JPH0427466B2 - - Google Patents

Info

Publication number
JPH0427466B2
JPH0427466B2 JP23421083A JP23421083A JPH0427466B2 JP H0427466 B2 JPH0427466 B2 JP H0427466B2 JP 23421083 A JP23421083 A JP 23421083A JP 23421083 A JP23421083 A JP 23421083A JP H0427466 B2 JPH0427466 B2 JP H0427466B2
Authority
JP
Japan
Prior art keywords
solution
temperature side
absorption
low
absorption refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23421083A
Other languages
Japanese (ja)
Other versions
JPS60126558A (en
Inventor
Takafumi Kunugi
Shigeo Sugimoto
Yasuaki Nara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23421083A priority Critical patent/JPS60126558A/en
Publication of JPS60126558A publication Critical patent/JPS60126558A/en
Publication of JPH0427466B2 publication Critical patent/JPH0427466B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、吸収式冷凍装置に係り、特に太陽熱
または排熱を利用して氷点下の冷凍温度を得るの
に好適な吸収式冷凍装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an absorption refrigeration system, and more particularly to an absorption refrigeration system suitable for obtaining freezing temperatures below freezing using solar heat or waste heat. be.

〔発明の背景〕[Background of the invention]

まず、従来の太陽熱利用冷凍倉庫用冷凍装置を
第1図を参照して説明する。
First, a conventional refrigeration system for a refrigerated warehouse using solar heat will be explained with reference to FIG.

第1図は、従来の太陽熱利用冷凍倉庫用冷凍装
置の構成図である。
FIG. 1 is a configuration diagram of a conventional refrigeration system for a refrigerated warehouse using solar heat.

図に示すように、冷凍倉庫1内には空気冷却器
2と送風機3とが設置されており、倉庫内空気を
冷却する。空気冷却器2には冷凍機4から冷媒配
管8,9により冷媒が循環している。冷凍機4で
は、蓄熱槽6からポンプ10、熱媒配管13,1
4によつて熱が供給され、ポンプ11、冷却水配
管15,16によつて冷却塔5から放熱して冷凍
を発生する。
As shown in the figure, an air cooler 2 and a blower 3 are installed in a frozen warehouse 1 to cool the air inside the warehouse. Refrigerant is circulated through the air cooler 2 from the refrigerator 4 through refrigerant pipes 8 and 9. In the refrigerator 4, from the heat storage tank 6 to the pump 10, heat medium piping 13,1
4, heat is radiated from the cooling tower 5 through the pump 11 and the cooling water pipes 15 and 16 to generate refrigeration.

太陽熱は、集熱器7で集められ、ポンプ12、
熱媒配管17,18により蓄熱槽6に貯えられて
いる。冷凍機4は、水を冷媒とする吸収式冷凍機
か、フロンまたはアンモニアを冷媒すると吸収式
冷凍機が使われる。
The solar heat is collected by a heat collector 7, and a pump 12,
The heat medium is stored in a heat storage tank 6 via heat medium pipes 17 and 18. The refrigerator 4 is an absorption refrigerator that uses water as a refrigerant, or an absorption refrigerator that uses fluorocarbon or ammonia as a refrigerant.

この従来の冷凍装置では次のような問題点があ
つた。
This conventional refrigeration system had the following problems.

1 水を冷媒とする吸収式冷凍機を採用した場
合、氷点下の温度が得られない。
1. When using an absorption refrigerator that uses water as a refrigerant, temperatures below freezing cannot be achieved.

2 フロンまたはアンモニアを冷媒とする吸収式
冷凍機を採用した場合、 (1) 冷媒の蒸発圧力と凝縮圧力との差圧が大き
いので、冷凍サイクルの効率がわるく、図示
しない溶液ポンプの昇圧仕事が大きくなる。
2. When using an absorption refrigerator that uses fluorocarbons or ammonia as a refrigerant, (1) The differential pressure between the evaporation pressure and condensation pressure of the refrigerant is large, so the efficiency of the refrigeration cycle is poor, and the boosting work of the solution pump (not shown) is reduced. growing.

(2) フロンは水に比べて蒸発潜熱が小さいた
め、同じ冷凍能力を得るのに冷媒循環量を多
く必要とし、それにより溶液ポンプ動力が大
きくなる。
(2) Since fluorocarbons have a lower latent heat of vaporization than water, a larger amount of refrigerant is required to be circulated to obtain the same refrigeration capacity, which increases the power of the solution pump.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の従来技術の問題点を解決する
ためになされたもので、太陽熱または排熱で駆動
し、氷点下の冷凍温度を得る効率の高い吸収式冷
凍機を提供することを、その目的としている。
The present invention has been made in order to solve the problems of the prior art described above, and its purpose is to provide a highly efficient absorption refrigerator that is driven by solar heat or waste heat and obtains freezing temperatures below freezing. It is said that

〔発明の概要〕[Summary of the invention]

