JPH04264767A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH04264767A
JPH04264767A JP3026004A JP2600491A JPH04264767A JP H04264767 A JPH04264767 A JP H04264767A JP 3026004 A JP3026004 A JP 3026004A JP 2600491 A JP2600491 A JP 2600491A JP H04264767 A JPH04264767 A JP H04264767A
Authority
JP
Japan
Prior art keywords
film
electrode film
cylindrical electrode
spacer
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3026004A
Other languages
Japanese (ja)
Inventor
Takehiro Urayama
浦山 丈裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3026004A priority Critical patent/JPH04264767A/en
Publication of JPH04264767A publication Critical patent/JPH04264767A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To provide a semiconductor device and a manufacturing method thereof in which the capacitance of a capacitor of a MOS DRAM can be increased in a structure of a capacitor of a dynamic MOS memory cell and a forming method thereof. CONSTITUTION:In a semiconductor device having a capacitor in which a lower electrode and an upper electrode are opposed through a capacitor insulating film, the lower electrode is formed of one or a plurality of cylindrical electrode films 10, 12, 14 connected to a lower electrode film 8, and the upper electrode is formed oppositely to the films 10, 12, 14 through a capacitor insulating film 15 covering the surfaces of the films 10, 12, 14.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体装置とその製造方
法に係り、特にダイナミックMOSメモリセルのキャパ
シタの構造と形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to the structure and method of forming a capacitor of a dynamic MOS memory cell.

【0002】ダイナミックMOSメモリ(以下、MOS
 DRAMと略称する)は1個のMOSセルと1個のキ
ャパシタから構成されているが、半導体装置の高集積化
に伴いセルが微細化するのに対して、キャパシタの容量
を出来るだけ大きくすることが望まれている。
Dynamic MOS memory (hereinafter referred to as MOS
A DRAM (abbreviated as DRAM) consists of one MOS cell and one capacitor, but as semiconductor devices become more highly integrated, the cells become smaller, so it is important to increase the capacitance of the capacitor as much as possible. is desired.

【0003】以上のような状況から微小な領域内に大容
量のキャパシタを形成することが可能な半導体装置及び
その製造方法が要望されている。
Under the above circumstances, there is a need for a semiconductor device and a method for manufacturing the same that can form a large capacitance capacitor in a minute area.

【0004】0004

【従来の技術】従来の半導体装置について図7により、
半導体装置の製造方法について図8により詳細に説明す
る。
[Prior Art] Regarding a conventional semiconductor device, as shown in FIG.
A method for manufacturing a semiconductor device will be explained in detail with reference to FIG.

【0005】MOS DRAMにおいてはキャパシタの
容量を増加するため、図7に示すような側断面図を有す
るスタックドキャパシタセル構造が採られており、フィ
ールド酸化膜22で画定された半導体基板21の表面に
ゲ−ト酸化膜23を介してゲート電極24を設け、その
両側の半導体基板21にソース25とドレイン26とを
設け、その表面を被覆する絶縁膜27の表面に下部電極
膜28を形成しており、この下部電極膜28を被覆する
キャパシタ絶縁膜29を介して上部電極膜30を被着形
成してキャパシタを形成している。
In order to increase the capacitance of a capacitor in a MOS DRAM, a stacked capacitor cell structure having a side cross-sectional view as shown in FIG. A gate electrode 24 is provided through a gate oxide film 23, a source 25 and a drain 26 are provided on the semiconductor substrate 21 on both sides, and a lower electrode film 28 is formed on the surface of an insulating film 27 covering the surface. An upper electrode film 30 is deposited via a capacitor insulating film 29 covering the lower electrode film 28 to form a capacitor.

【0006】このようなポリシリコンからなる下部電極
膜28と上部電極膜30が、シリコン酸化膜からなるキ
ャパシタ絶縁膜29を介して対向する構造のキャパシタ
を備えたメモリセルは、スタックドキャパシタセル(s
tacked capacitor cell)と称せ
られており、図8に示すような工程順に製造している。
A memory cell equipped with a capacitor having such a structure in which the lower electrode film 28 and the upper electrode film 30 made of polysilicon face each other with the capacitor insulating film 29 made of a silicon oxide film interposed therebetween is called a stacked capacitor cell ( s
It is called a tacked capacitor cell) and is manufactured in the order of steps shown in FIG.

【0007】まず、図8(a) に示すように、p型の
半導体基板21上にLOCOS法によつて選択的にフィ
ールド酸化膜22を形成し、化学気相成長 (CVD)
法によってゲ−ト酸化膜23を介して導電性のポリシリ
コン膜からなるゲ−ト電極24を形成し、イオン注入に
よりn型のソ−ス領域25及びドレイン領域26を形成
し、これらの表面にシリコン酸化膜からなる膜厚300
0Å程度の絶縁膜27を被着形成し、コンタクトホール
27a を開口する。
First, as shown in FIG. 8A, a field oxide film 22 is selectively formed on a p-type semiconductor substrate 21 by the LOCOS method, and then chemical vapor deposition (CVD) is performed.
A gate electrode 24 made of a conductive polysilicon film is formed by a method using a gate oxide film 23, and an n-type source region 25 and a drain region 26 are formed by ion implantation. The thickness of the silicon oxide film is 300 mm.
An insulating film 27 of about 0 Å is deposited and a contact hole 27a is opened.

