JPH04269808A - Manufacture of nonmagnetic substrate for magnetic head - Google Patents

Manufacture of nonmagnetic substrate for magnetic head

Info

Publication number
JPH04269808A
JPH04269808A JP3050255A JP5025591A JPH04269808A JP H04269808 A JPH04269808 A JP H04269808A JP 3050255 A JP3050255 A JP 3050255A JP 5025591 A JP5025591 A JP 5025591A JP H04269808 A JPH04269808 A JP H04269808A
Authority
JP
Japan
Prior art keywords
nio
coo
manufacturing
raw material
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3050255A
Other languages
Japanese (ja)
Inventor
Koji Hosaka
広司 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP3050255A priority Critical patent/JPH04269808A/en
Publication of JPH04269808A publication Critical patent/JPH04269808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Magnetic Heads (AREA)
  • Hard Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To provide an additive adding method for manufacturing nonmagnetic substrates for magnetic heads composed basically of CoO and NiO or NiO. CONSTITUTION:In a method for manufacturing nonmagnetic substrates for magnetic heads composed basically of CoO and NiO or NiO, which contains a raw material powder mixing process, calcining process, grinding process, sintering process, etc., an additive, such as Al2O3, TiO2, CaO, MnO, etc., is added to the raw material powder in the raw material mixing process. When this manufacturing method is applied, a compact sintered body having a stable transverse strength and small crystal grain diameter can be obtained even when the sintered body is sintered at a low temperature. Therefore, this manufacturing method has an economical advantage, because the occurrence of chipping which occurs at the time of machining can be reduced and the yield can be increased at the time of machining.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、金属性磁性膜を蒸着す
るための非磁性の磁気ヘッド用基板の製造方法に関する
ものである。特に、CoO及びNiOあるいはNiOを
基本組成とする磁気ヘッド用非磁性基板の製造方法にお
ける添加材の添加方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a nonmagnetic magnetic head substrate on which a metallic magnetic film is deposited. In particular, the present invention relates to a method of adding additives in a method of manufacturing a nonmagnetic substrate for a magnetic head whose basic composition is CoO and NiO or NiO.

【0002】0002

【従来技術】従来この種の用途のものとしては、チタン
酸バリウム、チタン酸カルシウム、アルミナ等が使用さ
れていた。しかしながら、その熱膨張率が磁性膜構造体
と大きく異なっていたため、蒸着した磁性膜構造体が剥
離しやすく、また熱膨張率の差により応力が発生しクラ
ックが発生することがあった。
BACKGROUND OF THE INVENTION Conventionally, barium titanate, calcium titanate, alumina, etc. have been used for this type of use. However, since its coefficient of thermal expansion was significantly different from that of the magnetic film structure, the deposited magnetic film structure was likely to peel off, and the difference in coefficient of thermal expansion caused stress and cracks.

【0003】さらに、従来の材料は硬さが低く、特に高
保磁力テ−プ(いわゆるメタルテ−プ)が使用された場
合には、非磁性基板が磁性膜構造体と硬度及び耐摩耗性
が異なり、磁気テ−プとの摺動により発生する摩擦のた
めに偏摩耗等を引き起こし、磁気特性に変化をきたすと
いう問題があった。特に硬度が低い場合には、磁気ヘッ
ドの寿命が短くなること、あるいは非磁性基板の変形や
割れ及び剥離を引き起こすといった欠点が顕著であった
Furthermore, conventional materials have low hardness, and especially when a high coercive force tape (so-called metal tape) is used, the hardness and wear resistance of the nonmagnetic substrate are different from those of the magnetic film structure. There was a problem in that the friction generated by sliding with the magnetic tape caused uneven wear and the like, resulting in changes in magnetic properties. In particular, when the hardness is low, the disadvantages are that the life of the magnetic head is shortened or that the nonmagnetic substrate is deformed, cracked, or peeled off.

