JPH04273041A - Electrolytic flow cell using crystal vibrator - Google Patents

Electrolytic flow cell using crystal vibrator

Info

Publication number
JPH04273041A
JPH04273041A JP5563591A JP5563591A JPH04273041A JP H04273041 A JPH04273041 A JP H04273041A JP 5563591 A JP5563591 A JP 5563591A JP 5563591 A JP5563591 A JP 5563591A JP H04273041 A JPH04273041 A JP H04273041A
Authority
JP
Japan
Prior art keywords
electrolytic
flow cell
solution
electrolyte
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5563591A
Other languages
Japanese (ja)
Inventor
Yasuo Ninomiya
二宮 康雄
Toshio Aizu
会津 敏夫
Shohei Oda
織田 昌平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP5563591A priority Critical patent/JPH04273041A/en
Publication of JPH04273041A publication Critical patent/JPH04273041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To provide an electrolytic flow cell, for an electrolytic quantification device, having stable electrolytic current, good sensitivity, and reproductive measuring capability fot an electrolytic quantitative analyisis. CONSTITUTION:A trace constituent is electrolytically quantified through an electrolytic flow cell 1, having an operating electrode 8, composed including a crystal vibrator, and a counter electrode 12, in an electrolytic quantification device. An electrolytic solution 13 in the electrolytic flow cell 1 is in a body, however a flowing part and an actually stationary part exist during at least the electrolytic quantification of the electrolytic specimen solution is made, and the operating electrode 8 is in contact with the flowing part and the counter electrode 12 is touching the actually stationary part.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、溶液中に存在する微量
物質を定量的に分析するための装置、特に電気化学的手
段を用いて定量的に分析するための電解定量装置に関す
るものである。
[Field of Industrial Application] The present invention relates to an apparatus for quantitatively analyzing trace substances present in a solution, and in particular to an electrolytic quantitative apparatus for quantitatively analyzing trace substances present in a solution. .

【0002】0002

【従来の技術】水晶発振子は、発振子に物質が付着する
と発振周波数が変化することが見出されて分析の分野に
利用されている。気体中に存在する微量物質が発振子上
に塗布された選択的吸着剤に吸着して、その量に応じて
変化する発振子の発振周波数の変化を測定して微量物質
の吸着量を定量できることは知られている。液体中に溶
解して存在する微量物質についても同様に発振子上に吸
着し得る物質による発振子の発振周波数の変化を測定す
れば微量物質の吸着量を定量できるが、共存する物質に
よる妨害効果等の理由で個々には応用例は有るが、一般
法として確立されるには至っていない。
2. Description of the Related Art Crystal oscillators have been used in the field of analysis because it has been discovered that the oscillation frequency changes when a substance adheres to the oscillator. The ability to quantify the amount of adsorbed trace substances by measuring the change in the oscillation frequency of the oscillator, which changes according to the amount of adsorbed trace substances present in the gas, on the selective adsorbent coated on the oscillator. is known. Regarding trace substances dissolved in a liquid, the amount of adsorbed trace substances can be quantified by measuring the change in the oscillation frequency of the oscillator due to the substances that can be adsorbed onto the oscillator, but the interference effect caused by coexisting substances For these reasons, although there are individual application examples, it has not yet been established as a general law.

【0003】これに対して液体中に溶解して存在する微
量電解質物質を水晶発振子に金をメッキしてそれを作用
極として電解質物質をその上に電着させて、その量を発
振子の発振周波数の変化の測定によって定量して電解質
物質の濃度を定量することは、電解電圧を規定すれば共
存する物質による妨害効果を排除し得るので試みられて
いる。
On the other hand, a small amount of electrolyte substance dissolved in a liquid is plated with gold on a crystal oscillator, and the electrolyte substance is electrodeposited on the crystal oscillator using it as a working electrode. Attempts have been made to quantify the concentration of electrolyte substances by measuring changes in the oscillation frequency, since interference effects caused by coexisting substances can be eliminated by specifying the electrolytic voltage.