【0008】つぎに図8(b) に示すように、この絶
縁膜27の表面に導電性のポリシリコン膜をCVD法に
より被着形成し、パタ−ンニングしてキャパシタの下部
電極膜28を形成する。
Next, as shown in FIG. 8(b), a conductive polysilicon film is deposited on the surface of this insulating film 27 by the CVD method and patterned to form a lower electrode film 28 of the capacitor. do.

【0009】ついで図8(c) に示すように、この下
部電極膜28の表面に膜厚50〜100 Åのシリコン
窒化膜からなるキャパシタ絶縁膜29を被着形成し、そ
の表面に導電性のポリシリコン膜からなる上部電極膜3
0を被着形成し、キャパシタ絶縁膜29と上部電極膜3
0とを同時にパタ−ンニングしてキャパシタを形成する
Next, as shown in FIG. 8(c), a capacitor insulating film 29 made of a silicon nitride film with a thickness of 50 to 100 Å is deposited on the surface of this lower electrode film 28, and a conductive film is formed on the surface. Upper electrode film 3 made of polysilicon film
0 is deposited, and the capacitor insulating film 29 and the upper electrode film 3 are formed.
A capacitor is formed by patterning 0 and 0 at the same time.

【0010】0010

【発明が解決しようとする課題】以上説明した従来の半
導体装置及びその製造方法においては、MOS DRA
Mのメモリセルが16MB,64MB となり極めて高
集積化されるのに伴なってメモリセルを形成する領域は
益々小さくなり、それに応じてキャパシタを形成する領
域も小さくなるため対向する電極の面積が小さくなり、
キャパシタの容量が不足してメモリ動作の信頼性が低下
するという問題点があった。
[Problems to be Solved by the Invention] In the conventional semiconductor device and its manufacturing method described above, MOS DRA
As M memory cells become 16 MB and 64 MB and become extremely highly integrated, the area where memory cells are formed becomes smaller and smaller, and the area where capacitors are formed becomes smaller accordingly, so the area of opposing electrodes becomes smaller. Become,
There is a problem in that the reliability of memory operation decreases due to insufficient capacity of the capacitor.

【0011】本発明は以上のような状況から、MOS 
DRAMのキャパシタの容量を増大させることが可能と
なる半導体装置及びその製造方法の提供を目的としたも
のである。
[0011] The present invention is based on the above-mentioned circumstances.
The object of the present invention is to provide a semiconductor device and a method for manufacturing the same, which make it possible to increase the capacitance of a DRAM capacitor.

【0012】0012

【課題を解決するための手段】本発明の半導体装置は、
キャパシタ絶縁膜を介して下部電極と上部電極とが対向
するキャパシタを具備する半導体装置であって、この下
部電極が、下部電極膜と接続する単一または複数の円筒
型電極膜とから構成され、この上部電極が、前記円筒型
電極膜の表面を被覆するキャパシタ絶縁膜を介してこの
円筒型電極膜に対向して設けられてなるように構成する
[Means for Solving the Problems] A semiconductor device of the present invention includes:
A semiconductor device comprising a capacitor in which a lower electrode and an upper electrode face each other with a capacitor insulating film interposed therebetween, the lower electrode comprising a single or plural cylindrical electrode films connected to the lower electrode film, The upper electrode is arranged to face the cylindrical electrode film with a capacitor insulating film covering the surface of the cylindrical electrode film interposed therebetween.