本発明に係る吸収式冷凍装置の構成は、再生
器、凝縮器、蒸発器、吸収器、溶液熱交換器およ
びこれらの吸収サイクルの作動機器を連結する配
管からなる高温側吸収式冷凍機と、別に、再生
器、凝縮器、蒸発器、吸収器、溶液熱交換器およ
びこれら吸収サイクルの作動機器を連結する配管
からなる低温側吸収式冷凍機とを備え、前記高温
側吸収式冷凍機の凝縮器を、前記低温側吸収式冷
凍機の再生器内に配設し、前記低温側吸収式冷凍
機の凝縮器を、前記高温側吸収式冷凍機の蒸発器
内に配設して、前記高温側吸収式冷凍機と前記低
温側吸収式冷凍機とを複合した吸収サイクルの作
動機器として連結し、前記高温側吸収式冷凍機の
再生器を外部熱源で加熱し、前記低温側吸収式冷
凍機の蒸発器で外部から吸熱するようにしたもの
である。
The structure of the absorption refrigerating apparatus according to the present invention includes a high-temperature side absorption refrigerating machine comprising a regenerator, a condenser, an evaporator, an absorber, a solution heat exchanger, and piping connecting operating equipment of these absorption cycles; Separately, it is equipped with a low-temperature side absorption refrigerating machine consisting of a regenerator, a condenser, an evaporator, an absorber, a solution heat exchanger, and piping that connects the operating equipment of these absorption cycles, and the condensation of the high-temperature side absorption refrigerating machine is provided. a regenerator of the low-temperature side absorption refrigerator; a condenser of the low-temperature absorption refrigerator; a condenser of the low-temperature absorption refrigerator; a condenser of the high-temperature absorption refrigerator; A side absorption refrigerator and the low temperature side absorption refrigerator are connected as operating equipment of a combined absorption cycle, and the regenerator of the high temperature side absorption refrigerator is heated by an external heat source, and the low temperature side absorption refrigerator is heated by an external heat source. The evaporator absorbs heat from the outside.

なお、付記すると本発明は、太陽熱または排熱
で駆動する高温側冷凍機を水またはアルコール冷
媒の吸収式冷凍機とし、当該高温側冷凍機で発生
した冷媒蒸気の凝縮潜熱で駆動する低温側冷凍機
とし、低温側冷凍機の凝縮器を高温側冷凍機の蒸
発器内に設置する構成として効率よく氷点下の温
度を得るようにした吸収式冷凍装置である。
As an additional note, the present invention provides a high-temperature side refrigerator that is driven by solar heat or waste heat as an absorption refrigerator using water or alcohol refrigerant, and a low-temperature side refrigerator that is driven by the latent heat of condensation of refrigerant vapor generated in the high-temperature side refrigerator. This is an absorption refrigeration system that efficiently obtains temperatures below freezing by installing the condenser of the low-temperature side refrigerator in the evaporator of the high-temperature side refrigerator.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の各実施例を第2図,第3図を参
照して説明する。
Embodiments of the present invention will be described below with reference to FIGS. 2 and 3.

まず、第2図は、本発明の一実施例に係る吸収
式冷凍装置を太陽熱利用冷凍倉庫に適用した装置
の構成図で、図中、第1図と同一符号のものは、
従来技術と同等部分であるから、その説明を省略
する。
First, FIG. 2 is a block diagram of an absorption refrigeration system according to an embodiment of the present invention applied to a solar thermal storage warehouse. In the figure, the same reference numerals as in FIG.
Since this is the same part as the prior art, the explanation thereof will be omitted.

第2図において、27は再生器、30は凝縮
器、34は蒸発器、37は吸収器、40は溶液熱
交換器で、これら吸収サイクル作動機器と、その
作動機器を連結する配管類とで高温側吸収式冷凍
機を構成している。
In Fig. 2, 27 is a regenerator, 30 is a condenser, 34 is an evaporator, 37 is an absorber, and 40 is a solution heat exchanger. It constitutes a high temperature side absorption refrigerator.

31は冷媒配管、32は冷媒ポンプ、33は蒸
発器、34に冷媒を散布する冷媒散布器、35は
蒸発器34における冷媒受け、36は、吸収器3
7に溶液を散布する溶液散布器、38は、吸収器
37の溶液受け、39は溶液ポンプである。
31 is a refrigerant pipe, 32 is a refrigerant pump, 33 is an evaporator, 34 is a refrigerant sprayer that sprays refrigerant, 35 is a refrigerant receiver in the evaporator 34, and 36 is an absorber 3
7 is a solution sprayer for spraying a solution, 38 is a solution receiver for the absorber 37, and 39 is a solution pump.

48は、再生器27と凝縮器30とを結ぶ冷媒
配管、50は、溶液受38と溶液熱交換器40と
を結ぶ溶液配管で、管路中に溶液ポンプ39を備
えている。52,53は、再生器27と溶液熱交
換器40とを結ぶ溶液配管、55は、溶液熱交換
器40から溶液散布器36へ溶液を送る溶液配管
である。
48 is a refrigerant pipe connecting the regenerator 27 and the condenser 30, 50 is a solution pipe connecting the solution receiver 38 and the solution heat exchanger 40, and a solution pump 39 is provided in the pipe. 52 and 53 are solution pipes that connect the regenerator 27 and the solution heat exchanger 40, and 55 is a solution pipe that sends the solution from the solution heat exchanger 40 to the solution sprayer 36.

上記のように構成された高温側吸収式冷凍機
は、冷媒に水、吸収剤に臭化リチウム水溶液(以
下溶液という)を使用し、再生器27を外部熱源
で加熱し、蒸発器34で外部から吸熱するもので
ある。再生器27内には加熱器28があり、そこ
で溶液は加熱されて冷媒蒸気を発生する。この加
熱器28には太陽熱蓄熱手段に係る蓄熱槽6から
ポンプ10、熱媒配管13,14によつて熱媒が
供給される。
The high-temperature side absorption refrigerator configured as described above uses water as a refrigerant and a lithium bromide aqueous solution (hereinafter referred to as solution) as an absorbent, heats the regenerator 27 with an external heat source, and heats the regenerator 27 with an external heat source. It absorbs heat from the Within the regenerator 27 is a heater 28 in which the solution is heated to generate refrigerant vapor. A heat medium is supplied to this heater 28 from a heat storage tank 6 related to solar heat storage means through a pump 10 and heat medium pipes 13 and 14 .