【0004】本発明者等は上記の欠点を解決すべく酸化
物系セラミックスについて研究を進め、CoO及びNi
OまたはNiOを基本組成とした酸化物が有効であると
して既に開示した。(特開平01−287811、特開
平02−168602、特願平01−214206)
The present inventors have conducted research on oxide ceramics in order to solve the above-mentioned drawbacks, and have
It has already been disclosed that oxides having a basic composition of O or NiO are effective. (JP 01-287811, JP 02-168602, JP 01-214206)

【0005】さらに、CoO及びNiOまたはNiOを
基本組成とした磁気ヘッド用非磁性基板の製造方法とし
て、以下の工程からなる製造方法が有効であるとして既
に開示した。(特開平02−94407)即ち、(1)
原料粉を混合し、ふるい分けを行なう混合工程、(2)
CIP成形した混合粉を仮焼し、粉砕した後ふるい分け
を行なう仮焼工程、(3)仮焼粉を1μm以下に微粉砕
する工程、(4)微粉砕粉を20μm以上の球形に造粒
する工程、(5)造粒粉をCIP成形する工程、(6)
成形体を焼結する工程、(7)焼結体をHIP処理する
工程である。さらに、成形体の焼結については、常圧焼
結あるいはホットプレスを用い、1000℃以上で酸素
雰囲気下で処理することとした。
Furthermore, as a method for manufacturing a nonmagnetic substrate for a magnetic head whose basic composition is CoO and NiO or NiO, a manufacturing method comprising the following steps has already been disclosed as being effective. (JP 02-94407) That is, (1)
Mixing process of mixing raw material powder and sieving, (2)
A calcination step in which the CIP-formed mixed powder is calcined, pulverized, and then sieved; (3) a step in which the calcined powder is pulverized to 1 μm or less; (4) the finely pulverized powder is granulated into a spherical shape of 20 μm or more. Step, (5) Step of CIP molding the granulated powder, (6)
(7) A step of subjecting the sintered body to HIP treatment. Furthermore, the molded body was sintered using normal pressure sintering or hot pressing at a temperature of 1000° C. or higher in an oxygen atmosphere.

【0006】さらに硬度や耐摩耗性の向上を図るための
添加材を検討し、CoO及びNiOまたはNiOを基本
組成として、Al2O3,TiO2,CaO,MnOの
うち1種以上を0.1〜5wt%添加した場合の有効性
を確認し既に開示した。(特開平02−94408)
[0006] Furthermore, we investigated additives to improve hardness and wear resistance, and added 0.1 to 5 wt% of one or more of Al2O3, TiO2, CaO, and MnO to the basic composition of CoO and NiO or NiO. The effectiveness of the addition has been confirmed and already disclosed. (Unexamined Japanese Patent Publication No. 02-94408)


0007】しかし、これらの添加材を添加した場合、添
加材により焼結特性が悪くなり、緻密で、安定した抗折
力を有する焼結体を得るためには、添加材無添加の時よ
り焼結温度を高くする必要がある。焼結温度が高いと、
焼結体の結晶粒径が大きくなり、機械加工時に大きなチ
ッピングが発生し、歩留まりが低下するという問題点が
生じた。
[
However, when these additives are added, the sintering properties deteriorate, and in order to obtain a sintered body that is dense and has a stable transverse rupture strength, the sintering process must be made faster than when no additives are added. It is necessary to raise the freezing temperature. If the sintering temperature is high,
Problems arose in that the grain size of the sintered body became large and large chipping occurred during machining, resulting in a decrease in yield.

【0008】[0008]

【問題点を解決するための手段】上記の問題点を解決す
るために、本発明者等はCoO及びNiOあるいはNi
Oを基本組成とした磁気ヘッド用非磁性基板の製造方法
における添加材の添加方法の検討を続けた結果、原料粉
の混合工程において添加材を添加した場合には焼結温度
を下げても、緻密で、安定した抗折力を有し、さらには
、結晶粒径の小さい焼結体が得られることを見い出した
。従って、本発明の目的は、CoO及びNiOあるいは
NiOを基本組成とした磁気ヘッド用非磁性基板の製造
方法における、添加材の添加方法を提供することである
[Means for Solving the Problems] In order to solve the above problems, the present inventors have developed a method using CoO and NiO or Ni.
As a result of continuing studies on the method of adding additives in the manufacturing method of nonmagnetic substrates for magnetic heads whose basic composition is O, we found that when additives are added in the raw material powder mixing process, even if the sintering temperature is lowered, It has been found that a sintered body that is dense, has a stable transverse rupture strength, and has a small crystal grain size can be obtained. Therefore, an object of the present invention is to provide a method for adding additives in a method for manufacturing a nonmagnetic substrate for a magnetic head whose basic composition is CoO and NiO or NiO.