【0004】水晶発振子を用いて作成した作用極を一極
とする三極電極系で、微量に溶解している銀を溶液から
作用極に電着させて、溶液中の銀濃度を測定する方法に
ついては、野村等がAnalytica  Chimi
ca  Acta  131巻  97頁  (198
1)に記載している。しかしながら、この従来の装置で
は、試料を含む電解質溶液は、作用極から離れた位置に
ある供給口から流入して、装置中の作用極上をその一方
の端から厚い層の層流として他の端へ流れる形で供給さ
れるため、検知されるべき物質(以下には作用物質とい
う)は作用極上に均一には分布せず、上流の部分では多
く下流では希薄になり、しかも測定条件によってその作
用物質の分布が変化する。また更に、対極が、電解質溶
液が流入する所にも、また作用極にも近接して存在する
ため、対極付近の電解質溶液の組成が測定中絶えず変動
する。かかる状況は測定中の装置を流れる電流値によく
反映され、実際この従来タイプの測定装置を用いての追
試では、電解電流が大きくバラツき、作用極の発振周波
数も不安定で作用極に電着した作用物質の再現性のよい
重量測定ができなかった。電解質試料溶液が少ない場合
、或いは試料の切り換え時の安定化時間を短縮したい等
の場合には、測定セルは小容量のものに設計されるが、
そのことも従来の装置では電解電流の不安定化を助長す
る。
[0004] Using a three-electrode electrode system in which a working electrode made using a crystal oscillator serves as one pole, a trace amount of dissolved silver is electrodeposited from the solution onto the working electrode, and the silver concentration in the solution is measured. Regarding the method, Nomura et al.
ca Acta Volume 131 Page 97 (198
It is described in 1). However, in this conventional device, the electrolyte solution containing the sample enters from a supply port located remote from the working electrode and flows over the working electrode in the device from one end of the electrolyte solution to the other end in a thick layer of laminar flow. Since the substance to be detected (hereinafter referred to as the active substance) is not uniformly distributed on the active electrode, it is concentrated in the upstream area and diluted in the downstream area, and its effect varies depending on the measurement conditions. The distribution of substances changes. Furthermore, since the counter electrode is present at the point where the electrolyte solution flows and also in close proximity to the working electrode, the composition of the electrolyte solution near the counter electrode constantly changes during the measurement. This situation is well reflected in the value of the current flowing through the device being measured, and in fact, in a follow-up test using this conventional type of measuring device, the electrolytic current varied greatly, the oscillation frequency of the working electrode was unstable, and the current flowing through the working electrode was unstable. It was not possible to reproducibly measure the weight of the deposited active substance. When the amount of electrolyte sample solution is small, or when it is desired to shorten the stabilization time when switching samples, the measurement cell is designed with a small capacity.
This also contributes to the instability of the electrolytic current in conventional devices.

【0005】[0005]

【発明が解決しようとする課題】本発明は以下に示す課
題を解決し、電解定量分析に対して、電解電流が安定し
、感度がよくかつ再現性のよい測定を可能にする電解定
量装置用電解フローセルを提供することにある。すなわ
ち、 ■  作用極で作用物質の不均一分布が起こらないこと
。 ■  対極付近で電解質溶液の組成変化が起こらないこ
と。 ■  セル容量が大きくならないように工夫して、試料
の切り換え時に測定条件が安定化するのに時間がかから
ないこと。 の諸条件を満足する電解定量装置用電解フローセルを提
供することにある。
[Problems to be Solved by the Invention] The present invention solves the following problems, and provides an electrolytic quantitative analysis device for electrolytic quantitative analysis that enables stable electrolytic current, high sensitivity, and highly reproducible measurement. An object of the present invention is to provide an electrolytic flow cell. That is, ■ Non-uniform distribution of the active substance at the working electrode does not occur. ■ No change in the composition of the electrolyte solution occurs near the counter electrode. ■ Take measures to prevent the cell capacity from increasing, so that it does not take long for measurement conditions to stabilize when switching samples. An object of the present invention is to provide an electrolytic flow cell for an electrolytic quantitative device that satisfies the following conditions.

【0006】本発明はまた、一定の電位をかけた状態で
、水晶発振子上に設けられた膜等の物質に、他の物質が
吸着する挙動の測定、或いは取り込まれる量の定量によ
る膜等の物質の電荷による物性値変化の測定に利用でき
る電解フローセルを提供することにある。
The present invention also relates to measuring the adsorption behavior of other substances to a substance such as a film provided on a crystal oscillator while applying a constant potential, or by quantifying the amount absorbed into the film, etc. An object of the present invention is to provide an electrolytic flow cell that can be used to measure changes in physical properties due to charge of a substance.

【0007】[0007]

【課題を解決するための手段】上記課題は、1)微量成
分を含む電解質試料溶液を、水晶発振子を含んで構成さ
れる作用極と対極とを有する電解フローセルを通して微
量成分を電解定量する電解定量装置において、該電解フ
ローセル内の電解質溶液は一体的であるが、少なくとも
電解質試料溶液の電解定量を行っている間、流動してい
る部分と実質的に静止している部分とがあり、作用極は
流動している部分に接しており、対極は実質的に静止し
ている部分に接していることを特徴とする電解定量装置
用電解フローセルによって達成される。
[Means for Solving the Problems] The above-mentioned problems are as follows: 1) An electrolytic method for electrolytically quantifying trace components by passing an electrolyte sample solution containing trace components through an electrolytic flow cell having a working electrode and a counter electrode including a crystal oscillator. In the quantitative apparatus, the electrolyte solution in the electrolytic flow cell is integral, but at least during electrolytic quantitative determination of the electrolyte sample solution, there are flowing parts and substantially stationary parts, and the electrolyte solution does not work. This is achieved by an electrolytic flow cell for an electrolytic metering device, characterized in that the electrode is in contact with a flowing part and the counter electrode is in contact with a substantially stationary part.

