーメット溶射皮膜の表面をレー
ザー照射して、耐摩耗性及び耐腐食性に優れたサーメッ
ト溶射皮膜を効率よく得る改質方法に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in wear-resistant and corrosion-resistant cermet thermal spray coatings. More specifically, the present invention relates to a method for efficiently obtaining a cermet sprayed coating with excellent wear resistance and corrosion resistance by irradiating the surface of the cermet sprayed coating with a laser.

【0002】0002

【従来の技術】従来、金属、非鉄金属、あるいは非金属
から成る基材の耐摩耗性や耐腐食性を改良する目的で、
該基材に適当な材料を溶射して保護皮膜を形成させる方
法が広く行われている。
[Prior Art] Conventionally, for the purpose of improving the wear resistance and corrosion resistance of base materials made of metals, non-ferrous metals, or non-metals,
A widely used method is to thermally spray a suitable material onto the base material to form a protective film.

【0003】ところで、炭化物はそれ自体高硬度と優れ
た耐腐食性を有することから、前記溶射材料としての使
用が試みられているが、単独では高温にさらされると溶
融する前に分解を生じ、溶射皮膜が得られない。したが
って、該溶射材料として、炭化物に金属を混合したもの
が用いられている。
By the way, since carbide itself has high hardness and excellent corrosion resistance, attempts have been made to use it as the above-mentioned thermal spray material, but when exposed to high temperatures alone, it decomposes before melting. A thermal spray coating cannot be obtained. Therefore, a mixture of carbide and metal is used as the thermal spraying material.

【0004】このサーメット溶射粉末は、通常爆発溶射
法や爆発溶射に類似した高速ガス溶射法などのガスの燃
焼爆発を利用した溶射法などにょって溶射されることが
多い。しかしながら、これらの溶射法はガスの燃焼爆発
を利用していることから、燃焼ガスとしてプロパン、酸
素を用い、しかも大気中で行うために、炭化物と金属は
酸化されて、炭化物を使用するメリットが著しくそこな
われるとともに、金属もバインダーとしての役割が低減
するなどの欠点を有している。
[0004] This cermet thermal spray powder is often thermally sprayed by a thermal spraying method that utilizes gas combustion explosion, such as an ordinary explosive thermal spraying method or a high-velocity gas thermal spraying method similar to explosive thermal spraying. However, since these thermal spraying methods utilize gas combustion and explosion, propane and oxygen are used as combustion gases, and since they are carried out in the atmosphere, carbides and metals are oxidized, reducing the merits of using carbides. Metals also have drawbacks such as a reduced role as a binder.

【0005】したがって、このような欠点を改良するた
めに、サーメット溶射皮膜をレーザーによって改質する
方法が試みられている。例えば(1)サーメット溶射皮
膜にレーザーを照射して該皮膜を溶融させる方法や(特
開昭61−104062号公報、特開昭62−2537
58号公報)、(2)炭化タングステンとコバルトとを
レーザーを照射することで合金化する方法(特開平2−
30704号公報)などが提案されている。しかしなが
ら、前記(1)の方法においては、皮膜が溶融して、気
孔が減少し、ち密なものになるが、金属が溶融するだけ
であって反応が起こらないため、耐腐食性は該金属以上
の性能にはならないし、また(2)の方法においては、
皮膜全体を合金化すると変形が大きくなって基材から剥
離しやすくなり、この剥離が生じないようにするために
は、炭化タングステンとコバルトとの配合比率をかなり
変えて傾斜皮膜にする必要があり、その結果、工程が煩
雑となる上、金属のままなので、耐腐食性が十分ではな
いなどの欠点がある。
[0005] Therefore, in order to improve these drawbacks, attempts have been made to modify the cermet thermal spray coating using a laser. For example, (1) a method of irradiating a cermet thermal spray coating with a laser to melt the coating (Japanese Patent Application Laid-open No. 61-104062, Japanese Patent Application Laid-Open No. 62-2537);
(2) Method of alloying tungsten carbide and cobalt by irradiating laser
30704) and the like have been proposed. However, in the method (1) above, the film is melted, the pores are reduced, and it becomes dense, but the metal only melts and no reaction occurs, so the corrosion resistance is higher than that of the metal. In addition, in method (2),
When the entire film is alloyed, the deformation becomes large and it becomes easy to peel off from the base material. In order to prevent this peeling, it is necessary to considerably change the blending ratio of tungsten carbide and cobalt to create a graded film. As a result, the process becomes complicated, and since it remains a metal, it has drawbacks such as insufficient corrosion resistance.