再生器27で発生した冷媒蒸気は、冷媒配管4
8で凝縮器30に導びかれる。凝縮器30には、
後述する低温側吸収式冷凍機の冷媒R22を含ん
だテトラエチレングリコール・ジメチルエーテル
溶液が入つており、冷媒蒸気はその溶液を加熱し
て冷媒R22蒸気を発生させ、自らは液化し、冷
媒配管31を経て冷媒ポンプ32に吸引されて昇
圧し、冷媒散布器33から蒸発器34に散布され
て蒸発する。その冷媒蒸気は、吸収器37に溶液
散布器36からスプレされる溶液に吸収され、そ
のときの吸式熱は冷却水配管15,16に放出さ
れる。この冷却水は、ポンプ11により冷却塔5
との間を往復する。
The refrigerant vapor generated in the regenerator 27 is transferred to the refrigerant pipe 4
8 to a condenser 30. In the condenser 30,
A tetraethylene glycol dimethyl ether solution containing refrigerant R22 of the low-temperature side absorption refrigerator described later is contained, and the refrigerant vapor heats the solution to generate refrigerant R22 vapor, which liquefies itself and flows through the refrigerant pipe 31. The refrigerant is then sucked into the refrigerant pump 32 and pressurized, and then distributed from the refrigerant distributor 33 to the evaporator 34 where it evaporates. The refrigerant vapor is absorbed by the solution sprayed from the solution sprayer 36 into the absorber 37, and the absorbed heat at that time is released to the cooling water pipes 15, 16. This cooling water is pumped to the cooling tower 5 by the pump 11.
Go back and forth between.

蒸発器34で蒸発し切れなかつた液冷媒は、冷
媒受35から再び冷媒ポンプ32に吸引される。
吸収を終つた溶液受38の溶液は、溶液ポンプ3
9、溶液配管50により溶液熱交換器40に入つ
て加熱され、溶液配管52から再生器27に流入
する。
The liquid refrigerant that has not been completely evaporated in the evaporator 34 is sucked into the refrigerant pump 32 again from the refrigerant receiver 35.
The solution in the solution receiver 38 that has finished absorption is transferred to the solution pump 3.
9. The solution enters the solution heat exchanger 40 through the solution pipe 50 and is heated, and flows into the regenerator 27 through the solution pipe 52.

再生器27で冷媒を放出した溶液は、溶液配管
53から溶液熱交換器40に流入して冷却され、
溶液配管55から溶液散布器36に送られる。
The solution from which the refrigerant has been released in the regenerator 27 flows into the solution heat exchanger 40 from the solution pipe 53 and is cooled.
The solution is sent from the solution pipe 55 to the solution sprayer 36 .

次に、低温側の吸収式冷凍機について説明す
る。第2図において、30Aは再生器、34Aは
凝縮器、44は溶液熱交換器、46は吸収器、2
は蒸発器の働きをする空気冷却器で、これら吸収
サイクル作動機器と、その作動機器を連結する配
管類とで低温側吸収式冷凍機を構成している。
Next, the absorption refrigerator on the low temperature side will be explained. In FIG. 2, 30A is a regenerator, 34A is a condenser, 44 is a solution heat exchanger, 46 is an absorber, 2
is an air cooler that functions as an evaporator, and these absorption cycle operating devices and the piping that connects these operating devices constitute a low-temperature side absorption refrigerator.

低温側吸収式冷凍機の再生器30Aは、前記の
高温側吸収式冷凍機の凝縮器30を内設し、低温
側吸収式冷凍機の凝縮器34Aは、高温側吸収式
冷凍機の蒸発器34内に配設されており、高温側
吸収式冷凍機と低温側吸収式冷凍機の複合した吸
収サイクル作動機器を構成している。
The regenerator 30A of the low-temperature side absorption refrigerator has the condenser 30 of the high-temperature side absorption refrigerator installed therein, and the condenser 34A of the low-temperature side absorption refrigerator has the evaporator of the high-temperature side absorption refrigerator. 34, and constitutes an absorption cycle operation device that is a combination of a high-temperature side absorption refrigerator and a low-temperature side absorption refrigerator.

56は、再生器30Aと凝縮器34Aを結ぶ冷
媒配管、57は、凝縮器34Aと空気冷却器2と
を結ぶ冷媒配管で、管路中に減圧器43を備えて
いる。58は、空気冷却器2から出る冷媒配管、
59は、その冷媒配管58の延長で吸収器46に
入る気液流配管、60は、吸収器46と溶液熱交
換器44とを結ぶ溶液配管で、管路中に溶液ポン
プ47を備えている。61は、再生器30Aと溶
液熱交換器44を結ぶ溶液配管、62は、溶液熱
交換器44と吸収器46との間に設けられた溶液
配管で、管路中に減圧器45を備えており、冷媒
配管58と合流するものである。63は、溶液熱
交換器44と再生器30Aを結ぶ溶液配管、6
4,65は、吸収器46と冷却塔5との間を循環
する冷却水配管である。
56 is a refrigerant pipe that connects the regenerator 30A and the condenser 34A, and 57 is a refrigerant pipe that connects the condenser 34A and the air cooler 2, and a pressure reducer 43 is provided in the pipe. 58 is a refrigerant pipe coming out of the air cooler 2;
59 is a gas-liquid flow pipe that enters the absorber 46 as an extension of the refrigerant pipe 58, and 60 is a solution pipe that connects the absorber 46 and the solution heat exchanger 44, and is equipped with a solution pump 47 in the pipe. . 61 is a solution pipe connecting the regenerator 30A and the solution heat exchanger 44, 62 is a solution pipe provided between the solution heat exchanger 44 and the absorber 46, and the pipe is equipped with a pressure reducer 45. and merges with the refrigerant pipe 58. 63 is a solution pipe connecting the solution heat exchanger 44 and the regenerator 30A;
4 and 65 are cooling water pipes that circulate between the absorber 46 and the cooling tower 5.