【0013】本発明の半導体装置の製造方法は、半導体
基板上の絶縁膜の表面に形成した下部電極膜の表面に円
柱状の第1のスペーサ膜を形成する工程と、この第1の
スペーサ膜及びこの下部電極膜の表面に第1の円筒型電
極膜を被着形成する工程と、この第1の円筒型電極膜の
全表面に第2のスペーサ膜を被着形成した後、この第2
のスペーサ膜の異方性のエッチングを行ってこの第1の
円筒型電極膜の垂直部の側壁にサイドウォールを形成す
る工程と、このサイドウオール及びこの第1の円筒型電
極膜の全表面に第2の円筒型電極膜を被着形成し、この
第2の円筒型電極膜の全表面に第3のスペーサ膜を被着
形成した後、この第3のスペーサ膜の異方性のエッチン
グを行い、この第2の円筒型電極膜の垂直部の側壁にサ
イドウォールを形成する工程と、このサイドウオール及
びこの第2の円筒型電極膜の全表面に第3の円筒型電極
膜を被着形成した後、この絶縁膜が露出するまでこの下
部電極膜、第1の円筒型電極膜、第2の円筒型電極膜、
第3の円筒型電極膜の異方性のエッチングを行う工程と
、この第1のスペーサ膜、二つのサイドウォールをエッ
チングして除去する工程と、この絶縁膜、第1の円筒型
電極膜、第2の円筒型電極膜、第3の円筒型電極膜の表
面にキャパシタ絶縁膜を被着形成し、このキャパシタ絶
縁膜の表面に上部電極膜を被着形成する工程とを含むよ
うに構成する。
A method for manufacturing a semiconductor device according to the present invention includes the steps of forming a columnar first spacer film on the surface of a lower electrode film formed on the surface of an insulating film on a semiconductor substrate; and a step of depositing and forming a first cylindrical electrode film on the surface of this lower electrode film, and a step of depositing and forming a second spacer film on the entire surface of this first cylindrical electrode film;
a step of anisotropically etching the spacer film to form a sidewall on the vertical sidewall of the first cylindrical electrode film; After depositing a second cylindrical electrode film and depositing a third spacer film on the entire surface of the second cylindrical electrode film, the third spacer film is anisotropically etched. forming a sidewall on the vertical side wall of this second cylindrical electrode film, and depositing a third cylindrical electrode film on the entire surface of this sidewall and this second cylindrical electrode film. After forming, the lower electrode film, the first cylindrical electrode film, the second cylindrical electrode film,
a step of anisotropically etching the third cylindrical electrode film; a step of etching and removing the first spacer film and the two sidewalls; forming a capacitor insulating film on the surfaces of the second cylindrical electrode film and the third cylindrical electrode film, and forming an upper electrode film on the surface of the capacitor insulating film. .

【0014】[0014]

【作用】即ち本発明においては半導体装置の下部電極を
、下部電極膜と接続する単一の円筒状または同心円の複
数の円筒型電極膜とから構成し、この下部電極の表面に
キャパシタ絶縁膜を介して上部電極膜を設ける構造にし
ており、このような構造の半導体装置を製造するために
、円筒型電極膜の表面に形成したスペーサ膜の異方性エ
ッチング処理を行って、これらの円筒型電極膜の側壁に
サイドウオールを形成する工程を複数回行い、最後に異
方性エッチングによりこれらの円筒型電極膜の上部を除
去した後、このサイドウォールをエッチングにより除去
し、このサイドウォールの除去部分の下部電極の表面に
キャパシタ絶縁膜を介して上部電極膜を被着形成するの
で、対向面積が広く、容量の大きなキャパシタを具備す
るMOS DRAMのメモリセルを製造することが可能
となる。
[Operation] That is, in the present invention, the lower electrode of a semiconductor device is composed of a single cylindrical electrode film or a plurality of concentric cylindrical electrode films connected to a lower electrode film, and a capacitor insulating film is formed on the surface of this lower electrode. In order to manufacture a semiconductor device with such a structure, an anisotropic etching process is performed on the spacer film formed on the surface of the cylindrical electrode film. The process of forming sidewalls on the sidewalls of the electrode films is performed multiple times, and finally, after removing the upper part of these cylindrical electrode films by anisotropic etching, this sidewall is removed by etching. Since the upper electrode film is deposited on the surface of the lower electrode of the portion through the capacitor insulating film, it is possible to manufacture a MOS DRAM memory cell having a large opposing area and a capacitor with a large capacity.

【0015】[0015]

【実施例】以下、本発明の同心円状の3つの円筒型電極
膜からなる下部電極を形成する一実施例について図1〜
図6により詳細に説明する。
[Example] An example of forming a lower electrode consisting of three concentric cylindrical electrode films according to the present invention will be described below with reference to FIGS.
This will be explained in detail with reference to FIG.

【0016】図1は本発明の半導体装置のメモリセルの
構造を示す側断面図、図2〜図6は本発明による半導体
装置の製造方法の一実施例を工程順に示す側断面図であ
る。図1に示すようにフィールド酸化膜2で画定された
半導体基板1の表面にゲ−ト酸化膜3を介してゲート電
極4を設け、その両側の半導体基板1にソース5とドレ
イン6とを設け、その表面を被覆する絶縁膜7の表面に
下部電極膜8を形成している。この下部電極膜8には複
数の円筒型電極膜、即ち第1の円筒型電極膜10,第2
の円筒型電極膜12,第3の円筒型電極膜14が接続し
て形成されており、この表面を被覆するキャパシタ絶縁
膜15を介して上部電極膜16を被着形成してキャパシ
タを形成している。
FIG. 1 is a side cross-sectional view showing the structure of a memory cell of a semiconductor device according to the present invention, and FIGS. 2 to 6 are side cross-sectional views showing an embodiment of a method for manufacturing a semiconductor device according to the present invention in the order of steps. As shown in FIG. 1, a gate electrode 4 is provided on the surface of a semiconductor substrate 1 defined by a field oxide film 2 via a gate oxide film 3, and a source 5 and a drain 6 are provided on the semiconductor substrate 1 on both sides thereof. , a lower electrode film 8 is formed on the surface of an insulating film 7 covering the surface thereof. This lower electrode film 8 includes a plurality of cylindrical electrode films, that is, a first cylindrical electrode film 10, a second cylindrical electrode film 10, and a second cylindrical electrode film 10.
A cylindrical electrode film 12 and a third cylindrical electrode film 14 are connected to each other, and an upper electrode film 16 is deposited through a capacitor insulating film 15 covering the surface to form a capacitor. ing.