【0006】他方、チタン膜にカーボンを塗布し、レー
ザーを照射して炭化チタンに変えることも試みられてい
る。しかしながら、この方法においては、チタン膜は金
属であるので、サーメット膜に比べてレーザー吸収係数
が低いため、レーザー出力を高くしないと反応が起こら
ず、したがって、クラックの発生がサーメット膜に比べ
て起こりやすいという欠点がある。
On the other hand, attempts have also been made to coat a titanium film with carbon and irradiate it with laser to convert it into titanium carbide. However, in this method, since the titanium film is a metal, its laser absorption coefficient is lower than that of the cermet film, so the reaction does not occur unless the laser output is high, and therefore cracks occur more easily than with the cermet film. It has the disadvantage of being easy.

【0007】[0007]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、サーメット溶射皮膜の耐熱衝撃性及び基
材との高密着性をそこなうことなく、その表面を改質し
て、さらに優れた耐摩耗性及び耐腐食性を有するサーメ
ット溶射皮膜を提供することを目的としてなされたもの
である。
[Problems to be Solved by the Invention] Under these circumstances, the present invention aims to modify the surface of the cermet sprayed coating without impairing its thermal shock resistance and high adhesion to the base material. This was done for the purpose of providing a cermet thermal spray coating having even better wear resistance and corrosion resistance.

【0008】[0008]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために、鋭意研究を重ねた結果、サーメット
溶射皮膜に炭素源の存在下、レーザー照射を行うことに
より、皮膜の内面においては金属がバインダーとしての
働きを失うことなく、熱応力の緩和作用や基材との高い
密着性を維持するとともに、表層部においては溶融ち密
化し、かつ炭化物は再度炭化されて結晶性の高いものと
なる上、金属は一部カーボンと反応して炭化物を形成す
るため、耐摩耗性及び耐腐食性がさらに優れたものにな
ることを見い出し、この知見に基づいて本発明を完成す
るに至った。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present inventors have conducted intensive research and found that by irradiating a cermet sprayed coating with a laser in the presence of a carbon source, the inner surface of the coating can be improved. In this process, the metal does not lose its function as a binder and maintains its thermal stress-relieving effect and high adhesion to the base material, while the surface layer melts and densifies, and the carbide is re-carbonized to form a highly crystalline material. In addition, the metal reacts with carbon to form a carbide, which results in even better wear resistance and corrosion resistance.Based on this knowledge, the present invention was completed. Ta.

【0009】すなわち、本発明は、基材表面に炭化物と
金属とから成るサーメット溶射皮膜を形成させたのち、
該溶射皮膜に炭素源の存在下レーザー照射することを特
徴とする溶射皮膜の改質方法を提供するものである。
That is, in the present invention, after forming a cermet sprayed coating consisting of carbide and metal on the surface of a base material,
The present invention provides a method for modifying a thermally sprayed coating, which comprises irradiating the thermally sprayed coating with a laser in the presence of a carbon source.

【0010】本発明方法において用いられる基材につい
ては特に制限はなく、従来サーメット溶射皮膜の形成に
慣用されているもの、例えば鉄、銅、ステンレスなどの
金属から成るものや、YSZ、アルミナ、炭化ケイ素、
チタニヤなどのセラミックス焼結体から成るものなどの
中から任意のものを選択して用いることができる。また
、その形状についても特に制限はなく、例えば平板状の
ものや、シリンダー外面、ローラーなどの円柱状のもの
など、いずれのものであってもよい。
There are no particular restrictions on the base material used in the method of the present invention, and materials conventionally used for forming cermet thermal spray coatings, such as those made of metals such as iron, copper, and stainless steel, as well as those made of metals such as YSZ, alumina, and carbide, may be used. silicon,
Any material can be selected and used from ceramic sintered bodies such as titania. Further, there is no particular restriction on its shape, and it may be of any shape, such as a flat plate, the outer surface of a cylinder, or a cylindrical shape such as a roller.