低温側吸収式冷凍機は、冷媒にR22、吸収剤
にテトラエチレングリコール・ジメチルエーテル
(以下溶液という)を使用し、再生器30Aを加
熱し、空気冷却器2で外部から吸熱するものであ
る。
The low-temperature side absorption refrigerator uses R22 as a refrigerant and tetraethylene glycol dimethyl ether (hereinafter referred to as solution) as an absorbent, heats the regenerator 30A, and absorbs heat from the outside with the air cooler 2.

低温側吸収式冷凍機の再生器30Aは、高温側
吸収式冷凍機の凝縮器30でもあり、高温側の冷
媒蒸気で低温側の溶液は加熱されて冷媒蒸気を発
生する。
The regenerator 30A of the low temperature side absorption refrigerator is also the condenser 30 of the high temperature side absorption refrigerator, and the solution on the low temperature side is heated by the refrigerant vapor on the high temperature side to generate refrigerant vapor.

再生器30Aで発生した冷媒蒸気は、冷媒配管
56で凝縮器34Aに入り凝縮液化する。このと
きの凝縮熱は、高温側吸収式冷凍機の蒸発器34
として冷媒の水の蒸発熱になる。凝縮器34A内
での液冷媒は、冷媒配管57から減圧器43を経
て減圧され、冷凍倉庫1内にある空気冷却器2に
入つて膨張蒸発する。この蒸発熱は送風機3によ
つて循環する冷凍倉庫1内空気から奪われ、冷凍
倉庫1内が冷される。この場合、R22の蒸発温
度は氷点下が実現でき、倉庫1内も氷点下になつ
て、冷凍・冷蔵に供せられる。
The refrigerant vapor generated in the regenerator 30A enters the condenser 34A through the refrigerant pipe 56 and is condensed and liquefied. At this time, the heat of condensation is transferred to the evaporator 34 of the high temperature side absorption refrigerator.
This becomes the heat of evaporation of the refrigerant water. The liquid refrigerant in the condenser 34A is depressurized from the refrigerant pipe 57 through the pressure reducer 43, enters the air cooler 2 in the frozen warehouse 1, and expands and evaporates. This heat of evaporation is removed from the circulating air inside the frozen warehouse 1 by the blower 3, and the inside of the frozen warehouse 1 is cooled. In this case, the evaporation temperature of R22 can be achieved below freezing, and the temperature inside the warehouse 1 will also be below freezing, allowing it to be frozen and refrigerated.

空気冷却器2内で蒸発した冷媒蒸気は、冷媒配
管58を通り、溶液配管62から減圧器45で減
圧した溶液と合流し、気液流配管59から吸収器
46に入り溶液に吸収される。このときの吸収熱
は冷却水配管64,65に放出される。
The refrigerant vapor evaporated in the air cooler 2 passes through the refrigerant pipe 58, joins with the solution whose pressure has been reduced by the pressure reducer 45 from the solution pipe 62, enters the absorber 46 from the gas-liquid flow pipe 59, and is absorbed by the solution. The absorbed heat at this time is released to the cooling water pipes 64 and 65.

冷媒蒸気を吸収した溶液は、溶液配管60、溶
液ポンプ47から溶液熱交換器44に入つて加熱
され、溶液配管63ら再生器30Aに流入する。
また、再生器30A内で冷媒を放出した溶液は、
溶液配管61から溶液熱交換器44に入つて冷却
され、溶液配管62から減圧器45を経て減圧さ
れる。
The solution that has absorbed the refrigerant vapor enters the solution heat exchanger 44 through the solution piping 60 and the solution pump 47, is heated, and flows into the regenerator 30A through the solution piping 63.
In addition, the solution that released the refrigerant in the regenerator 30A is
The solution enters the solution heat exchanger 44 from the solution pipe 61 and is cooled, and is depressurized from the solution pipe 62 via the pressure reducer 45.

このような高温側吸収式冷凍機と低温側吸収式
冷凍機とを複合した構成の吸収式冷凍装置では、
高温側吸収式冷凍機の再生器27の加熱器28
を、外部熱源、たとえば太陽熱蓄熱手段に係る蓄
熱槽6からの熱で加熱し、低温側吸収式冷凍機の
蒸発器として機能する空気冷却器2で外部、たと
えば冷凍倉庫1内の循環空気から吸熱して、冷凍
倉庫1内の冷凍・冷蔵・空調が行われる。
In an absorption refrigerating system that has a combination of a high-temperature side absorption refrigerating machine and a low-temperature side absorption refrigerating machine,
Heater 28 of regenerator 27 of high temperature side absorption refrigerator
is heated by heat from an external heat source, for example, a heat storage tank 6 associated with solar heat storage means, and the air cooler 2, which functions as an evaporator for a low-temperature side absorption refrigerator, absorbs heat from the circulating air in the cold storage warehouse 1. Then, freezing, refrigeration, and air conditioning in the frozen warehouse 1 are performed.

本例の場合、蓄熱槽6が130℃、空気冷却器2
で−20℃の低温が得られる。
In this example, the temperature of the heat storage tank 6 is 130℃, and the temperature of the air cooler 2 is
A low temperature of -20°C can be obtained.

なお、熱媒配管13には補助的に加熱器(図示
せず)を設けることも有効である。
Note that it is also effective to provide an auxiliary heater (not shown) in the heat medium pipe 13.

本実施例の効果は次のとおりである。 The effects of this embodiment are as follows.