【0008】また、2)測定に当たって測定用電解質試
料溶液を上記1)項に記載の電解フローセルに供給する
場合、電解フローセルに、その水晶発振子を含んで構成
される作用極の面に対して垂直に供給され、電解フロー
セル内の電解質溶液の流動している部分の容積が供給さ
れる電解質溶液の一分間当たりの供給量の1/2.5〜
1/20倍倍の範囲であることが上記課題の達成のため
に好ましく、更にまた、3)参照電極が上記1)項また
は2)項に記載の電解フローセル中の電解質溶液と直接
電気的に導通状態にある電解質溶液中に存在して、該電
解質溶液に一定の電位をかけていることが電解電流が安
定し、感度がよくかつ再現性のよい測定を可能にする。
2) When supplying the electrolyte sample solution for measurement to the electrolytic flow cell described in item 1) above, the electrolytic flow cell is provided with a surface of the working electrode including the crystal oscillator. The volume of the flowing part of the electrolyte solution in the electrolytic flow cell is 1/2.5 to 1/2.5 of the amount of electrolyte solution supplied per minute that is supplied vertically.
In order to achieve the above object, it is preferable that the range is 1/20 times, and 3) the reference electrode is directly electrically connected to the electrolyte solution in the electrolytic flow cell described in 1) or 2) above. Being present in the electrolyte solution in a conductive state and applying a constant potential to the electrolyte solution stabilizes the electrolytic current and enables measurements with good sensitivity and good reproducibility.

【0009】また、この電解質溶液に一定の電位をかけ
ることによって、電解フローセル用の作用電極としてで
はなく、水晶発振子上に膜等の物質を塗設して、これら
膜等の物質に他の物質が吸着する挙動の測定、或いは取
り込まれる量の定量などの測定に利用できる電解フロー
セルを提供することも可能になる。
[0009] Furthermore, by applying a certain potential to this electrolyte solution, a substance such as a membrane is coated on the crystal oscillator rather than as a working electrode for an electrolytic flow cell, and other substances such as the membrane are coated on the crystal oscillator. It is also possible to provide an electrolytic flow cell that can be used to measure the adsorption behavior of a substance or quantify the amount taken up.

【0010】0010

【作用】本発明の装置が上記効果を発揮する作用を図1
を用いて説明する。ただし、ここで行う説明は本発明を
制限するものではないことは言うまでもない。図1に例
示した電解定量装置用電解フローセル1は本発明の電解
フローセルの一態様を示すものである。
[Function] Figure 1 shows how the device of the present invention exhibits the above effects.
Explain using. However, it goes without saying that the description given here does not limit the present invention. The electrolytic flow cell 1 for an electrolytic quantitative device illustrated in FIG. 1 shows one embodiment of the electrolytic flow cell of the present invention.

【0011】図1において、該電解フローセル1のセル
部2の底部には円形の金メッキした水晶発振子で構成さ
れる作用極8が、その流動する電解質溶液13と接する
側の面をOリング3でセル部2の底部のフランジ4に抑
え、その反対面は樹脂板5を介してゴム6でセル本体よ
りの抑え金具(図示せず)を用いて抑えることで液密に
セル部2に取付けられる。後に説明するセルの一部を構
成しているセル中央に穿孔して造られた溶液吹き出し口
7は、作用極8に向かって垂直に設けられ作用極8に接
近するに従って孔径が大きくなって、作用極8の面全体
に液を供給するようにつくられ、要すればその出口には
目皿9が取りつけられる。作用極8の形と、溶液吹き出
し口7の断面の形状は円形であるのが最も自然であるが
他の形、例えば角型であってもよく、任意の形が取り得
る。作用極8の大きさは普通直径が8mmであり、その
とき溶液吹き出し口7の断面の直径は4〜5mmである
ことが好ましい大きさである。作用極8と溶液吹き出し
口7との距離は例えば3mm程度、好ましくは2mm程
度と接近しているのが好ましい。
In FIG. 1, a working electrode 8 consisting of a circular gold-plated crystal oscillator is located at the bottom of the cell section 2 of the electrolytic flow cell 1, and its surface in contact with the flowing electrolyte solution 13 is connected to an O-ring 3. It is fixed to the cell part 2 in a liquid-tight manner by holding it to the flange 4 at the bottom of the cell part 2, and holding the opposite side to the cell part 2 with a rubber 6 through a resin plate 5 using a holding fitting (not shown) from the cell body. It will be done. A solution outlet 7 formed by drilling in the center of the cell, which forms part of a cell to be described later, is provided perpendicularly toward the working electrode 8, and the hole diameter increases as it approaches the working electrode 8. It is made to supply liquid to the entire surface of the working electrode 8, and if necessary, a perforated plate 9 is attached to the outlet thereof. The most natural shape of the working electrode 8 and the cross-sectional shape of the solution outlet 7 is circular, but other shapes may be used, for example square, or any other shape is possible. The diameter of the working electrode 8 is normally 8 mm, and the cross-sectional diameter of the solution outlet 7 is preferably 4 to 5 mm. The distance between the working electrode 8 and the solution outlet 7 is preferably about 3 mm, preferably about 2 mm.