【0011】本発明においては、これらの基材の表面に
、まずサーメット溶射皮膜を形成させる。このサーメッ
ト溶射皮膜の形成には、炭化物と金属との混合物や複合
物から成る溶射粉末が用いられ、その組合せとしては、
例えばWC−Co、WC−Ni、WC−Cr、WC−C
rNi、WC−Ti、Cr3C2−CrNi、Cr3C
2−Cr、Cr3C2−Ni、Cr3C2−Co、Cr
3C2−Ti、Cr3C2−Al、SiC−Ni、Si
C−Co、SiC−CrNi、SiC−Ti、MoC−
Ni、MoC−Co、MoC−CrNi、MoC−Ti
などが挙げられる。
In the present invention, a cermet spray coating is first formed on the surface of these base materials. To form this cermet thermal spray coating, a thermal spray powder consisting of a mixture or composite of carbide and metal is used, and the combination thereof is as follows:
For example, WC-Co, WC-Ni, WC-Cr, WC-C
rNi, WC-Ti, Cr3C2-CrNi, Cr3C
2-Cr, Cr3C2-Ni, Cr3C2-Co, Cr
3C2-Ti, Cr3C2-Al, SiC-Ni, Si
C-Co, SiC-CrNi, SiC-Ti, MoC-
Ni, MoC-Co, MoC-CrNi, MoC-Ti
Examples include.

【0012】これらのサーメット溶射粉末を用いて、基
材表面にサーメット溶射皮膜を形成させる方法としては
ガス溶射法と電気溶射法とがあり、前者のガス溶射法と
してはフレーム溶射法や爆発溶射法などが、電気溶射法
としてはアーク溶射法やプラズマ溶射法などがあるが、
これらの中で爆発溶射法とプラズマ溶射法、特に爆発溶
射法などのガスの燃焼爆発を利用した溶射法が好適であ
る。
[0012] Methods for forming a cermet spray coating on the surface of a substrate using these cermet spray powders include gas spraying and electric spraying. The former gas spraying method includes flame spraying and explosive spraying. There are electric spraying methods such as arc spraying and plasma spraying.
Among these, the explosive thermal spraying method and the plasma thermal spraying method, particularly the thermal spraying method using combustion explosion of gas such as the explosive thermal spraying method, are suitable.

【0013】これらの溶射法によって基材表面に形成さ
れるサーメット溶射皮膜の厚さは、通常25〜500μ
mの範囲で選ばれる。
The thickness of the cermet sprayed coating formed on the surface of the substrate by these thermal spraying methods is usually 25 to 500 μm.
selected within the range of m.

【0014】本発明方法においては、このようにして基
材表面に形成されたサーメット溶射皮膜に、炭素源の存
在下レーザーを照射して、該皮膜の表面を改質すること
が必要である。該レーザーとしては、通常波長10.6
μmのCO2レーザーが用いられ、またレーザー照射は
、例えば(1)炭素源を溶射皮膜に塗布したのち、大気
圧下でレーザー照射する、(2)炭素源を溶射皮膜に塗
布したのち、減圧下でレーザー照射する、(3)炭素源
を溶射皮膜に塗布したのち、メタンガスやプロパンガス
などの炭素源になるガス雰囲気下でレーザー照射する、
(4)溶射皮膜にメタンガスやプロパンガスなどの炭素
源になるガス雰囲気下レーザー照射する、などの方法に
よって行われるが、これらの中で(3)の方法が特に好
適である。
In the method of the present invention, it is necessary to irradiate the cermet sprayed coating thus formed on the surface of the substrate with a laser in the presence of a carbon source to modify the surface of the coating. The laser usually has a wavelength of 10.6
A μm CO2 laser is used, and the laser irradiation can be performed, for example, by (1) applying the carbon source to the sprayed coating and then irradiating the laser under atmospheric pressure; (2) applying the carbon source to the sprayed coating and then applying the laser under reduced pressure. (3) After applying a carbon source to the sprayed coating, laser irradiation is performed in an atmosphere of a carbon source gas such as methane gas or propane gas.
(4) The sprayed coating is irradiated with a laser in an atmosphere of a carbon source gas such as methane gas or propane gas. Of these methods, method (3) is particularly preferred.