【0017】以下、本実施例の半導体装置の製造方法を
工程順に図2〜図6を参照して詳細に説明する。まず図
2(a) に示すように従来法と同様に、p型の半導体
基板1上にLOCOS法によつて選択的にフィールド酸
化膜2を形成し、化学気相成長 (CVD)法によって
ゲ−ト酸化膜3を介して導電性のポリシリコン膜からな
るゲート電極4を形成し、イオン注入によりn型のソー
ス5及びドレイン6を形成し、これらの表面にシリコン
酸化膜からなる膜厚 3,000Å程度の絶縁膜7を被
着形成する。
Hereinafter, the method for manufacturing the semiconductor device of this embodiment will be explained in detail in the order of steps with reference to FIGS. 2 to 6. First, as shown in FIG. 2(a), similarly to the conventional method, a field oxide film 2 is selectively formed on a p-type semiconductor substrate 1 by the LOCOS method, and then a field oxide film 2 is formed by the chemical vapor deposition (CVD) method. - A gate electrode 4 made of a conductive polysilicon film is formed via a silicon oxide film 3, an n-type source 5 and a drain 6 are formed by ion implantation, and a film thickness of 3 made of a silicon oxide film is formed on the surfaces of these. An insulating film 7 having a thickness of about ,000 Å is deposited.

【0018】つぎに図2(b) に示すように、絶縁膜
7に設けた開口窓7aを含む表面に導電性のポリシリコ
ン膜からなる膜厚1,000〜2,000Åの下部電極
膜8をCVD法により被着する。この開口窓7aはソー
ス5と下部電極膜8とを接続する窓である。
Next, as shown in FIG. 2(b), a lower electrode film 8 made of a conductive polysilicon film with a thickness of 1,000 to 2,000 Å is formed on the surface including the opening window 7a provided in the insulating film 7. is deposited by CVD method. This opening window 7a is a window that connects the source 5 and the lower electrode film 8.

【0019】ついで図2(c) に示すように、この下
部電極膜8の上に膜厚 5,000〜10,000Åの
シリコン酸化膜をCVD法により被着し、このシリコン
酸化膜をリソグラフィ技術によってパターンニングして
円柱状の第1のスペーサ膜9を形成する。
Next, as shown in FIG. 2C, a silicon oxide film with a thickness of 5,000 to 10,000 Å is deposited on the lower electrode film 8 by the CVD method, and this silicon oxide film is deposited using the lithography technique. A columnar first spacer film 9 is formed by patterning.

【0020】ここで図3(a) に示すように、この第
1のスペーサ膜9を含む絶縁膜7上に、膜厚1,000
〜2,000Åの導電性のポリシリコン膜からなる第1
の円筒型電極膜10をCVD法により被着する。この場
合、第1の円筒型電極膜10は第1のスペーサ膜9の周
囲を被覆して図示のように凸型に形成される。
As shown in FIG. 3(a), a film with a thickness of 1,000 mm is formed on the insulating film 7 including the first spacer film 9.
The first layer consists of a conductive polysilicon film of ~2,000 Å.
A cylindrical electrode film 10 is deposited by the CVD method. In this case, the first cylindrical electrode film 10 covers the first spacer film 9 and is formed into a convex shape as shown.

【0021】ついで図3(b) に示すように、この第
1の円筒型電極膜10の表面に膜厚 1,000〜2,
000 Åのシリコン酸化膜からなる第2のスペーサ膜
11をCVD法によって被着する。
Next, as shown in FIG. 3(b), the surface of the first cylindrical electrode film 10 is coated with a film thickness of 1,000 to 2,000.
A second spacer film 11 made of a silicon oxide film with a thickness of 0.000 Å is deposited by CVD.

【0022】そして図4(a) に示すように、RIE
法によりこの第2のスペーサ膜11の異方性エッチング
を行い、凸型の第1の円筒型電極膜10の側壁にのみこ
の第2のスペーサ膜11を円筒状のサイドウォール11
a として残存させた後、このサイドウォール11a 
を含む第1の円筒型電極膜10の表面に、膜厚1,00
0〜2,000Åの導電性のポリシリコン膜からなる第
2の円筒型電極膜12をCVD法により被着する。
Then, as shown in FIG. 4(a), RIE
This second spacer film 11 is anisotropically etched by a method such that the second spacer film 11 is etched only on the side wall of the convex first cylindrical electrode film 10.
After leaving it as a, this side wall 11a
A film thickness of 1,000 mm is applied to the surface of the first cylindrical electrode film 10 containing
A second cylindrical electrode film 12 made of a conductive polysilicon film with a thickness of 0 to 2,000 Å is deposited by CVD.

