JPH04262217A - Hydraulic sensor and manufacture thereof - Google Patents

Hydraulic sensor and manufacture thereof

Info

Publication number
JPH04262217A
JPH04262217A JP2246091A JP2246091A JPH04262217A JP H04262217 A JPH04262217 A JP H04262217A JP 2246091 A JP2246091 A JP 2246091A JP 2246091 A JP2246091 A JP 2246091A JP H04262217 A JPH04262217 A JP H04262217A
Authority
JP
Japan
Prior art keywords
gel material
diaphragm
gel
contact
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2246091A
Other languages
Japanese (ja)
Inventor
Noriyasu Yamashita
山下 則康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2246091A priority Critical patent/JPH04262217A/en
Publication of JPH04262217A publication Critical patent/JPH04262217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To solve the problem of the high cost for fixing a metal diaphragm in a structure wherein pressure to be measured is applied on a pressure transmitting medium in contact with a semiconductor diaphragm having a gage resistor. CONSTITUTION:The second gel material is brought into contact with the first gel material which is in contact with the surface of a semiconductor diaphragm having a gage resistor. Pressure to be measured is applied to the semiconductor diaphragm through two gel layers. Thus, a metal diaphragm is omitted. The first gel layer is mechanically protected by using a material whose penetration value is small for the second gel material or impregnating a metal mesh with the second gel material.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、トイレ, シャワー,
 風呂等における水圧の検知などに使用される水圧セン
サおよびその製造方法に関する。
[Industrial Application Field] The present invention is applicable to toilets, showers,
The present invention relates to a water pressure sensor used for detecting water pressure in baths, etc., and a method for manufacturing the same.

【0002】0002

【従来の技術】半導体を用いた水圧センサは、被測定圧
力を有する流体を直接ゲージ抵抗を備えた半導体ダイヤ
フラムに接触させず、被測定圧力を容器内に封じ込めた
流体を介してダイヤフラムの一面に加えるものが知られ
ている。図2は従来の水圧センサ接水部の構造を示し、
感圧半導体チップ1のダイヤフラムに直接流体を接触さ
せないためと、衝撃的な圧力波からのチップを保護する
ために耐食性に優れたステンレス鋼製の薄いダイヤフラ
ム2を設け、これを支持するためにスペーサ3が用いら
れ、ダイヤフラム2, スペーサ3, 容器ステム4お
よびキャップ5の相互間は溶接あるいは銀ろうにより結
合されている。半導体チップ1が台座6を介してステム
4に支持されており、半導体チップ1上のゲージ抵抗出
力信号処理回路とリード線7とは導線8で接続されてい
る。 そして、ダイヤフラム2, スペーサ3およびステム4
により囲まれた空間には圧力伝達媒体9として、例えば
シリコーン油が注入口10から注入され、注入口は封じ
切られる。
[Prior Art] A water pressure sensor using a semiconductor does not directly contact a fluid having a pressure to be measured with a semiconductor diaphragm equipped with a gauge resistor, but instead transfers the pressure to be measured to one side of the diaphragm through a fluid sealed in a container. What is added is known. Figure 2 shows the structure of the water contact part of a conventional water pressure sensor.
A thin diaphragm 2 made of stainless steel with excellent corrosion resistance is provided to prevent direct contact of fluid with the diaphragm of the pressure-sensitive semiconductor chip 1 and to protect the chip from impulsive pressure waves, and a spacer is provided to support it. 3 is used, and the diaphragm 2, spacer 3, container stem 4, and cap 5 are connected to each other by welding or silver soldering. A semiconductor chip 1 is supported by a stem 4 via a pedestal 6, and a gauge resistance output signal processing circuit on the semiconductor chip 1 and a lead wire 7 are connected by a conductive wire 8. Then, diaphragm 2, spacer 3 and stem 4
For example, silicone oil is injected as the pressure transmission medium 9 into the space surrounded by the inlet 10 from the inlet 10, and the inlet is sealed off.

【0003】0003

【発明が解決しようとする課題】この種の圧力センサは
家庭で用いられるため、例えば自動車用センサの1/2
 のような低い価格が要求される。しかし、ダイヤフラ
ム固定のために溶接あるいは銀ろう付けを行うこと、ま
た圧力伝達媒体封止時の空気混入の管理が困難であり、
封止にも時間がかかることによりコストが増加し、上記
要求を満足させることができなかった。
[Problems to be Solved by the Invention] Since this type of pressure sensor is used at home, it is only 1/2 the size of a sensor for an automobile, for example.
A low price is required. However, it is difficult to weld or silver braze to fix the diaphragm, and it is difficult to control air intrusion when sealing the pressure transmission medium.
Since sealing also takes time, costs increase, and the above requirements cannot be met.