【0015】溶射皮膜に炭素源を塗布すると、炭素欠損
の溶射皮膜中の炭化物が再度炭化されるとともに、バイ
ンダーとしての金属の一部が炭化されるため、より効果
が大きい。
[0015] When a carbon source is applied to the thermally sprayed coating, the carbon-deficient carbides in the thermally sprayed coating are carbonized again, and a part of the metal serving as the binder is also carbonized, so that the effect is even greater.

【0016】前記炭素源としては、例えばカーボンブラ
ック、アセチレンブラック、石油コークス、活性炭など
の固形物、アスファルトや潤滑油などの液状物、さらに
はシリコーン系、エポキシ系、アクリル系、フェノール
系、フロン系、パラフィン系などの有機系樹脂などが挙
げられる。
Examples of the carbon source include solid materials such as carbon black, acetylene black, petroleum coke, and activated carbon, liquid materials such as asphalt and lubricating oil, and silicone-based, epoxy-based, acrylic-based, phenol-based, and fluorocarbon-based materials. , organic resins such as paraffin resins, and the like.

【0017】固形状の炭素源を用いる場合は、アセトン
やトルエンなどの溶媒に分散させて塗布すると皮膜の炭
化が効果的に起こり、また、粒子の形状が細かいほど皮
膜中によく含浸するため炭化物の形成に有利である。
When using a solid carbon source, carbonization of the film will occur effectively if it is dispersed in a solvent such as acetone or toluene, and the finer the particle shape, the better it will be impregnated into the film. It is advantageous for the formation of

【0018】また、溶射皮膜に前記炭素源を塗布してレ
ーザー照射すると該レーザーの吸収率が高くなるという
効果もある。レーザーは100W以上の出力で照射する
ことが好ましく、出力が低い場合は溶射膜の溶融が起こ
らず、ち密化や炭化反応が進行しないおそれがある。
[0018] Furthermore, when the carbon source is applied to a thermal spray coating and irradiated with a laser, the absorption rate of the laser increases. It is preferable to irradiate the laser with an output of 100 W or more; if the output is low, the sprayed film may not melt and the densification and carbonization reaction may not proceed.

【0019】このように、サーメット溶射皮膜に炭素源
の存在下レーザー照射することにより、該皮膜の表面が
溶融ち密化する上、表層の酸化が防止されるとともに、
酸化した炭化物は再度炭化され、かつバインダーの金属
の一部が炭化されるために、該サーメット溶射皮膜は耐
摩耗性及び耐腐食性の優れたものとなる。しかも、該皮
膜の内面においては、金属のバインダーとしての働きを
失わずに、熱応力の緩和作用や基材との高い密着性を保
持している。
As described above, by irradiating a cermet thermal spray coating with a laser in the presence of a carbon source, the surface of the coating is melted and densified, and oxidation of the surface layer is prevented.
Since the oxidized carbide is carbonized again and a portion of the metal of the binder is carbonized, the cermet sprayed coating has excellent wear resistance and corrosion resistance. Moreover, on the inner surface of the film, the metal does not lose its function as a binder, and maintains a thermal stress-relieving effect and high adhesion to the base material.

【0020】[0020]

【発明の効果】本発明によると、サーメット溶射皮膜に
炭素源の存在下レーザー照射することにより、該皮膜の
表面が改質され、より優れた耐摩耗性及び耐腐食性を有
するサーメット溶射皮膜が容易に得られる。本発明方法
により得られたサーメット溶射皮膜を有する材料は、耐
摩耗性及び耐腐食性に優れた材料として、鉄鋼分野、石
油化学分野、製紙(ロールなど)、自動車分野などにお
いて好適に用いられる。
According to the present invention, by irradiating a cermet sprayed coating with a laser in the presence of a carbon source, the surface of the coating is modified, and a cermet sprayed coating with superior wear resistance and corrosion resistance is obtained. easily obtained. The material having a cermet sprayed coating obtained by the method of the present invention has excellent wear resistance and corrosion resistance, and is suitably used in the steel field, petrochemical field, paper manufacturing (rolls, etc.), automobile field, etc.