【0012】この電解フローセルのセル2は、底部に既
に説明した構造の作用極8、その真上に電解質溶液或い
は電解質試料溶液をセル2に供給する溶液吹き出し口7
があり、作用極8と溶液吹き出し口7との間が作用空間
(2−c)であり、前記溶液吹き出し口7を有する構造
体である円柱状ブロック11の外周には対極12がブロ
ックとは絶縁されて巻き付けた構造として配置されてお
り、セル2の外壁を構成するブロックの内側との間が対
極空間(2−a)であり、これ等によってセル2が構成
されている。この対極空間(2−a)はその幅は3mm
位、好ましくは2mmである。ここで使用された作用極
8は厚さ0.5mm、直径13mmの水晶板に直径8m
mの金をメッキしたものであるが、この作用極のサイズ
、形、及びメッキする金属の種類などは特に制限されず
任意のものが使用できる。また、対極12も通常白金で
作られているが、極を構成する金属の種類、或いは対極
空間(2−a)に対極を設置する仕方もこの具体例に制
限されず任意のもの形式のものが使用できる。
The cell 2 of this electrolytic flow cell has a working electrode 8 having the structure already explained at the bottom, and a solution outlet 7 directly above the working electrode 8 for supplying an electrolyte solution or an electrolyte sample solution to the cell 2.
There is a working space (2-c) between the working electrode 8 and the solution outlet 7, and a counter electrode 12 is located on the outer periphery of the cylindrical block 11, which is a structure having the solution outlet 7. It is arranged as an insulated and wound structure, and a counter electrode space (2-a) is between it and the inside of the block forming the outer wall of the cell 2, and the cell 2 is constituted by these spaces. The width of this counter electrode space (2-a) is 3 mm.
2 mm, preferably 2 mm. The working electrode 8 used here has a diameter of 8 m on a quartz plate with a thickness of 0.5 mm and a diameter of 13 mm.
Although the working electrode is plated with gold of m, the size, shape, and type of metal to be plated are not particularly limited, and any metal can be used. Further, the counter electrode 12 is also usually made of platinum, but the type of metal composing the electrode or the method of installing the counter electrode in the counter electrode space (2-a) is not limited to this specific example and may be of any type. can be used.

【0013】ここで、電解質溶液13或いは電解質試料
溶液について説明すると、電解質溶液13とは作用物質
を含まないキャリヤー液であり、電解質試料溶液は分析
するべき作用物質を含んだ電解質溶液である。電解質試
料溶液の作用物質を除いた部分は電解質溶液13と同じ
こともまた異なることもある。流動する電解質溶液13
はセル部2の側面から溶液通路(2−b)を経て排出さ
れるが,その時対極12のあるセル部2の一部である対
極空間(2−a)の下部を通過する、対極空間(2−a
)は上記した通りその幅は3mm位、好ましくは2mm
位と狭いのでセル部2の一部である溶液通路(2−b)
を電解質溶液13が通過する時対極空間(2−a)内の
溶液に外乱を与えない。
The electrolyte solution 13 or electrolyte sample solution will now be described. The electrolyte solution 13 is a carrier liquid that does not contain an active substance, and the electrolyte sample solution is an electrolyte solution that contains an active substance to be analyzed. The portion of the electrolyte sample solution excluding the active substance may be the same as the electrolyte solution 13 or may be different. Flowing electrolyte solution 13
is discharged from the side surface of the cell part 2 through the solution passage (2-b), but at this time, the counter electrode space (2-a), which is a part of the cell part 2 where the counter electrode 12 is located, passes through the lower part of the counter electrode space (2-a). 2-a
) has a width of about 3 mm, preferably 2 mm, as described above.
The solution passageway (2-b), which is a part of the cell part 2, is very narrow.
When the electrolyte solution 13 passes through, no disturbance is given to the solution in the counter electrode space (2-a).