【0009】[0009]

【発明の構成】即ち、本発明は、CoO及びNiOある
いはNiOを基本組成とする磁気ヘッド用非磁性基板の
製造方法であって、原料粉の混合、仮焼、粉砕、焼結等
の工程をとる方法において、仮焼前の原料粉の混合工程
で、Al2O3,TiO2,CaO,MnO等の添加材
を少なくとも一種以上添加し、焼結することを特徴とす
る磁気ヘッド用非磁性基板の製造方法に関する。
[Structure of the Invention] That is, the present invention is a method for manufacturing a nonmagnetic substrate for a magnetic head whose basic composition is CoO and NiO or NiO, which includes steps such as mixing raw material powder, calcination, pulverization, and sintering. A method for manufacturing a non-magnetic substrate for a magnetic head, characterized in that in the mixing step of raw material powder before calcination, at least one additive such as Al2O3, TiO2, CaO, MnO, etc. is added and sintered. Regarding.

【0010】0010

【発明の具体的説明】本発明の理解を容易にするため具
体的かつ詳細に説明する。基本組成は、NiO単独の酸
化物あるいはNiOとCoOの複合酸化物を意味し、例
えば、CoO/NiO(モル比)=0/100〜80/
20で、より好ましくは、CoO/NiO(モル比)=
3/97〜60/40である。上記基本組成に対して、
本発明では、Al2O3,TiO2,CaO,MnO等
の添加材を少なくとも一種以上例えば0.1〜5wt%
加える。
DETAILED DESCRIPTION OF THE INVENTION In order to facilitate understanding of the present invention, the present invention will be explained specifically and in detail. The basic composition means an oxide of NiO alone or a composite oxide of NiO and CoO, for example, CoO/NiO (molar ratio) = 0/100 to 80/
20, more preferably CoO/NiO (molar ratio)=
3/97 to 60/40. For the above basic composition,
In the present invention, at least one kind of additive such as Al2O3, TiO2, CaO, MnO, etc. is added, for example, 0.1 to 5 wt%.
Add.

【0011】前記の0.1wt%未満で、好ましくない
のは、硬度等の基板の必要特性が上昇しないためであり
、5wt%より多くては、硬度等高くなり又は特性が悪
化するためである。
[0011] If it is less than 0.1 wt%, it is not preferable because the necessary properties of the substrate such as hardness will not increase, and if it is more than 5 wt%, the hardness etc. will increase or the properties will deteriorate. .

【0012】通常、Al2O3を添加した場合、無添加
の時に比べ硬度が増加し、耐摩耗性も格段に優れている
が、無添加の時よりも焼結温度を高くするか、あるいは
焼結時間を長くしないと緻密で、安定した抗折力を有す
る焼結体が得られない。これは、Al2O3が基本組成
のCoO、NiOと比較して難焼結性の物質であること
、及び、Al2O3が基本組成のCoO、NiOと反応
してスピネル型化合物を生成するのに時間を要すること
が一要因であると思われる。TiO2,CaOを添加し
た場合も、同様である。しかしながら、焼結温度を高く
するか、あるいは焼結時間を長くすると、このスピネル
型化合物の生成とともに結晶粒径が成長し、機械加工時
に大きなチッピングが発生し、歩留まりが低下するとい
う問題が生じるため、好ましくない。MnOの場合は、
基本組成のCoO、NiOとほぼ同程度の焼結性を有し
ており、無添加の場合と同じ焼結条件で高密度の焼結体
が得られるが、基本組成のCoO、NiOと反応しやす
い物質であり、焼結時に反応させると組織の均一な焼結
体が得られないため、好ましくない。
[0012] Normally, when Al2O3 is added, the hardness increases and the wear resistance is much better than when it is not added, but the sintering temperature must be higher than when it is not added, or the sintering time must be increased. Unless the length is increased, a dense sintered body with stable transverse rupture strength cannot be obtained. This is because Al2O3 is a substance that is difficult to sinter compared to the basic composition of CoO and NiO, and it takes time for Al2O3 to react with the basic composition of CoO and NiO to generate a spinel type compound. This seems to be one of the factors. The same applies when TiO2 and CaO are added. However, if the sintering temperature is increased or the sintering time is increased, the crystal grain size will grow along with the formation of this spinel-type compound, causing large chipping during machining and reducing yield. , undesirable. In the case of MnO,
It has almost the same sinterability as the basic composition of CoO and NiO, and a high-density sintered body can be obtained under the same sintering conditions as without additives, but it does not react with the basic composition of CoO and NiO. It is not preferable because it is a substance that easily reacts during sintering because it will not be possible to obtain a sintered body with a uniform structure.