【0023】つぎに図4(b) に示すように、この第
2の円筒型電極膜12の表面に膜厚 1,000〜2,
000 Åのシリコン酸化膜からなる第3のスペーサ膜
13をCVD法によって被着する。
Next, as shown in FIG. 4(b), the surface of the second cylindrical electrode film 12 is coated with a film thickness of 1,000 to 2,000.
A third spacer film 13 made of a silicon oxide film with a thickness of 0.000 Å is deposited by CVD.

【0024】そして図5(a) に示すように、RIE
法によりこの第3のスペーサ膜13の異方性エッチング
を行い、第2の円筒型電極膜12の側壁にのみこの第3
のスペーサ膜13を円筒状のサイドウォール13a と
して残存させた後、このサイドウォール13a を含む
第2の円筒型電極膜12の表面に、膜厚1,000〜2
,000Åの導電性のポリシリコン膜からなる第3の円
筒型電極膜14をCVD法により被着する。
Then, as shown in FIG. 5(a), RIE
This third spacer film 13 is anisotropically etched by a method such that the third spacer film 13 is etched only on the side wall of the second cylindrical electrode film 12.
After leaving the spacer film 13 as a cylindrical sidewall 13a, a film with a thickness of 1,000 to 2
A third cylindrical electrode film 14 made of a conductive polysilicon film with a thickness of .000 Å is deposited by CVD.

【0025】ついで図5(b) に示すように、導電性
のポリシリコン膜からなる第1の円筒型電極膜10、第
2の円筒型電極膜12、第3の円筒型電極膜14及び下
部電極膜8を同時に、RIE法による異方性のエッチン
グを行い、円柱状の第1のスペーサ膜9、サイドウォー
ル11a 、サイドウォール13a の上部を露出させ
る。
Next, as shown in FIG. 5(b), the first cylindrical electrode film 10, the second cylindrical electrode film 12, the third cylindrical electrode film 14, and the lower part are made of a conductive polysilicon film. At the same time, the electrode film 8 is anisotropically etched by RIE to expose the upper portions of the cylindrical first spacer film 9, sidewalls 11a, and sidewalls 13a.

【0026】つぎに図6(a) に示すように、このシ
リコン酸化膜からなる第1のスペーサ膜9、サイドウォ
ール11a 、サイドウォール13a を同時に弗酸系
溶液を用いたウェットエッチングによって除去する。
Next, as shown in FIG. 6(a), the first spacer film 9, sidewalls 11a, and sidewalls 13a made of this silicon oxide film are simultaneously removed by wet etching using a hydrofluoric acid solution.

【0027】最後に図6(b) に示すように、上記の
露出させた円筒状の第1の円筒型電極膜10、第2の円
筒型電極膜12及び第3の円筒型電極膜14の全表面に
膜厚50〜100 Åのシリコン窒化膜からなるキャパ
シタ絶縁膜15を形成し、このキャパシタ絶縁膜15の
全表面に導電性のポリシリコン膜からなる上部電極膜1
6を被着し、このキャパシタ絶縁膜15と上部電極膜1
6とを同時にパタ−ンニングしてキャパシタを完成する
。この際、キャパシタ絶縁膜15及び上部電極膜16は
CVD法によって被着させるので被覆性が良く、狭い溝
状の部分まで確実に被覆させることができる。
Finally, as shown in FIG. 6(b), the exposed cylindrical first cylindrical electrode film 10, second cylindrical electrode film 12, and third cylindrical electrode film 14 are removed. A capacitor insulating film 15 made of a silicon nitride film with a thickness of 50 to 100 Å is formed on the entire surface, and an upper electrode film 1 made of a conductive polysilicon film is formed on the entire surface of this capacitor insulating film 15.
6, and this capacitor insulating film 15 and upper electrode film 1
6 is patterned at the same time to complete the capacitor. At this time, since the capacitor insulating film 15 and the upper electrode film 16 are deposited by the CVD method, the covering properties are good and even the narrow groove-like portions can be reliably covered.

【0028】上記のような製造方法によれば、導電性の
ポリシリコン膜からなる下部電極膜8と接続した第1の
円筒型電極膜10、第2の円筒型電極膜12、第3の円
筒型電極膜14の表面積が極めて大きくなるので、キャ
パシタの容量を著しく増加させることが可能となる。従
って、本発明により製造したMOS DRAMのMOS
メモリセルは微小な領域に集積度の高いメモリ素子を微
細に形成すると同時に、極めて大容量のキャパシタを形
成させることができる。
According to the above manufacturing method, the first cylindrical electrode film 10, the second cylindrical electrode film 12, and the third cylindrical electrode film 10 are connected to the lower electrode film 8 made of a conductive polysilicon film. Since the surface area of the type electrode film 14 becomes extremely large, it becomes possible to significantly increase the capacitance of the capacitor. Therefore, the MOS of the MOS DRAM manufactured according to the present invention
In memory cells, highly integrated memory elements can be minutely formed in a minute area, and at the same time, extremely large capacitance capacitors can be formed.