【0014】セル2を構成している空間、すなわち作用
空間(2−c)、対極空間(2−a)及び溶液通路(2
−b)は空間としては一体的で隔壁を有しない、それで
いて作用空間(2−c)から溶液通路(2−b)へ流れ
る電解質溶液13或いは電解質試料溶液によって対極空
間(2−a)に存在する電解質溶液13(場合により電
解質試料溶液が存在しても差し支えない)が乱されず、
実質的に静止状態にあることが本発明の特徴である。溶
液通路(2−b)の上面の位置は作用極の上面から6m
m以内(図1ではxで示される)、対極空間(2−a)
の高さyは5mm以上15mm以内が好ましい寸法であ
る。溶液通路(2−b)を通った電解質溶液13の一部
は、セル部2とは通常独立して設けられた液溜14に溶
液通路(2−b)を通って流入する、この液溜14には
参照電極15が好ましくは配置される。この参照電極1
5によってフローセル内の電解質溶液13の電位が一定
に定められる。
The spaces constituting the cell 2, namely the working space (2-c), the counter electrode space (2-a), and the solution passage (2-a)
-b) is integral as a space and does not have partition walls, yet exists in the counter electrode space (2-a) by the electrolyte solution 13 or electrolyte sample solution flowing from the working space (2-c) to the solution passage (2-b). The electrolyte solution 13 (in some cases, an electrolyte sample solution may be present) is not disturbed,
It is a feature of the invention that it is substantially stationary. The position of the upper surface of the solution passage (2-b) is 6 m from the upper surface of the working electrode.
Within m (indicated by x in Figure 1), opposite space (2-a)
The height y is preferably 5 mm or more and 15 mm or less. A part of the electrolyte solution 13 that has passed through the solution passageway (2-b) flows into a liquid reservoir 14, which is usually provided independently of the cell section 2, through the solution passageway (2-b). A reference electrode 15 is preferably arranged at 14 . This reference electrode 1
5, the potential of the electrolyte solution 13 in the flow cell is fixed.

【0015】該電解フローセル1は最初使用する時、溶
液通路(2−b)は閉塞して、試料溶液吹き出し口7か
ら電解質溶液をセル部2に電解質溶液13を対極室(2
−a)を通して流し、対極室(2−a)の上部を空気抜
き口キャップ16において閉塞する。かくして、対極室
(2−a)には電解質溶液13が充満される。次に溶液
通路(2−b)を開ける。そして、電解質溶液13の供
給を始めて、液の流動が始まっても対極室(2−a)の
部分の電解質溶液13は実質的に動かず、試料溶液は殆
どこの部分に流入してくることがない。作用極近辺の溶
液組成が電気分解や電気化学反応により変化しても、対
極側の組成は殆ど変化することがないので、電解電流が
安定し、感度がよくかつ再現性のよい測定を可能にする
。また、試料電解質溶液13の流動が始まっても対極室
(2−a)の部分の電解質溶液13は実質的に動かない
ので、実質的にセル部2の容積が小さくなる効果を生じ
試料の切り換え時に測定条件が安定化するのに時間がか
からないことに寄与する。
When the electrolytic flow cell 1 is used for the first time, the solution passage (2-b) is closed and the electrolyte solution is supplied from the sample solution outlet 7 to the cell part 2 and the electrolyte solution 13 is supplied to the counter electrode chamber (2-b).
-a), and the upper part of the counter electrode chamber (2-a) is closed with the air vent cap 16. Thus, the counter electrode chamber (2-a) is filled with the electrolyte solution 13. Next, open the solution passage (2-b). Even when the electrolyte solution 13 starts to be supplied and the solution begins to flow, the electrolyte solution 13 in the counter electrode chamber (2-a) does not substantially move, and most of the sample solution does not flow into this part. do not have. Even if the solution composition near the working electrode changes due to electrolysis or electrochemical reactions, the composition on the counter electrode side hardly changes, making it possible to stabilize the electrolytic current and perform measurements with good sensitivity and reproducibility. do. In addition, even if the sample electrolyte solution 13 starts to flow, the electrolyte solution 13 in the counter electrode chamber (2-a) does not substantially move, so that the volume of the cell section 2 is substantially reduced, and the sample is switched. This contributes to the fact that it sometimes takes less time for measurement conditions to stabilize.

【0016】従って、本発明の装置が、■  電解室か
ら溶液がセル外へ流出するとき、溶液の流れは対極室の
下部を通るがその流れは対極付近の溶液の状態に影響を
与えない、すなわち、あたかも対極が仕切られた別室に
あるかのように溶液はセル外へ流出する。 ■  作用極への溶液の供給が、上部から垂直に供給さ
れる、とくに好ましくは、溶液供給管の出口の断面の形
状が作用極の形状と同じ、或いは相似していて、溶液は
層流状態で均一に作用極へ供給される。 ■  セルの容積は小さく、特に電解室は薄くかつ容積
も小さく作られていて、流入した溶液は効率よく作用極
と接触して、絶えず新鮮な液が供給され、廃液は滞留し
ない。 構造に設計されているため、試料電解質溶液中の微量成
分は作用極に再現性よく均一に電着し、しかも対極付近
の電解室の液組成は殆ど変わらない。このため同じ溶液
を時間を置いて流しても測定中の電流値の再現性が大変
よい。また、上記■〜■の構造に造られた電解定量装置
用電解フローセルでは、溶液の電解質キャリヤー液が同
じであれば、濃度の異なる試料溶液をセル内に注入した
時、図2〜図4に示すように作用極付近の電解質溶液が
試料溶液により迅速に置代わり、電流がすぐに安定して
フローインジェクション法で測定が可能である。
Therefore, in the device of the present invention, (1) when the solution flows out of the cell from the electrolytic chamber, the flow of the solution passes through the lower part of the counter electrode chamber, but the flow does not affect the state of the solution near the counter electrode; That is, the solution flows out of the cell as if the counter electrode were in a separate, partitioned room. ■ The solution is supplied to the working electrode vertically from the top, and particularly preferably, the cross-sectional shape of the outlet of the solution supply pipe is the same as or similar to the shape of the working electrode, and the solution is in a laminar flow state. is uniformly supplied to the working electrode. ■ The volume of the cell is small, especially the electrolytic chamber is thin and has a small volume, so that the solution that flows in efficiently contacts the working electrode, so that fresh solution is constantly supplied and waste solution does not accumulate. Because of the structural design, trace components in the sample electrolyte solution are electrodeposited uniformly on the working electrode with good reproducibility, and the liquid composition in the electrolytic chamber near the counter electrode hardly changes. Therefore, the reproducibility of the current value during measurement is very good even if the same solution is passed at different times. In addition, in the electrolytic flow cell for an electrolytic quantitative device constructed with the structure of ■ to ■ above, if the electrolyte carrier liquid of the solution is the same, when sample solutions with different concentrations are injected into the cell, the results shown in Figs. As shown, the electrolyte solution near the working electrode is quickly replaced by the sample solution, and the current stabilizes immediately, allowing measurement using the flow injection method.