【0021】[0021]

【実施例】次に、実施例により本発明をさらに詳細に説
明するが、本発明は、これらの例によってなんら限定さ
れるものではない。なお、皮膜の性能は次のようにして
評価した。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples in any way. The performance of the film was evaluated as follows.

【0022】(1)耐摩耗性 エチレンコークスを摩耗材として、空気流速30m/s
ecの速度で基材に吹き付けるブラストエロージョンテ
ストを行った。摩耗面積4cm2、角度30°、距離2
0mmの条件で、エチレンコークス1kgを吹き付けた
際の摩耗減量で評価した。
(1) Using wear-resistant ethylene coke as the wear material, the air flow rate is 30 m/s.
A blast erosion test was conducted in which the substrate was sprayed at a speed of EC. Wear area 4cm2, angle 30°, distance 2
Evaluation was made based on the abrasion loss when 1 kg of ethylene coke was sprayed under the condition of 0 mm.

【0023】(2)表面硬度 皮膜の表面を10〜20μmほど研摩したのち、マイク
ロビッカース硬度計を用い、30gの荷重で測定した。
(2) Surface Hardness After the surface of the film was polished by about 10 to 20 μm, it was measured using a micro Vickers hardness meter under a load of 30 g.

【0024】(3)耐腐食性 硫酸、塩酸及び硝酸のそれぞれ10重量%混酸に、皮膜
9cm2だけ露出させたテストピースを90℃で3時間
浸せき後、腐食減量を測定した。この結果を1時間、1
cm2に換算して腐食度を求めた。
(3) Corrosion resistance A test piece with a coating of 9 cm2 exposed was immersed in a mixed acid of 10% by weight of sulfuric acid, hydrochloric acid, and nitric acid at 90° C. for 3 hours, and then the corrosion weight loss was measured. 1 hour, 1
The degree of corrosion was determined in terms of cm2.

【0025】実施例1 Cr3C2−CrNiの溶射粉末をメテコ社製のD−ガ
ンを用いて、SS41に膜厚150〜200μm程度に
溶射施工したのち、この皮膜にシリコーン系樹脂を塗布
し、乾燥した。
Example 1 After thermal spraying powder of Cr3C2-CrNi was thermally sprayed onto SS41 to a film thickness of about 150 to 200 μm using a D-gun manufactured by Metco, this film was coated with silicone resin and dried. .

【0026】次に、シリコーン系樹脂が塗布された溶射
皮膜を有するSS41を真空チャンバー中に設置後、1
0−3Torr以下になるまで脱気したのち、アルゴン
を10l/min流し、50Torrにした。次いで、
メタンガスを0.5kg/cm2の強さで吹き付け、出
力400W、焦点から基材までの距離100mm、レー
ザー断面の直径8mmの条件で、皮膜にレーザーを照射
した。
Next, after installing SS41 having a thermal spray coating coated with silicone resin in a vacuum chamber,
After degassing until the pressure was below 0-3 Torr, argon was flowed at 10 l/min to bring the pressure to 50 Torr. Then,
Methane gas was sprayed at a strength of 0.5 kg/cm 2 , and the film was irradiated with a laser under conditions of an output of 400 W, a distance from the focal point to the substrate of 100 mm, and a laser cross-section diameter of 8 mm.

【0027】このようにしてレーザー処理された皮膜の
性能を調べたところ、摩耗量5.0mg、表面硬度12
00、腐食度1.7mg/cm2・hrであった。
When the performance of the film treated with the laser in this manner was investigated, the amount of wear was 5.0 mg, and the surface hardness was 12.
00, and the corrosion degree was 1.7 mg/cm2·hr.