【0029】本実施例においては円筒型電極膜を3個用
いているが、円筒型電極膜の数は3個に限定されるもの
ではない。
Although three cylindrical electrode films are used in this embodiment, the number of cylindrical electrode films is not limited to three.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、本発明
によりMOS DRAMのMOSメモリを製造すれば、
形成領域が微小化してメモリ素子が微細化しても、キャ
パシタの容量を増大させることが可能となるので、高速
化,高信頼化などの半導体装置の性能向上に顕著に寄与
する利点があり、著しい経済的及び、信頼性向上の効果
が期待できる半導体装置及びその製造方法の提供が可能
である。
[Effects of the Invention] As is clear from the above explanation, if a MOS memory of MOS DRAM is manufactured according to the present invention,
Even if the formation area becomes smaller and the memory element becomes smaller, it is possible to increase the capacitance of the capacitor, which has the advantage of significantly contributing to improving the performance of semiconductor devices such as higher speed and higher reliability. It is possible to provide a semiconductor device and a method for manufacturing the same that can be expected to be economical and improve reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の半導体装置のメモリセルの構造を
示す側断面図、
FIG. 1 is a side sectional view showing the structure of a memory cell of a semiconductor device of the present invention;

【図2】  本発明による半導体装置の製造方法の一実
施例を工程順に示す側断面図(1) 、
FIG. 2 is a side sectional view (1) showing an embodiment of the method for manufacturing a semiconductor device according to the present invention in the order of steps;

【図3】  本発明による半導体装置の製造方法の一実
施例を工程順に示す側断面図(2) 、
FIG. 3 is a side sectional view (2) showing an embodiment of the method for manufacturing a semiconductor device according to the present invention in the order of steps;

【図4】  本発明による半導体装置の製造方法の一実
施例を工程順に示す側断面図(3) 、
FIG. 4 is a side sectional view (3) showing an embodiment of the method for manufacturing a semiconductor device according to the present invention in the order of steps;

【図5】  本発明による半導体装置の製造方法の一実
施例を工程順に示す側断面図(4) 、
FIG. 5 is a side sectional view (4) showing an embodiment of the method for manufacturing a semiconductor device according to the present invention in the order of steps;

【図6】  本発明による半導体装置の製造方法の一実
施例を工程順に示す側断面図(5) 、
FIG. 6 is a side sectional view (5) showing an embodiment of the method for manufacturing a semiconductor device according to the present invention in the order of steps;

【図7】  従来の半導体装置のメモリセルの構造を示
す側断面図、
[Fig. 7] A side cross-sectional view showing the structure of a memory cell of a conventional semiconductor device.

【図8】  従来の半導体装置の製造方法を工程順に示
す側断面図、
FIG. 8 is a side sectional view showing a conventional semiconductor device manufacturing method in the order of steps;

【符号の説明】[Explanation of symbols]

1は半導体基板、 2はフィールド酸化膜、 3はゲ−ト酸化膜、 4はゲート電極、 5はソース、 6はドレイン、 7は絶縁膜、 7aは開口窓、 8は下部電極膜、 9は第1のスペーサ膜、 10は第1の円筒型電極膜、 11は第2のスペーサ膜、 11a はサイドウォール、 12は第2の円筒型電極膜、 13は第3のスペーサ膜、 13a はサイドウォール、 14は第3の円筒型電極膜、 15はキャパシタ絶縁膜、 16は上部電極膜、 1 is a semiconductor substrate, 2 is a field oxide film, 3 is a gate oxide film, 4 is a gate electrode; 5 is the sauce, 6 is the drain, 7 is an insulating film, 7a is an opening window; 8 is a lower electrode film; 9 is a first spacer film; 10 is a first cylindrical electrode film; 11 is a second spacer film; 11a is the side wall, 12 is a second cylindrical electrode film; 13 is a third spacer film; 13a is the side wall, 14 is a third cylindrical electrode film; 15 is a capacitor insulating film; 16 is an upper electrode film;