【0017】なお、本発明の電解フローセルは電解電位
をかけないで、単にフローセルとして使用した場合でも
優れた性能を示す。例えば、脂質二分子膜への臭い物質
や苦み物質の取り込み量の測定も試料の交換が簡単に行
える。苦味物質の取り込み量の測定を行うための装置の
システムを示すフローチャートとそれを用いて行った測
定例を図8及び図9に示した。
The electrolytic flow cell of the present invention exhibits excellent performance even when used simply as a flow cell without applying an electrolytic potential. For example, samples can be easily exchanged to measure the amount of odorous substances or bitter substances incorporated into lipid bilayer membranes. A flowchart showing a system of an apparatus for measuring the amount of bitter substances taken in and an example of measurement performed using the same are shown in FIGS. 8 and 9.

【0018】[0018]

【実施例】図5のような電解フローセルを組み込んだ電
解定量装置を用いて、EDTA−Feの酸化還元電圧電
流曲線及びチオ硫酸銀の電着による電解フローセルの作
用極の発振周波数の変化を測定した。これらの結果から
見ると、この電解フローセルは充分満足できる性能をも
っていることは明らかである。図6はEDTA−Feの
酸化還元電圧電流曲線を示しているが、電圧電流曲線は
再現性がよく測定が安定していることを表している。参
考のために、電圧変化(V)による電解フローセルの作
用極の発振周波数の変化(Hz)の関係を示してたが、
当然この場合Feの電着はないので発振周波数は変化し
ない。図7にはチオ硫酸銀溶液を用いて、銀を電解フロ
ーセルの作用極に電着させた時の作用極の発振周波数の
変化(Hz)を測定した結果を示す。図7から電解フロ
ーセルに下記表に示したような銀塩濃度の異なる電解質
試料溶液を注入すると、銀塩濃度に応じた作用極の発振
周波数の変化(Hz)が安定に観測されることがわかる
[Example] Using an electrolytic quantitative device incorporating an electrolytic flow cell as shown in Fig. 5, we measured the redox voltage-current curve of EDTA-Fe and the change in the oscillation frequency of the working electrode of the electrolytic flow cell due to the electrodeposition of silver thiosulfate. did. From these results, it is clear that this electrolytic flow cell has sufficiently satisfactory performance. FIG. 6 shows the redox voltage-current curve of EDTA-Fe, which indicates that the voltage-current curve has good reproducibility and stable measurement. For reference, the relationship between the change in oscillation frequency (Hz) of the working electrode of the electrolytic flow cell due to voltage change (V) is shown.
Naturally, in this case, since there is no electrodeposition of Fe, the oscillation frequency does not change. FIG. 7 shows the results of measuring the change in oscillation frequency (Hz) of the working electrode when silver was electrodeposited on the working electrode of an electrolytic flow cell using a silver thiosulfate solution. Figure 7 shows that when electrolyte sample solutions with different silver salt concentrations as shown in the table below are injected into the electrolytic flow cell, changes in the oscillation frequency (Hz) of the working electrode depending on the silver salt concentration can be observed stably. .