【0004】本発明の目的は、圧力伝達のためのダイヤ
フラムが無く、しかもセンサ精度が確保された耐久性の
ある安価な水圧センサおよびその製造方法を提供するこ
とにある。
[0004] An object of the present invention is to provide a durable and inexpensive water pressure sensor that does not have a diaphragm for pressure transmission, yet ensures sensor accuracy, and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の水圧センサは、ゲージ抵抗を備えたダイ
ヤフラム部を有する半導体素体のダイヤフラムの表面に
第一のゲル材よりなる層が接し、そのゲル層の半導体素
体より遠い側に硬化後第一のゲル材より小さい針入度値
を有する第二のゲル材よりなる層が接するものとする。 あるいは第一のゲル材よりなる層の半導体素体より遠い
側に金属メッシュに含浸された第二のゲル材よりなる層
が接するものとする。
[Means for Solving the Problems] In order to achieve the above object, the water pressure sensor of the present invention includes a layer made of a first gel material on the surface of a diaphragm of a semiconductor element having a diaphragm portion provided with a gauge resistance. are in contact with each other, and a layer made of a second gel material having a smaller penetration value than the first gel material after hardening is in contact with the side of the gel layer farther from the semiconductor element. Alternatively, a layer made of a second gel material impregnated into a metal mesh is in contact with the layer made of the first gel material on the side farther from the semiconductor element.

【0006】本発明の水圧センサ製造方法は、おけ状容
器底部上にゲージ抵抗を備えたダイヤフラム部を有する
半導体素体をダイヤフラム面を上にして固定し、容器底
部内部空間に半導体素体を覆って第一のゲル材を充填し
たのち硬化させ、別に頂面に開口部を有するおけ状容器
上蓋内部空間に硬化後の針入度値が第一のゲル材より小
さい第二のゲル材を充填し、そのあと容器底部および上
蓋を結合して第一および第二のゲル材を接触させるもの
とする。あるいは、おけ状容器底部上にゲージ抵抗を備
えたダイヤフラム部を有する半導体素体をダイヤフラム
面を上にして固定し、容器底部内空間に半導体素体を覆
って第一のゲル材を充填したのち硬化させ、別に頂面に
開口部を有するおけ状容器上蓋内空間に金属メッシュを
積層したのちその金属メッシュに第二のゲル材を含浸さ
せて硬化させ、そのあと容器底部および上蓋を結合して
第一および第二のゲル材を接触させるものとする。
The method for manufacturing a water pressure sensor of the present invention includes fixing a semiconductor body having a diaphragm portion provided with a gauge resistor on the bottom of a container with the diaphragm surface facing upward, and covering the semiconductor body in the internal space of the bottom of the container. A first gel material is filled with the first gel material, and then cured, and a second gel material whose penetration value after curing is smaller than that of the first gel material is filled into the inner space of the upper lid of the basin-shaped container having an opening on the top surface. The container bottom and top lid are then joined together to bring the first and second gel materials into contact. Alternatively, a semiconductor body having a diaphragm portion provided with a gauge resistance is fixed on the bottom of a container with the diaphragm surface facing upward, and the first gel material is filled in the space inside the bottom of the container to cover the semiconductor body. After curing, a metal mesh is separately laminated in the space inside the top lid of a basin-shaped container having an opening on the top surface, and then the metal mesh is impregnated with a second gel material and hardened, and then the bottom of the container and the top lid are joined. The first and second gel materials shall be brought into contact.

【0007】[0007]

【作用】半導体素体のゲージ抵抗を備えたダイヤフラム
部の上に第一のゲル材よりなる層と第二のゲル材よりな
る層が積層されることにより、第二のゲル材の表面に接
する流体の圧力は二つのゲル材を介して半導体素体のダ
イヤフラムに加えられる。第二のゲル材が第一のゲル材
より小さい針入度値を有することにより、あるいは第二
のゲル材を金属メッシュに含浸させることにより、流体
の被測定圧力が負圧になってもゲル層が伸びて破れるこ
とがなく、針入度値の大きいゲル材より高い防水機能を
有する。あるいはダイヤフラム部の上に第一のゲル材よ
りなる層と第二のゲル材を含浸した金属メッシュの層が
積層されることにより、第二のゲル材の表面に接する流
体の圧力は二つのゲル材を介してダイヤフラム部に加え
られる。この場合は第二のゲル材が第一のゲル材と同程
度の針入度値であっても、被測定圧力が負圧になった際
にゲル材が吸い出されることを金属メッシュが防止し、
逆に第二のゲル材も軟らかいことによって衝撃的な圧力
波に対しても緩衝の効果を発揮し、耐水性, 耐久性が
向上する。いずれの場合も圧力伝達部のダイヤフラムが
不要となる。
[Operation] A layer made of the first gel material and a layer made of the second gel material are laminated on the diaphragm portion of the semiconductor element having a gauge resistance, so that the layer comes into contact with the surface of the second gel material. Fluid pressure is applied to the diaphragm of the semiconductor element through the two gel materials. By having the second gel material have a smaller penetration value than the first gel material, or by impregnating the metal mesh with the second gel material, the gel material can be maintained even when the measured pressure of the fluid becomes negative. The layer does not stretch and tear, and has a higher waterproofing function than gel materials with higher penetration values. Alternatively, a layer made of a first gel material and a layer of metal mesh impregnated with a second gel material are laminated on the diaphragm part, so that the pressure of the fluid in contact with the surface of the second gel material is reduced by two gels. It is added to the diaphragm part through the material. In this case, even if the second gel material has the same penetration value as the first gel material, the metal mesh prevents the gel material from being sucked out when the measured pressure becomes negative. death,
Conversely, since the second gel material is also soft, it exerts a buffering effect against impactful pressure waves, improving water resistance and durability. In either case, a diaphragm in the pressure transmission section is not required.