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  キャパシタ絶縁膜を介して下部電極と
上部電極とが対向するキャパシタを具備する半導体装置
であって、前記下部電極が、下部電極膜(8) と接続
する単一または複数の円筒型電極膜(10,12,14
)とから構成され、前記上部電極が、前記円筒型電極膜
(10,12,14)の表面を被覆するキャパシタ絶縁
膜(15)を介して前記円筒型電極膜(10,12,1
4)と対向して設けられてなることを特徴とする半導体
装置。
1. A semiconductor device comprising a capacitor in which a lower electrode and an upper electrode face each other with a capacitor insulating film interposed therebetween, the lower electrode comprising a single or plural cylinders connected to a lower electrode film (8). Type electrode film (10, 12, 14
), and the upper electrode connects to the cylindrical electrode film (10, 12, 1) via a capacitor insulating film (15) that covers the surface of the cylindrical electrode film (10, 12,
4) A semiconductor device, characterized in that it is provided opposite to.
【請求項2】  半導体基板(1) 上の絶縁膜(7)
 の表面に形成した下部電極膜(8) の表面に円柱状
の第1のスペーサ膜(9) を形成する工程と、該第1
のスペーサ膜(9) 及び前記下部電極膜(8) の表
面に第1の円筒型電極膜(10)を被着形成する工程と
、該第1の円筒型電極膜(10)の全表面に第2のスペ
ーサ膜(11)を被着形成した後、該第2のスペーサ膜
(11)の異方性のエッチングを行って前記第1の円筒
型電極膜(10)の垂直部の側壁にサイドウォール(1
1a) を形成する工程と、該サイドウオール(11a
) 及び前記第1の円筒型電極膜(10)の全表面に第
2の円筒型電極膜(12)を被着し、該第2の円筒型電
極膜(12)の全表面に第3のスペーサ膜(13)を被
着形成した後、該第3のスペーサ膜(13)の異方性の
エッチングを行い、前記第2の円筒型電極膜(12)の
垂直部の側壁にサイドウォール(13a) を形成する
工程と、該サイドウオール(13a) 及び前記第2の
円筒型電極膜(12)の全表面に第3の円筒型電極膜(
14)を被着形成した後、前記絶縁膜(7) が露出す
るまで前記下部電極膜(8) 、第1の円筒型電極膜(
10)、第2の円筒型電極膜(12)、第3の円筒型電
極膜(14)の異方性のエッチングを行う工程と、前記
第1のスペーサ膜(9) 、サイドウォール(11a)
 、サイドウォール(13a) をエッチングして除去
する工程と、前記絶縁膜(7) 、第1の円筒型電極膜
(10)、第2の円筒型電極膜(12)、第3の円筒型
電極膜(14)の表面にキャパシタ絶縁膜(15)を被
着形成し、該キャパシタ絶縁膜(15)の表面に上部電
極膜(16)を被着形成する工程と、を含むことを特徴
とする半導体装置の製造方法。
[Claim 2] Insulating film (7) on semiconductor substrate (1)
forming a cylindrical first spacer film (9) on the surface of the lower electrode film (8) formed on the surface of the first spacer film;
a step of depositing a first cylindrical electrode film (10) on the surfaces of the spacer film (9) and the lower electrode film (8), and covering the entire surface of the first cylindrical electrode film (10). After depositing and forming the second spacer film (11), the second spacer film (11) is anisotropically etched to form a side wall of the vertical portion of the first cylindrical electrode film (10). side wall (1
1a) and the step of forming the sidewall (11a).
) and a second cylindrical electrode film (12) is deposited on the entire surface of the first cylindrical electrode film (10), and a third cylindrical electrode film (12) is deposited on the entire surface of the second cylindrical electrode film (12). After depositing and forming the spacer film (13), the third spacer film (13) is anisotropically etched, and sidewalls ( 13a) and forming a third cylindrical electrode film (12) on the entire surface of the sidewall (13a) and the second cylindrical electrode film (12).
14), the lower electrode film (8) and the first cylindrical electrode film (14) are deposited until the insulating film (7) is exposed.
10), a step of anisotropically etching the second cylindrical electrode film (12) and the third cylindrical electrode film (14), and the first spacer film (9) and the sidewall (11a).
, a step of etching and removing the sidewall (13a), the insulating film (7), the first cylindrical electrode film (10), the second cylindrical electrode film (12), and the third cylindrical electrode. It is characterized by comprising the steps of depositing a capacitor insulating film (15) on the surface of the film (14) and depositing an upper electrode film (16) on the surface of the capacitor insulating film (15). A method for manufacturing a semiconductor device.
【請求項3】  請求項2記載の半導体装置の製造方法
において、前記第1のスペーサ膜(9) を角柱状とし
、前記の第1の円筒型電極膜(10)、第2のスペーサ
膜(11)、第2の円筒型電極膜(12)、第3のスペ
ーサ膜(13)、第3の円筒型電極膜(14)を角筒型
とすることを特徴とする半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 2, wherein the first spacer film (9) has a prismatic shape, and the first cylindrical electrode film (10) and the second spacer film ( 11) A method for manufacturing a semiconductor device, characterized in that the second cylindrical electrode film (12), the third spacer film (13), and the third cylindrical electrode film (14) have a rectangular tube shape.
JP3026004A 1991-02-20 1991-02-20 Semiconductor device and manufacture thereof Withdrawn JPH04264767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3026004A JPH04264767A (en) 1991-02-20 1991-02-20 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3026004A JPH04264767A (en) 1991-02-20 1991-02-20 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04264767A true JPH04264767A (en) 1992-09-21