(1) 水を冷媒とする吸収式冷凍を主体として、氷
点下の冷風が得られる。
(1) Cool air below freezing point can be obtained mainly through absorption refrigeration using water as a refrigerant.

(2) 高温側吸収式冷凍機、低温側吸収式冷凍機と
も、凝縮圧力と蒸発圧力との圧力差が小さく運
転できるので、サイクル効率がよく、しかも溶
液ポンプ39,47の昇圧仕事も少なくてす
む。
(2) Both the high-temperature side absorption refrigerator and the low-temperature side absorption refrigerator can be operated with a small pressure difference between the condensing pressure and the evaporation pressure, so the cycle efficiency is good, and the pressure boosting work of the solution pumps 39 and 47 is also small. I'm done.

(3) 低温側吸収式冷凍機の蒸発圧力を低くとれる
ので、氷点下の蒸発温度が容易に得られ、した
がつて、氷点下の冷風が得られる。
(3) Since the evaporation pressure of the low-temperature side absorption refrigerator can be kept low, an evaporation temperature below freezing can be easily obtained, and therefore cold air below freezing can be obtained.

次に、本発明の他の実施例を第3図を参照して
説明する。
Next, another embodiment of the present invention will be described with reference to FIG.

第3図は、本発明の他の実施例に係る吸収式冷
凍装置を太陽熱利用冷凍倉庫に適用した装置の構
成図で、図中、第2図と同一符号のものは、先の
実施例と同等部分である。すなわち、集熱器7、
蓄熱槽6、高温側吸収式冷凍機、冷却塔5などに
ついては第2図の実施例と同じであるから、その
説明を省略する。
FIG. 3 is a block diagram of an absorption refrigeration system according to another embodiment of the present invention applied to a solar thermal storage warehouse. In the figure, the same reference numerals as in FIG. It is an equal part. That is, the heat collector 7,
Since the heat storage tank 6, high-temperature side absorption refrigerator, cooling tower 5, etc. are the same as those in the embodiment shown in FIG. 2, their explanations will be omitted.

第3図において、30Bは再生器、34Bは凝
縮器、44′は溶液熱交換器、46Bは吸収器、
66はブライン冷却器、2′は蒸発器の働きをす
る空気冷却器で、これら吸収サイクル作動機器
と、その作動機器を連結する配管類とで低温側吸
収式冷凍機を構成している。
In FIG. 3, 30B is a regenerator, 34B is a condenser, 44' is a solution heat exchanger, 46B is an absorber,
66 is a brine cooler, and 2' is an air cooler that functions as an evaporator.These absorption cycle operating devices and piping connecting these operating devices constitute a low-temperature side absorption refrigerator.

低温側吸収式冷凍機の再生器30Bは、高温側
吸収式冷凍機の凝縮器30を内設し、低温側吸収
式冷凍機の凝縮器34Bおよび吸収器46Bは、
高温側吸収式冷凍機の蒸発器34内に配設されて
おり、ブライン冷却器66を備えて、高温側吸収
式冷凍機と低温側吸収式冷凍機の複合した吸収サ
イクル作動機器を構成している。
The regenerator 30B of the low-temperature absorption refrigerator has the condenser 30 of the high-temperature absorption refrigerator inside, and the condenser 34B and absorber 46B of the low-temperature absorption refrigerator are
It is disposed in the evaporator 34 of the high-temperature side absorption refrigerator, and is equipped with a brine cooler 66 to constitute an absorption cycle operation device that is a combination of the high-temperature side absorption refrigerator and the low-temperature side absorption refrigerator. There is.

57′は、凝縮器34Bとブライン冷却器66
とを結ぶ冷媒配管で、管路中に減圧器43′を備
えている。58′は、ブライン冷却器66から出
る冷媒配管、59′は、その冷媒配管58′の延長
で吸収器46Bに入る気液流配管、60′は、吸
収器46Bと溶液熱交換器44′とを結ぶ溶液配
管で、管路中に溶液ポンプ47′を備えている。
61′は、再生器30Bと溶液熱交換器44′とを
結ぶ溶液配管、62′は、溶液熱交換器44′と吸
収器46Bとの間に設けられた溶液配管で、管路
中に減圧器45′を備えており、冷媒配管58′と
合流するものである。63′は、溶液熱交換器4
4′と再生器30Bとを結ぶ溶液配管である。
57' is the condenser 34B and the brine cooler 66
This refrigerant pipe connects the refrigerant pipe and is equipped with a pressure reducer 43' in the pipe. 58' is a refrigerant pipe exiting the brine cooler 66, 59' is a gas-liquid flow pipe that is an extension of the refrigerant pipe 58' and enters the absorber 46B, and 60' is a pipe connecting the absorber 46B and the solution heat exchanger 44'. A solution pump 47' is provided in the pipe.
61' is a solution pipe connecting the regenerator 30B and the solution heat exchanger 44', and 62' is a solution pipe provided between the solution heat exchanger 44' and the absorber 46B. The refrigerant pipe 45' is provided with a pipe 45', which joins the refrigerant pipe 58'. 63' is the solution heat exchanger 4
4' and the regenerator 30B.

67はブラインポンプ、68,69はブライン
配管で、ブライン冷却器66と空気冷却器2′と
の間に、ブラインを循環させる配管である。
67 is a brine pump, and 68 and 69 are brine pipes that circulate brine between the brine cooler 66 and the air cooler 2'.

低温側吸収式冷凍機は、冷媒にR22、吸収剤
にテトラエチレングリコール・ジメチルエーテル
(以下溶液という)を使用し、再生器30Bを加
熱し、空気冷却器2′で外部から吸熱するもので
ある。
The low-temperature side absorption refrigerator uses R22 as a refrigerant and tetraethylene glycol dimethyl ether (hereinafter referred to as a solution) as an absorbent, heats a regenerator 30B, and absorbs heat from the outside with an air cooler 2'.