【0019】                       AgB
r濃度          周波数減少量      
            (グラム/リットル)   
     (Hz)              サン
プル(1)        0.10        
        300              
サンプル(2)        0.20      
          625            
  サンプル(3)        0.30    
            950          
    サンプル(4)        0.50  
            1650         
   なお、AgBr濃度は原溶液を電解質溶液で20
倍に希釈した溶液の濃度
[0019]AgB
r concentration Frequency reduction amount
(grams/liter)
(Hz) Sample (1) 0.10
300
Sample (2) 0.20
625
Sample (3) 0.30
950
Sample (4) 0.50
1650
In addition, the AgBr concentration is 20
Concentration of diluted solution

【0020】[0020]

【発明の効果】本発明の電解フローセルを有する電解定
量装置を用いることによって、写真処理液中の銀の濃度
を精度及び感度よく定量的に測定できる。本発明の電解
フローセルを有する電解定量装置は銀以外の物質の電解
定量にも利用できる。電位をかけた状態で、物質に他の
物質の吸着や取り込みをする挙動を定量的に評価できる
ので物性的研究に利用できる。
Effects of the Invention By using the electrolytic quantitative apparatus having the electrolytic flow cell of the present invention, the concentration of silver in a photographic processing solution can be quantitatively measured with high accuracy and sensitivity. The electrolytic determination apparatus having the electrolytic flow cell of the present invention can also be used for electrolytic determination of substances other than silver. It can be used for physical property research because it can quantitatively evaluate the behavior of adsorption and uptake of other substances by applying an electric potential.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は本発明の電解フローセルの一態様を示す
模式図
[Fig. 1] Fig. 1 is a schematic diagram showing one embodiment of the electrolytic flow cell of the present invention.

【図2】図2は大きいセル中の電解質溶液を電解質試料
溶液で置換する態様を示す模式図
[Figure 2] Figure 2 is a schematic diagram showing how the electrolyte solution in a large cell is replaced with an electrolyte sample solution.

【図3】図3は小さいセル中の電解質溶液を電解質試料
溶液で置換する態様を示す模式図
[Figure 3] Figure 3 is a schematic diagram showing how the electrolyte solution in a small cell is replaced with an electrolyte sample solution.

【図4】図4はセル容量と電解質試料溶液で置換する時
間との関係を示す関係図
[Figure 4] Figure 4 is a relationship diagram showing the relationship between cell capacity and replacement time with electrolyte sample solution.

【図5】図5は本発明の電解フローセルを使用した電解
定量装置のシステムを示すフローチャート
[Fig. 5] Fig. 5 is a flowchart showing a system of an electrolytic quantitative device using the electrolytic flow cell of the present invention.

【図6】図6
は本発明の電解フローセルを用いて測定したEDTA−
Feの酸化還元電圧電流曲線及び作用極の周波数変化図
[Figure 6] Figure 6
is EDTA- measured using the electrolytic flow cell of the present invention.
Redox voltage current curve of Fe and frequency change diagram of working electrode

【図7】図7は本発明の電解フローセルを用いて測定し
たチオ硫酸銀溶液からの銀の電着による作用極の発振周
波数の変化(Hz)を示す関係図
[Figure 7] Figure 7 is a relationship diagram showing the change in oscillation frequency (Hz) of the working electrode due to electrodeposition of silver from a silver thiosulfate solution measured using the electrolytic flow cell of the present invention.

【図8】図8は苦味物質の取り込み量の測定を行うため
の装置のシステムを示すフローチャート
[Fig. 8] Fig. 8 is a flowchart showing a system of an apparatus for measuring the amount of uptake of bitter substances.

【図9】図9は
図8の装置を用いて行った苦味物質の取り込み量の測定
の結果を示す関係図
[Fig. 9] Fig. 9 is a relational diagram showing the results of measuring the amount of bitter substances taken up using the apparatus shown in Fig. 8.

【符号の説明】[Explanation of symbols]

1  電解フローセル 2  セル部 (2−a)  対極空間 (2−b)  流出経路 (2−c)  作用空間 3  Oリング 4  フランジ 5  樹脂板 6  ゴム 7  溶液吹き出し口 8  作用極 9  目皿 11  円柱状ブロック 12  対極 13  電解質溶液 14  液溜 15  参照電極 16  空気抜き口キャップ 21  周波数カウンター 22  ポテンショスタット 23  データ処理装置 24  発振器 28  送液ポンプ 29  試料注入バルブ 30  廃液タンク 1 Electrolytic flow cell 2 Cell part (2-a) Opposite space (2-b) Outflow route (2-c) Action space 3 O-ring 4 Flange 5 Resin plate 6 Rubber 7 Solution outlet 8 Working electrode 9th plate 11 Cylindrical block 12 Opposite 13 Electrolyte solution 14 Liquid reservoir 15 Reference electrode 16 Air vent cap 21 Frequency counter 22 Potentiostat 23 Data processing device 24 Oscillator 28 Liquid pump 29 Sample injection valve 30 Waste liquid tank