【0013】従って、これらの添加材を添加する場合は
、あらかじめ基本組成のCoO、NiOとを、あらかじ
め反応させておくことが望ましい。すなわち、基本組成
のCoO、NiOを混合する時に同時に添加し、次工程
の仮焼工程で添加材と基本組成のCoO、NiOとを、
あらかじめ反応させておくことが必要であることを知見
した。
[0013] Therefore, when adding these additives, it is desirable to react the basic compositions of CoO and NiO in advance. That is, when mixing the basic composition of CoO and NiO, it is added at the same time, and in the next calcination process, the additive material and the basic composition of CoO and NiO are added.
It was found that it is necessary to react in advance.

【0014】次に、基板の製造方法について記す。市販
の原料酸化物及び添加材を、所望組成になるよう秤量し
、ボ−ルミルにより混合する。このように添加材を仮焼
前に添加することが、本発明の特徴である。混合は例え
ばエタノ−ル中湿式ボ−ルミルで10〜30時間行なう
。乾燥後、CIP成形し、例えばAr中850〜110
0℃で仮焼し、次いで粗砕機を用いて粉砕し、100〜
200μmの篩で篩分けを行なう。仮焼粉はさらに例え
ばエタノ−ル中湿式ボ−ルミルで20〜72時間処理し
、1μm以下に微粉砕する。これを造粒後、CIP成形
し、例えば酸素中1280〜1300℃で焼結し、その
後、HIP処理を行なう。HIP処理条件は、80〜1
20MPa、1200〜1250℃、1〜2時間が望ま
しい。
Next, a method for manufacturing the substrate will be described. Commercially available raw material oxides and additives are weighed to give the desired composition and mixed in a ball mill. It is a feature of the present invention that additives are added before calcination in this manner. Mixing is carried out, for example, in a wet ball mill in ethanol for 10 to 30 hours. After drying, CIP molding is performed, e.g. 850-110 in Ar.
Calcined at 0℃, then crushed using a coarse crusher,
Sieve with a 200 μm sieve. The calcined powder is further treated, for example, in a wet ball mill in ethanol for 20 to 72 hours, and pulverized to 1 μm or less. After granulation, this is subjected to CIP molding, sintered at 1280 to 1300° C. in oxygen, for example, and then subjected to HIP treatment. HIP processing conditions are 80-1
20 MPa, 1200 to 1250°C, and 1 to 2 hours are desirable.

【0015】このようにして得られた焼結体は、緻密で
、安定した抗折力を有し、焼結体の結晶粒径が小さいこ
とが確認できた。また、機械加工時に大きなチッピング
の発生がなくなり、歩留まりが向上することが確認でき
た。
It was confirmed that the sintered body thus obtained was dense and had a stable transverse rupture strength, and the crystal grain size of the sintered body was small. In addition, it was confirmed that large chippings did not occur during machining, and the yield was improved.

【0016】以下、本発明の実施例について説明する。Examples of the present invention will be described below.