低温側吸収式冷凍機の再生器30Bは、高温側
吸収式冷凍機の凝縮器30でもあり、高温側の冷
媒蒸気で、低温側の溶液は加熱されて冷媒蒸気を
発生する。
The regenerator 30B of the low-temperature absorption refrigerator is also the condenser 30 of the high-temperature absorption refrigerator, and the solution on the low temperature side is heated by the refrigerant vapor on the high temperature side to generate refrigerant vapor.

再生器30Bで発生した冷媒蒸発気は、冷媒配
管56で凝縮器34Bに入り凝縮液化する。この
ときの凝縮熱は、高温側吸収式冷凍機の蒸発器3
4として冷媒の水の蒸発熱になる。
The refrigerant vapor generated in the regenerator 30B enters the condenser 34B through the refrigerant pipe 56 and is condensed and liquefied. At this time, the heat of condensation is transferred to the evaporator 3 of the high-temperature side absorption refrigerator.
4 becomes the heat of evaporation of the refrigerant water.

凝縮器34B内での液冷媒は、冷媒配管57′
から減圧器43′を経て減圧し、ブライン冷却器
66に入つて膨脹蒸発する。この蒸発熱は、ブラ
インポンプ67、ブライン配管68,69、空気
冷却器2′を循環するブラインから奪い、ブライ
ンを冷却する。このブラインは、空気冷却器2′
において、送風機3によつて循環する冷凍倉庫1
内空気を冷却する。この場合もブラインの温度は
氷点下になつて、冷凍倉庫1内も氷点下温度に維
持できる。
The liquid refrigerant in the condenser 34B is transferred to the refrigerant pipe 57'.
From there, the pressure is reduced through a pressure reducer 43', and the water enters a brine cooler 66 where it is expanded and evaporated. This heat of evaporation is taken away from the brine circulating through the brine pump 67, brine pipes 68, 69, and air cooler 2' to cool the brine. This brine is transferred to the air cooler 2'
, a cold storage warehouse 1 circulated by a blower 3
Cools the internal air. In this case as well, the temperature of the brine becomes below freezing, and the temperature inside the frozen warehouse 1 can also be maintained at below freezing.

ブライン冷却器66内で蒸発した冷媒蒸気は、
冷媒配管58′を通り、溶液配管62′から減圧器
45′で減圧された溶液と合流し、気液流配管5
9′を経て吸収器46Bに入つて溶液に吸収され
る。このときの吸収熱は、高温側吸収式冷凍機の
蒸発器34として冷媒の水の蒸発熱になる。
The refrigerant vapor evaporated in the brine cooler 66 is
It passes through the refrigerant pipe 58', merges with the solution reduced in pressure by the pressure reducer 45' from the solution pipe 62', and flows into the gas-liquid flow pipe 5.
9', enters the absorber 46B and is absorbed into the solution. The absorbed heat at this time becomes the heat of evaporation of the refrigerant water in the evaporator 34 of the high temperature side absorption refrigerator.

冷媒蒸気を吸収した溶液は、溶液配管60′、
溶液ポンプ47′から溶液熱交換器44′に入つて
加熱され、溶液配管63′から再生器30Bに流
入する。また、再生器30B内で冷媒を放出した
溶液は、溶液配管61′から溶液熱交換器44′に
入つて冷却され、溶液配管62′から減圧器4
5′を経て減圧される。
The solution that has absorbed the refrigerant vapor is transferred to the solution pipe 60',
The solution enters the solution heat exchanger 44' from the solution pump 47' and is heated, and flows into the regenerator 30B from the solution pipe 63'. In addition, the solution from which the refrigerant has been released in the regenerator 30B enters the solution heat exchanger 44' from the solution pipe 61' and is cooled, and is passed from the solution pipe 62' to the pressure reducer 44'.
The pressure is reduced through 5'.

このような高温側吸収式冷凍機と低温側吸収式
冷凍機を複合した構成の吸収式冷凍装置では、高
温側吸収式冷凍機の再生器27の加熱器28を、
外部熱源、たとえば太陽熱蓄熱手段に係る蓄熱槽
6からの熱で加熱し、低温側吸収式冷凍機の蒸発
器として機能する空気冷却器2′、すなわちブラ
イン冷却器66のブラインが循環する空気冷却器
2′で、冷凍倉庫1内の循環空気から吸熱して、
冷凍倉庫1内の冷凍・冷蔵・空調が行われる。
In such an absorption refrigerating system having a combination of a high-temperature absorption refrigerator and a low-temperature absorption refrigerator, the heater 28 of the regenerator 27 of the high-temperature absorption refrigerator is
An air cooler 2' that is heated by heat from an external heat source, such as a heat storage tank 6 associated with a solar heat storage means, and functions as an evaporator for a low-temperature side absorption refrigerator, that is, an air cooler in which brine from a brine cooler 66 circulates. At 2', heat is absorbed from the circulating air in the cold storage warehouse 1,
Freezing, refrigeration, and air conditioning are performed in the cold storage warehouse 1.

本例の場合も、空気冷却器2′で−20℃の低温
が得られる。
In the case of this example as well, a low temperature of -20°C can be obtained in the air cooler 2'.