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  微量成分を含む電解質試料溶液を、水
晶発振子を含んで構成される作用極と対極とを有する電
解フローセルを通して微量成分を電解定量する電解定量
装置において、該電解フローセル内の電解質溶液は一体
的であるが、少なくとも電解質試料溶液の電解定量を行
っている間、流動している部分と実質的に静止している
部分とがあり、作用極は流動している部分に接しており
、対極は実質的に静止している部分に接していることを
特徴とする電解定量装置用電解フローセル。
1. An electrolytic quantitative device for electrolytically quantifying trace components through an electrolyte flow cell having a working electrode and a counter electrode including a crystal oscillator, in which an electrolyte sample solution containing trace components is passed through an electrolytic flow cell having a working electrode and a counter electrode including a crystal oscillator. Although the solution is integral, at least during electrolytic determination of the electrolyte sample solution, there is a flowing part and a substantially stationary part, and the working electrode is in contact with the flowing part. An electrolytic flow cell for an electrolytic metering device, characterized in that the counter electrode is in contact with a substantially stationary part.
【請求項2】  測定用電解質試料溶液が電解フローセ
ルに、その水晶発振子を含んで構成される作用極の面に
対して垂直に供給され、電解フローセル内の電解質溶液
の流動している部分の容積が供給される電解質溶液の一
分間当たりの供給量の1/2.5〜1/20倍の範囲で
あることを特徴とする請求項1記載の電解定量装置用電
解フローセル。
2. An electrolyte sample solution for measurement is supplied to the electrolytic flow cell perpendicularly to the surface of the working electrode including the crystal oscillator, and the electrolyte sample solution in the electrolytic flow cell is 2. The electrolytic flow cell for an electrolytic metering device according to claim 1, wherein the volume is in the range of 1/2.5 to 1/20 times the amount of supplied electrolyte solution per minute.
【請求項3】  参照電極が電解フローセル中の電解質
溶液と直接電気的に導通状態にある電解質溶液中に存在
して、該電解質溶液に一定の電位をかけていることを特
徴とする請求項1又は請求項2に記載の電解定量装置用
電解フローセル。
3. Claim 1, wherein the reference electrode is present in an electrolyte solution that is in direct electrical continuity with the electrolyte solution in the electrolysis flow cell, and applies a constant potential to the electrolyte solution. Or an electrolytic flow cell for an electrolytic quantitative device according to claim 2.
JP5563591A 1991-02-28 1991-02-28 Electrolytic flow cell using crystal vibrator Pending JPH04273041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5563591A JPH04273041A (en) 1991-02-28 1991-02-28 Electrolytic flow cell using crystal vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5563591A JPH04273041A (en) 1991-02-28 1991-02-28 Electrolytic flow cell using crystal vibrator

Publications (1)

Publication Number Publication Date
JPH04273041A true JPH04273041A (en) 1992-09-29

Family

ID=13004259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5563591A Pending JPH04273041A (en) 1991-02-28 1991-02-28 Electrolytic flow cell using crystal vibrator

Country Status (1)

Country Link
JP (1) JPH04273041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034782A1 (en) * 2020-08-12 2022-02-17 株式会社ファーストスクリーニング Electrochemical sensor unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034782A1 (en) * 2020-08-12 2022-02-17 株式会社ファーストスクリーニング Electrochemical sensor unit
JP2022032926A (en) * 2020-08-12 2022-02-25 株式会社ファーストスクリーニング Electrochemical sensor unit

Similar Documents

Publication Publication Date Title
Kolthoff et al. The Fundamental Principles and Applications of Electrolysis with the Dropping Mercury Electrode and Heyrovský's Polarographic Method of Chemical Analysis.
Štulík et al. Electrochemical detection techniques in high-performance liquid chromatography
RU2515207C2 (en) Device to measure concentration of charged particles
US8925374B2 (en) Electrochemical detection cell for liquid chromatography system
Brett et al. Adsorptive stripping voltammetry of cobalt and nickel in flow systems at wall‐jet electrodes
Štulík et al. Continuous voltammetric measurements with solid electrodes: Part I. A flow-through cell with tubular electrodes employing pulse polarization of the electrode system
Pihlar et al. Amperometric determination of cyanide by use of a flow-through electrode
US2684938A (en) Device for measuring the ph
EP0068025B1 (en) Reference electrode
JPH04273041A (en) Electrolytic flow cell using crystal vibrator
US7144488B2 (en) Electrode, electrochemical cell, and method for analysis of electroplating baths
Galus Mercury electrodes
Zutshi Introduction to polarography and allied techniques
US20040020772A1 (en) Method and system for measuring active animal glue concentration in industrial electrolytes
US4142944A (en) Apparatus and methods for effluent stream analysis
JP2008241373A (en) Coulometric measuring method, device for coulometric measuring cell and coulometric type measuring cell set
JP2003130846A (en) Minute amount metal continuous measuring device and method for semiconductor chemical
Nagy et al. Amperometric air gap cell for the measurement of free cyanide
JPH04276541A (en) Method for measuring content of silver in photograph processing liquid
RU2819748C1 (en) Electrochemical sensor
CS250076B1 (en) Method of electrochemically active substances' electroanalytical determination in solutions
JP4221504B2 (en) Chemical substance measuring method and apparatus
KR102116043B1 (en) Electrochemical flow cell and system for the in-situ/operando electrochemical analysis using the same
JP2952501B2 (en) Flow-through type electrode device
Novotny et al. Renewed mercury electrodes-Versatile research tools in general chemistry