【実施例1】CoO、NiOを原料にCoO/NiO(
モル比)=50/50組成となるように調整し、これに
添加材としてAl2O32wt%を添加し混合した。混
合は、エタノ−ル中湿式ボ−ルミルで20時間行なった
。この混合粉をAr中900℃で仮焼し、次いで粗砕機
を用いて粉砕し、150μmの篩で篩分けを行ない仮焼
粉を得た。この仮焼粉を、エタノ−ル中湿式ボ−ルミル
で40時間粉砕した。この粉砕粉を造粒後CIP成形し
、成形体を酸素中1300℃で焼結した。これを125
0℃、100MPa、1時間のHIP処理を行なった。
[Example 1] CoO/NiO (
The composition was adjusted to be 50/50 (molar ratio), and 2 wt % of Al2O3 was added as an additive and mixed. Mixing was carried out in a wet ball mill in ethanol for 20 hours. This mixed powder was calcined at 900° C. in Ar, then crushed using a coarse crusher, and sieved through a 150 μm sieve to obtain calcined powder. This calcined powder was ground in ethanol in a wet ball mill for 40 hours. This pulverized powder was granulated and then subjected to CIP molding, and the molded body was sintered at 1300° C. in oxygen. This is 125
HIP treatment was performed at 0° C., 100 MPa, and 1 hour.

【0017】この実施例1による焼結体の物性値を表1
に示す。
Table 1 shows the physical properties of the sintered body according to Example 1.
Shown below.

【表1】[Table 1]

【0018】[0018]

【実施例2】実施例1と同様に粉砕粉を合成し、この粉
砕粉を造粒後CIP成形し、成形体を酸素中1280℃
で焼結した。これを1250℃、100MPa、1時間
のHIP処理を行なった。
[Example 2] A pulverized powder was synthesized in the same manner as in Example 1, and the pulverized powder was granulated and then subjected to CIP molding.
Sintered with This was subjected to HIP treatment at 1250° C., 100 MPa, and 1 hour.

【0019】この実施例2による焼結体の物性値を表1
に示す。
Table 1 shows the physical properties of the sintered body according to Example 2.
Shown below.

【0020】次に比較例として、仮焼後の粉砕工程で添
加材を添加したときの例を示す。
Next, as a comparative example, an example in which additives were added in the pulverization step after calcination will be shown.

【比較例1】CoO、NiOを原料にCoO/NiO(
モル比)=50/50組成となるように調整し混合した
。混合は、エタノ−ル中湿式ボ−ルミルで20時間行な
った。この混合粉をAr中900℃で仮焼し、次いで粗
砕機を用いて粉砕し、150μmの篩で篩分けを行ない
仮焼粉を得た。この仮焼粉に添加材としてAl2O32
wt%を添加し、エタノ−ルの湿式ボ−ルミルで40時
間粉砕した。この粉砕粉を造粒後CIP成形し、成形体
を酸素中1330℃で焼結した。これを1250℃、1
00MPa、1時間のHIP処理を行なった。
[Comparative Example 1] CoO/NiO (
The mixture was adjusted to have a composition of 50/50 (molar ratio). Mixing was carried out in a wet ball mill in ethanol for 20 hours. This mixed powder was calcined at 900° C. in Ar, then crushed using a coarse crusher, and sieved through a 150 μm sieve to obtain calcined powder. Al2O32 is added to this calcined powder as an additive.
wt% was added and milled in an ethanol wet ball mill for 40 hours. This pulverized powder was granulated and then subjected to CIP molding, and the molded product was sintered at 1330° C. in oxygen. This was heated to 1250℃, 1
HIP treatment was performed at 00 MPa for 1 hour.

【0021】この比較例1による焼結体の物性値を表1
に示す。
Table 1 shows the physical properties of the sintered body according to Comparative Example 1.
Shown below.

【0022】[0022]

【比較例2】比較例1と同様に粉砕粉を合成し、この粉
砕粉を造粒後CIP成形し、成形体を酸素中1300℃
で焼結した。これを1250℃、100MPa、1時間
のHIP処理を行なった。
[Comparative Example 2] A pulverized powder was synthesized in the same manner as in Comparative Example 1, and the pulverized powder was granulated and then subjected to CIP molding, and the molded product was heated to 1300°C in oxygen.
Sintered with This was subjected to HIP treatment at 1250° C., 100 MPa, and 1 hour.

【0023】この比較例2による焼結体の物性値を表1
に示す。
Table 1 shows the physical properties of the sintered body according to Comparative Example 2.
Shown below.

【0024】表からわかるように、本請求範囲の実施例
は、従来の場合に比べ、低温で焼結しても、緻密で、安
定した抗折力を有し、さらには、結晶粒径が小さい焼結
体が得られることがわかった。
As can be seen from the table, the embodiments claimed in the present invention are denser and have a stable transverse rupture strength even when sintered at a lower temperature than the conventional case, and furthermore, the crystal grain size is smaller. It was found that small sintered bodies could be obtained.