なお、前記の第2、第3図の各実施例のほか、
特に図示して詳細には説明しないが、第2図の低
温側吸収式冷凍機の凝縮器34Aを、高温側吸収
式冷凍機の蒸発器34内に配設して、第3図のブ
ライン冷却器66を採用する組合わせの吸収式冷
凍装置、または、第3図の低温側吸収式冷凍機の
凝縮器34Bと吸収器46Bとを、高温側吸収式
冷凍機の蒸発器33内に配設して、第2図に示す
空気冷却器2を冷媒の蒸発器として作用させる組
合わせの吸収式冷凍装置でも、前述と同様の効果
が得られる。
In addition to the embodiments shown in FIGS. 2 and 3 above,
Although not particularly illustrated and described in detail, the condenser 34A of the low-temperature side absorption refrigerator shown in FIG. 66, or the condenser 34B and absorber 46B of the low-temperature absorption refrigerator shown in FIG. 3 are arranged in the evaporator 33 of the high-temperature absorption refrigerator. The same effects as described above can also be obtained with an absorption refrigerating apparatus in which the air cooler 2 shown in FIG. 2 is used as a refrigerant evaporator.

また、前記各実施例では、高温側吸収式冷凍機
の再生器27は、太陽熱で加熱される例を説明し
たが、これに限らず、排熱による加熱もでき、燃
焼ガスやスチームによる加熱も可能である。
Furthermore, in each of the above embodiments, the regenerator 27 of the high-temperature side absorption chiller is heated by solar heat, but the invention is not limited to this, and it can also be heated by exhaust heat, or heated by combustion gas or steam. It is possible.

さらに、高温側吸収式冷凍機は冷媒に水のみで
なくアルコールを、低温側吸収式冷凍機は冷媒に
フロンのみでなくアンモニアを使つても本発明の
目的を達成できる。
Furthermore, the object of the present invention can be achieved by using not only water but also alcohol as a refrigerant in a high-temperature absorption refrigerator, and ammonia as well as fluorocarbon as a refrigerant in a low-temperature absorption refrigerator.

さらにまた、前記の第2,3図の実施例におい
て、特に図示しないが再生器27を出た溶液配管
53の溶液を、低温側吸収式冷凍機の再生器30
Aまたは30B内に導びき、そこで溶液配管63
または63′から入つた溶液を加熱したのち、溶
液熱交換器40に流入させても本発明の目的を達
成できる。
Furthermore, in the embodiment shown in FIGS. 2 and 3, although not particularly shown, the solution in the solution pipe 53 exiting the regenerator 27 is transferred to the regenerator 30 of the low-temperature side absorption refrigerator.
A or 30B, where the solution piping 63
Alternatively, the object of the present invention can also be achieved by heating the solution entering from 63' and then allowing it to flow into the solution heat exchanger 40.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、太陽熱ま
たは排熱で駆動でき、氷点下の冷凍温度を得る効
率の高い吸収式冷凍機を提供することができる効
果がある。
As described above, according to the present invention, it is possible to provide a highly efficient absorption refrigerator that can be driven by solar heat or waste heat and obtains freezing temperatures below freezing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の太陽熱利用冷凍倉庫用冷凍装
置の構成図、第2図は、本発明の一実施例に係る
吸収式冷凍装置を太陽熱利用冷凍倉庫に適用した
装置の構成図、第3図は、本発明の他の実施例に
係る吸収式冷凍装置を太陽熱利用冷凍倉庫に適用
した装置の構成図である。 1…冷凍倉庫、2,2′…空気冷却器、3…送
風機、5…冷却塔、6…蓄熱槽、7…集熱器、1
3,14…熱媒配管、15,16…冷却水配管、
27…再生器、28…加熱器、30…凝縮器、3
0A,30B…再生器、32…冷媒ポンプ、33
…冷媒散布器、34…蒸発器、34A,34B…
凝縮器、35…冷媒受け、36…溶液散布器、3
7…吸収器、38…溶液受け、39…溶液ポン
プ、40,44,44′…溶液熱交換器、43,
43′,45,45′…減圧器、46,46B…吸
収器、47,47′…溶液ポンプ、66…ブライ
ン冷却器、31,48,56.57,57′,5
8,58′…冷媒配管、59,59′…気液流配
管、50,52,53,60,60′,61,6
1′,62,62′,63,63′…溶液配管、6
4,65…冷却水配管、66…ブライン冷却器、
67…ブラインポンプ、68,69…ブライン配
管。
FIG. 1 is a block diagram of a conventional refrigeration system for a solar heat-utilizing cold storage warehouse, FIG. 2 is a block diagram of a system in which an absorption refrigeration system according to an embodiment of the present invention is applied to a solar heat-utilizing cold storage warehouse, and FIG. The figure is a configuration diagram of an apparatus in which an absorption refrigerating apparatus according to another embodiment of the present invention is applied to a solar thermal storage warehouse. 1... Freezer warehouse, 2, 2'... Air cooler, 3... Air blower, 5... Cooling tower, 6... Heat storage tank, 7... Heat collector, 1
3, 14... Heat medium piping, 15, 16... Cooling water piping,
27... Regenerator, 28... Heater, 30... Condenser, 3
0A, 30B... Regenerator, 32... Refrigerant pump, 33
...Refrigerant spreader, 34...Evaporator, 34A, 34B...
Condenser, 35... Refrigerant receiver, 36... Solution sprayer, 3
7... Absorber, 38... Solution receiver, 39... Solution pump, 40, 44, 44'... Solution heat exchanger, 43,
43', 45, 45'... pressure reducer, 46, 46B... absorber, 47, 47'... solution pump, 66... brine cooler, 31, 48, 56.57, 57', 5
8, 58'... Refrigerant piping, 59, 59'... Gas-liquid flow piping, 50, 52, 53, 60, 60', 61, 6
1', 62, 62', 63, 63'...solution piping, 6
4, 65...Cooling water piping, 66...Brine cooler,
67...Brine pump, 68, 69...Brine piping.