【0028】比較例1 Cr3C2−CrNiの溶射粉末をメテコ社製のD−ガ
ンを用いて、SS41に膜厚150〜200μm程度溶
射施工したのち、この皮膜を無処理のまま大気中で、出
力400W、焦点から基材までの距離100mm、レー
ザー断面の直径8mmの条件でレーザー照射した。
Comparative Example 1 A thermal spray powder of Cr3C2-CrNi was thermally sprayed onto SS41 to a thickness of about 150 to 200 μm using a D-gun manufactured by Metco, and then this coating was exposed to an output of 400 W in the atmosphere without any treatment. Laser irradiation was performed under the conditions that the distance from the focal point to the base material was 100 mm, and the diameter of the laser cross section was 8 mm.

【0029】このようにしてレーザー処理された皮膜の
性能を評価したところ、摩耗量22.5mg、表面硬度
1000、腐食度15.5mg/cm2・hrであった
When the performance of the thus laser-treated film was evaluated, the amount of wear was 22.5 mg, the surface hardness was 1000, and the degree of corrosion was 15.5 mg/cm2·hr.

【0030】比較例2 Cr3C2−CrNiの溶射粉末をメテコ社製のD−ガ
ンを用いて、SS41に膜厚150〜200μm程度溶
射施工した。
Comparative Example 2 A thermal spray powder of Cr3C2-CrNi was thermally sprayed onto SS41 using a D-gun manufactured by Metco Co., Ltd. to a film thickness of about 150 to 200 μm.

【0031】この皮膜の性能を評価したところ、摩耗量
24.0mg、表面硬度950、腐食度4.0mg/c
m2・hrであった。
[0031] When the performance of this film was evaluated, the amount of wear was 24.0 mg, the surface hardness was 950, and the degree of corrosion was 4.0 mg/c.
It was m2・hr.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  基材表面に炭化物と金属とから成るサ
ーメット溶射皮膜を形成させたのち、該溶射皮膜に炭素
源の存在下レーザー照射することを特徴とする溶射皮膜
の改質方法。
1. A method for modifying a thermal sprayed coating, which comprises forming a cermet thermal sprayed coating consisting of a carbide and a metal on the surface of a substrate, and then irradiating the thermal sprayed coating with a laser in the presence of a carbon source.
JP3119632A 1991-02-28 1991-02-28 Method for modifying sprayed deposit Pending JPH04276059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3119632A JPH04276059A (en) 1991-02-28 1991-02-28 Method for modifying sprayed deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3119632A JPH04276059A (en) 1991-02-28 1991-02-28 Method for modifying sprayed deposit

Publications (1)

Publication Number Publication Date
JPH04276059A true JPH04276059A (en) 1992-10-01

Family

ID=14766255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3119632A Pending JPH04276059A (en) 1991-02-28 1991-02-28 Method for modifying sprayed deposit

Country Status (1)