【0025】[0025]

【発明の効果】以上説明したように、(1)本発明によ
る非磁性基板は、従来と同様な緻密で、安定した抗折力
を有し、従来より結晶粒径が小さい焼結体を得ることが
できる利点がある。
[Effects of the Invention] As explained above, (1) the nonmagnetic substrate according to the present invention is as dense as the conventional one, has a stable transverse rupture strength, and produces a sintered body with a smaller crystal grain size than the conventional one. There is an advantage that it can be done.

【0026】(2)さらに、焼結体の結晶粒径を小さく
することにより、機械加工時に大きなチッピングの発生
がなくなり、歩留まり向上等の経済性に利点がある。
(2) Furthermore, by reducing the crystal grain size of the sintered body, large chipping does not occur during machining, which has economical advantages such as improved yield.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  CoO及びNiOあるいはNiOを基
本組成とする磁気ヘッド用非磁性基板の製造方法であっ
て、原料粉の混合、仮焼、粉砕、焼結等の工程をとる方
法において、仮焼前の原料粉の混合工程で、Al2O3
,TiO2,CaO,MnO等の添加材を少なくとも一
種以上添加し、焼結することを特徴とする磁気ヘッド用
非磁性基板の製造方法。
1. A method for producing a nonmagnetic substrate for a magnetic head whose basic composition is CoO and NiO or NiO, which includes steps such as mixing raw material powder, calcination, pulverization, and sintering. In the previous raw material powder mixing process, Al2O3
, TiO2, CaO, MnO, etc., and sintering the mixture.
JP3050255A 1991-02-25 1991-02-25 Manufacture of nonmagnetic substrate for magnetic head Pending JPH04269808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3050255A JPH04269808A (en) 1991-02-25 1991-02-25 Manufacture of nonmagnetic substrate for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3050255A JPH04269808A (en) 1991-02-25 1991-02-25 Manufacture of nonmagnetic substrate for magnetic head

Publications (1)

Publication Number Publication Date
JPH04269808A true JPH04269808A (en) 1992-09-25

Family

ID=12853872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3050255A Pending JPH04269808A (en) 1991-02-25 1991-02-25 Manufacture of nonmagnetic substrate for magnetic head

Country Status (1)

Country Link
JP (1) JPH04269808A (en)

Similar Documents

Publication Publication Date Title
EP0330121B1 (en) Non-magnetic substrate of magnetic head, magnetic head and method for producing substrate
JPH04269808A (en) Manufacture of nonmagnetic substrate for magnetic head
JPH08217543A (en) Production of nonmagnetic ceramics for magnetic head
JPH04309203A (en) Manufacture of nonmagnetic substrate for magnetic head
JPS5851402B2 (en) Porcelain for magnetic head structural parts and method for manufacturing the same
JPH06305813A (en) Production of non-magnetic material
JPH04269809A (en) Nonmagnetic substrate for magnetic head
JP2833724B2 (en) Manufacturing method of soft ferrite magnetic material
JPH0380411A (en) Nonmagnetic substrate for magnetic head
JPH05315110A (en) Nonmagnetic substrate for magnetic head
KR0137076B1 (en) Non-magnetic ceramic substrate for magnetic head
JPH04251416A (en) Nonmagnetic substrate for magnetic head
JPH08208323A (en) Productionn of nonmagnetic ceramic for magnetic head
JPH05129118A (en) Non-magnetic substrate for magnetic head
JPH04279012A (en) Nonmagnetic substrate for magnetic head
JPH04269810A (en) Nonmagnetic substrate for magnetic head
JPS60171267A (en) Manufacture of ni-zn ferrite
JPH04279011A (en) Nonmagnetic substrate for magnetic head
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
JPH02168602A (en) Non-magnetic substrate for magnetic head
JPH08180306A (en) Nonmagnetic substrate for magnetic head
JPH06342505A (en) Production of nonmagnetic substrate for magnetic head
JPH04273407A (en) Nonmagnetic substrate for magnetic head use
JPH04273405A (en) Nonmagnetic substrate for magnet head use
JPH0927437A (en) Non-magnetic board for magnetic head and its manufacture