Claims (1)

【特許請求の範囲】 1 再生器、凝縮器、蒸発器、吸収器、溶液熱交
換器およびこれら吸収サイクルの作動機器を連結
する配管からなる高温側吸収式冷凍機と、別に、
再生器、凝縮器、蒸発器、吸収器、溶液熱交換器
およびこれら吸収サイクルの作動機器を連結する
配管からなる低温側吸収式冷凍機とを備え、前記
高温側吸収式冷凍機の凝縮器を、前記低温側吸収
式冷凍機の再生器内に配設し、前記低温側吸収式
冷凍機の凝縮器を、前記高温側吸収式冷凍機の蒸
発器内に配設して、前記高温側吸収式冷凍機と前
記低温側吸収式冷凍機とを複合した吸収サイクル
の作動機器として連結し、前記高温側吸収式冷凍
機の再生器を外部熱源で加熱し、前記低温側吸収
式冷凍機の蒸発器で外部から吸熱するように構成
したことを特徴とする吸収式冷凍装置。 2 特許請求の範囲第1項記載のものにおいて、
高温側吸収式冷凍機の蒸発器内に、低温側吸収式
冷凍機の凝縮器および吸収器を配設したものであ
る吸収式冷凍装置。 3 特許請求の範囲第1項または第2項記載のも
ののいずれかにおいて、低温側吸収式冷凍機の凝
縮器および吸収器と接続するブライン冷却器を設
け、そのブライン冷却器のブラインが循環する空
気冷却器を、低温側吸収式冷凍機の蒸発器として
作用させるように構成したものである吸収式冷凍
装置。 4 特許請求の範囲第1項ないし第3項記載のも
ののいずれかにおいて、高温側吸収式冷凍機の再
生器に設けた加熱器を、太陽熱蓄熱手段に接続し
たものである吸収式冷凍装置。
[Scope of Claims] 1. Separately from a high-temperature side absorption refrigerator consisting of a regenerator, a condenser, an evaporator, an absorber, a solution heat exchanger, and piping connecting the operating equipment of these absorption cycles,
A low-temperature side absorption refrigerator comprising a regenerator, a condenser, an evaporator, an absorber, a solution heat exchanger, and piping connecting operating equipment of these absorption cycles, and a condenser of the high-temperature side absorption refrigerator. , disposed in a regenerator of the low-temperature side absorption refrigerator; a condenser of the low-temperature absorption refrigerator is disposed in an evaporator of the high-temperature absorption refrigerator; A type refrigerator and the low-temperature absorption refrigerator are connected as operating equipment of a combined absorption cycle, and the regenerator of the high-temperature absorption refrigerator is heated by an external heat source, and the evaporation of the low-temperature absorption refrigerator is An absorption refrigeration device characterized by being configured so that heat is absorbed from the outside by a container. 2. In what is stated in claim 1,
An absorption refrigerating system in which the condenser and absorber of a low-temperature side absorption refrigerating machine are placed inside the evaporator of a high-temperature side absorption refrigerating machine. 3. In either of claims 1 or 2, a brine cooler is provided which is connected to the condenser and absorber of the low-temperature side absorption refrigerator, and the brine of the brine cooler is connected to the circulating air. An absorption refrigerating device in which a cooler is configured to function as an evaporator of a low-temperature side absorption refrigerating machine. 4. An absorption refrigerating device according to any one of claims 1 to 3, wherein a heater provided in a regenerator of a high-temperature side absorption refrigerating machine is connected to solar heat storage means.
JP23421083A 1983-12-14 1983-12-14 Absorption type refrigerator Granted JPS60126558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23421083A JPS60126558A (en) 1983-12-14 1983-12-14 Absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23421083A JPS60126558A (en) 1983-12-14 1983-12-14 Absorption type refrigerator

Publications (2)

Publication Number Publication Date
JPS60126558A JPS60126558A (en) 1985-07-06
JPH0427466B2 true JPH0427466B2 (en) 1992-05-11

Family

ID=16967417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23421083A Granted JPS60126558A (en) 1983-12-14 1983-12-14 Absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPS60126558A (en)

Also Published As

Publication number Publication date
JPS60126558A (en) 1985-07-06

Similar Documents

Publication Publication Date Title
JP2512095B2 (en) Cold heat generation method
JPH05172437A (en) Method and device for cooling fluid, particularly air by two separated absorption cooling system
JP2548962B2 (en) heat pump
JPH083392B2 (en) Concentration difference cold storage heat generator
JPH0953864A (en) Engine type cooling device
JP2776200B2 (en) Absorption type ice cold storage device
JPH0427466B2 (en)
JP2678211B2 (en) Heat storage type cold / heat generator
JPH06103131B2 (en) Absorption refrigeration system
JP4100462B2 (en) Heat utilization system
JPS5832301B2 (en) absorption refrigerator
JPS5944498B2 (en) Exhaust heat utilization equipment
JP2004069276A (en) Waste heat recovering cooling system
JPH05256535A (en) Sorption heat pump system
JPS582564A (en) Composite absorption type refrigerator
KR0136205Y1 (en) Absorptive type airconditioner
JP4282818B2 (en) Combined cooling system and combined cooling method
JPS6024901B2 (en) Waste heat heating and cooling equipment
JPH0261471A (en) Cooling air generating device
JPS6022253B2 (en) absorption refrigerator
KR200276965Y1 (en) Evaporative air conditioner
JP2004012102A (en) Refrigeration system
JPS5829819Y2 (en) Absorption heat pump
KR890001303B1 (en) Absorption type cooling device using exhaust gas heat from the engine
JPH0446342B2 (en)