Country Link
JP (1) JPH04276059A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108546A1 (en) * 2006-03-20 2007-09-27 Tokyo Electron Limited Ceramic coating member for semiconductor processing apparatus
WO2007108548A1 (en) * 2006-03-20 2007-09-27 Tocalo Co., Ltd. Method for manufacturing ceramic covering member for semiconductor processing apparatus
JP2008266724A (en) * 2007-04-20 2008-11-06 Shin Etsu Chem Co Ltd Surface treatment method for thermal spray coating, and surface-treated thermal spray coating
US7648782B2 (en) 2006-03-20 2010-01-19 Tokyo Electron Limited Ceramic coating member for semiconductor processing apparatus
US7767268B2 (en) 2005-09-08 2010-08-03 Tocalo Co., Ltd. Spray-coated member having an excellent resistance to plasma erosion and method of producing the same
US7850864B2 (en) 2006-03-20 2010-12-14 Tokyo Electron Limited Plasma treating apparatus and plasma treating method
JP2012067364A (en) * 2010-09-24 2012-04-05 Tocalo Co Ltd Thermally sprayed coating-coated member excellent in corrosion resistance and plasma erosion resistance, and method for preventing crack occurrence in thermally sprayed coating having subjected to high-energy irradiation treatment
US8231986B2 (en) 2005-08-22 2012-07-31 Tocalo Co., Ltd. Spray coating member having excellent injury resistance and so on and method for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8231986B2 (en) 2005-08-22 2012-07-31 Tocalo Co., Ltd. Spray coating member having excellent injury resistance and so on and method for producing the same
US7767268B2 (en) 2005-09-08 2010-08-03 Tocalo Co., Ltd. Spray-coated member having an excellent resistance to plasma erosion and method of producing the same
US8053058B2 (en) 2005-09-08 2011-11-08 Tocalo Co., Ltd. Spray-coated member having an excellent resistance to plasma erosion and method of producing the same
WO2007108546A1 (en) * 2006-03-20 2007-09-27 Tokyo Electron Limited Ceramic coating member for semiconductor processing apparatus
JP2007247042A (en) * 2006-03-20 2007-09-27 Tokyo Electron Ltd Ceramic covered member for semi-conductor machining apparatus
WO2007108548A1 (en) * 2006-03-20 2007-09-27 Tocalo Co., Ltd. Method for manufacturing ceramic covering member for semiconductor processing apparatus
JP2007247043A (en) * 2006-03-20 2007-09-27 Tocalo Co Ltd Method for producing ceramic-coated member for semiconductor working apparatus
US7648782B2 (en) 2006-03-20 2010-01-19 Tokyo Electron Limited Ceramic coating member for semiconductor processing apparatus
US7850864B2 (en) 2006-03-20 2010-12-14 Tokyo Electron Limited Plasma treating apparatus and plasma treating method
JP4643478B2 (en) * 2006-03-20 2011-03-02 トーカロ株式会社 Manufacturing method of ceramic covering member for semiconductor processing equipment
JP2008266724A (en) * 2007-04-20 2008-11-06 Shin Etsu Chem Co Ltd Surface treatment method for thermal spray coating, and surface-treated thermal spray coating
JP2012067364A (en) * 2010-09-24 2012-04-05 Tocalo Co Ltd Thermally sprayed coating-coated member excellent in corrosion resistance and plasma erosion resistance, and method for preventing crack occurrence in thermally sprayed coating having subjected to high-energy irradiation treatment

Similar Documents

Publication Publication Date Title
US6497922B2 (en) Method of applying corrosion, oxidation and/or wear-resistant coatings
CA2337322C (en) Spray powder, thermal spraying process using it, and sprayed coating
US5966585A (en) Titanium carbide/tungsten boride coatings
US6410159B1 (en) Self-bonding MCrAly powder
JP2001020052A (en) Transition metal boride coating
MXPA04008463A (en) Corrosion resistant powder and coating.
CN111235511B (en) Preparation method of multi-element ceramic composite coating
JPH0116911B2 (en)
EP1077272A1 (en) Titanium carbide/tungsten boride coatings
US4943485A (en) Process for applying hard coatings and the like to metals and resulting product
MXPA06013558A (en) Wear resistant alloy powders and coatings.
CN115286390B (en) ZrC-SiC anti-ablation coating on surface of C/C composite material and composite preparation method combining brushing method and gas phase reaction
JPH04276059A (en) Method for modifying sprayed deposit
US4857116A (en) Process for applying coatings of zirconium and/or titanium and a less noble metal to metal substrates and for converting the zirconium and/or titanium to a nitride, carbide, boride, or silicide
RU2084554C1 (en) Alloy being resistant against action of melt zinc for applying coatings, method for its applying on article and article with coating
Alroy et al. Tailoring microstructural features of Cr3C2-25NiCr coatings through diverse spray variants and understanding the high-temperature erosion behavior
CN112281105A (en) Metal ceramic composite coating and preparation method and application thereof
Zhang et al. Corrosion resistance of TiAl–Nb coating on 316L stainless steel in liquid zinc
Verlotski Coatings of carbide-metal systems (Cr3C2-NiCr and WC-Co-Cr) deposited by high-velocity atmospheric plasma spraying from specially modified fine-grained powders
EP4267863A1 (en) Brake disc with nickel-free steel layer and manufacturing method
EP4267864A1 (en) Double-layer brake disc in nickel-free steel and manufacturing method
JP2000345314A (en) High hardness carbide cermet sprayed coating-coated member and its production
Mesrati et al. Thermal spraying and adhesion of oxides onto graphite
Xie et al. Influence of laser treatment on the corrosion properties of plasma-sprayed Ni-coated WC coatings
KR100447289B1 (en) Titanium carbide/tungsten boride coatings