Family

ID=12181557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3026004A Withdrawn JPH04264767A (en) 1991-02-20 1991-02-20 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04264767A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350965A (en) * 1991-05-23 1992-12-04 Samsung Electron Co Ltd Manufacture of capacitor used for memory cell of semiconductor memory device and structure thereof
EP0595360A1 (en) * 1992-10-30 1994-05-04 Nec Corporation Method of manufacturing a semiconductor device having a cylindrical electrode
JPH06188382A (en) * 1991-12-31 1994-07-08 Hyundai Electron Ind Co Ltd Preparation of electric charge storage of electrode semiconductor memory
US5508222A (en) * 1993-12-13 1996-04-16 Nec Corporation Fabrication process for semiconductor device
US5753949A (en) * 1995-09-29 1998-05-19 Nec Corporation Semiconductor device wherein one of capacitor electrodes comprises a conductor pole and conductor layer
US5835337A (en) * 1995-09-29 1998-11-10 Nec Corporation Stacked capacitor having a corrugated electrode
US5939747A (en) * 1996-11-13 1999-08-17 Oki Electric Industry Co., Ltd. Capacitor produced in a semiconductor device
US6054360A (en) * 1996-06-04 2000-04-25 Nec Corporation Method of manufacturing a semiconductor memory device with a stacked capacitor wherein an electrode of the capacitor is shaped using a high melting point metal film
US6104055A (en) * 1997-03-27 2000-08-15 Nec Corporation Semiconductor device with memory cell having a storage capacitor with a plurality of concentric storage electrodes formed in an insulating layer and fabrication method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350965A (en) * 1991-05-23 1992-12-04 Samsung Electron Co Ltd Manufacture of capacitor used for memory cell of semiconductor memory device and structure thereof
JPH06188382A (en) * 1991-12-31 1994-07-08 Hyundai Electron Ind Co Ltd Preparation of electric charge storage of electrode semiconductor memory
EP0595360A1 (en) * 1992-10-30 1994-05-04 Nec Corporation Method of manufacturing a semiconductor device having a cylindrical electrode
US5508222A (en) * 1993-12-13 1996-04-16 Nec Corporation Fabrication process for semiconductor device
US5753949A (en) * 1995-09-29 1998-05-19 Nec Corporation Semiconductor device wherein one of capacitor electrodes comprises a conductor pole and conductor layer
US5835337A (en) * 1995-09-29 1998-11-10 Nec Corporation Stacked capacitor having a corrugated electrode
US5837594A (en) * 1995-09-29 1998-11-17 Nec Corporation Method of manufacturing a semiconductor device wherein one of capacitor electrodes comprises a conductor pole and a tray-shaped conductor layer
US6022772A (en) * 1995-09-29 2000-02-08 Nec Corporation Stacked capacitor having a corrugated electrode
US6054360A (en) * 1996-06-04 2000-04-25 Nec Corporation Method of manufacturing a semiconductor memory device with a stacked capacitor wherein an electrode of the capacitor is shaped using a high melting point metal film
US5939747A (en) * 1996-11-13 1999-08-17 Oki Electric Industry Co., Ltd. Capacitor produced in a semiconductor device
US6104055A (en) * 1997-03-27 2000-08-15 Nec Corporation Semiconductor device with memory cell having a storage capacitor with a plurality of concentric storage electrodes formed in an insulating layer and fabrication method thereof

Similar Documents

Publication Publication Date Title
US5342800A (en) Method of making memory cell capacitor
JP2875588B2 (en) Method for manufacturing semiconductor device
JPH0294471A (en) Semiconductor storage device and manufacture thereof
JPH0629482A (en) Plurality of poly-spacer stacked capacitors provided with double cell plate
JPH04350965A (en) Manufacture of capacitor used for memory cell of semiconductor memory device and structure thereof
JP3222944B2 (en) Method for manufacturing capacitor of DRAM cell
JP3233051B2 (en) Method for manufacturing semiconductor device
JPH04264767A (en) Semiconductor device and manufacture thereof
JP2712926B2 (en) Method for manufacturing semiconductor memory device
US5877053A (en) Method of fabricating DRAM cell with capacitor having multiple concave structure
KR0179798B1 (en) D-ram cell capacitor manufacturing method
JP2836546B2 (en) Semiconductor device and manufacturing method thereof
JPH03147364A (en) Manufacture of semiconductor device
JPH07202023A (en) Semiconductor storage device and its manufacture
KR960015526B1 (en) Semiconductor device and the manufacturing method
JP3416929B2 (en) Semiconductor device and manufacturing method thereof
KR100252542B1 (en) Method for fabricating a storage node of dram cell
JP2792349B2 (en) Method for manufacturing semiconductor memory
JPH04216666A (en) Semiconductor device and its manufacture
KR940006678B1 (en) Method of fabricating a capacitor using a poly-silicon spacer
KR100196223B1 (en) Manufacturing method of capacitor
JP2827377B2 (en) Semiconductor integrated circuit
JPH0563152A (en) Semiconductor device and its manufacture
JPH04312971A (en) Semiconductor device and manufacture thereof
JPH0550855B2 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514