【0008】このような構造の水圧センサを組立てるた
めに、容器をおけ状の底部と頂面に開口部を有するおけ
状の上蓋とより構成し、底部に半導体素体と第一のゲル
材を収容し、上蓋に第二のゲル材を収容したのち、底部
と上蓋を結合させて第一のゲル材と第二のゲル材とが接
触するようにすれば、測定すべき流体圧は上蓋の開口部
から二つのゲル材を介して半導体素体のダイヤフラムに
加わる。この場合、上方の開いた容器底部あるいは上蓋
へゲル材を注入するかあるいは含浸させればよいので、
空気混入の管理が容易であり、密閉された容器へのゲル
材の注入および封止のような面倒な工程が省略できる。
In order to assemble a water pressure sensor having such a structure, a container is composed of a trough-shaped bottom and a trough-shaped top lid having an opening at the top, and a semiconductor element and a first gel material are placed in the bottom. After storing the second gel material in the upper lid, the bottom part and the upper lid are combined so that the first gel material and the second gel material are in contact with each other. It is applied to the diaphragm of the semiconductor element through the opening through two gel materials. In this case, all you need to do is inject or impregnate the gel material into the open bottom of the container or the top lid.
Air entrainment can be easily controlled, and troublesome steps such as pouring gel material into a sealed container and sealing the container can be omitted.

【0009】[0009]

【実施例】以下、図2と共通の部分に同一の符号を付し
た図を引用して本発明の実施例について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to figures in which parts common to those in FIG. 2 are denoted by the same reference numerals.

【0010】図1に示す実施例では、表面に薄膜抵抗お
よびダイヤフラム部に形成されたゲージ抵抗よりの出力
を増幅する演算増幅器を搭載した感圧ダイヤフラムチッ
プ1は金属製のおけ状容器ステム4の上に台座6を介し
て接着剤により固定され、薄膜抵抗および演算増幅器を
含む出力信号処理回路とリード線7とはアルミニウム導
線8で接続されている。この状態でチップ上の薄膜抵抗
をレーザ光によりトリミングする。次いで、シリコーン
ゲル9をステム4の上面11まで注入し、硬化させる。 ゲル9の硬度はチップ1の感圧特性に影響を与えないよ
う充分軟らかいものが良い。例えばJISK2235石
油ワックスに規定された針入度計を用い、質量2.5 
±0.05gの針をおもりを付加しないで硬化後のゲル
中に進入させた時の針の進入深さを0.1mm を単位
として表わした針入度値が100 〜130 のゲルを
用いる。別工程で、頂面に開口部51を有するおけ状容
器キャップ5の上面迄に別のゲル91を注入し、硬化さ
せる。このゲル91はゲル9よりも硬いもので、例えば
上記方法により測定された針入度が70〜90のゲルを
用いる。双方のゲル9, 91の硬化が終了したら、ス
テム4とキャップ5を溶接する。
In the embodiment shown in FIG. 1, a pressure-sensitive diaphragm chip 1 equipped with a thin film resistor on its surface and an operational amplifier for amplifying the output from a gauge resistor formed in the diaphragm part is attached to a metal basin-shaped container stem 4. An output signal processing circuit including a thin film resistor and an operational amplifier is fixed to the top with an adhesive via a pedestal 6, and a lead wire 7 is connected by an aluminum conducting wire 8. In this state, the thin film resistor on the chip is trimmed with laser light. Next, silicone gel 9 is injected up to the upper surface 11 of the stem 4 and cured. The hardness of the gel 9 is preferably soft enough so as not to affect the pressure sensitive characteristics of the chip 1. For example, using a penetrometer specified for JISK2235 petroleum wax, a mass of 2.5
A gel having a penetration value of 100 to 130, which is the penetration depth of a needle of ±0.05 g without adding a weight into the cured gel, is expressed in units of 0.1 mm. In a separate step, another gel 91 is injected up to the upper surface of the basin-shaped container cap 5 having the opening 51 on the top surface and hardened. This gel 91 is harder than the gel 9, and for example, a gel having a penetration degree of 70 to 90 as measured by the above method is used. After both gels 9 and 91 have been cured, the stem 4 and cap 5 are welded together.

【0011】図3に示す実施例では、頂面の開いた容器
上蓋5の中に図では一部より記入していないが金属メッ
シュ12を積層し、ゲル92と含浸させている。金属メ
ッシュは耐食性を考慮してステンレス鋼で製作し、その
線径が30〜80μmの細線を織ったもので、織目が同
一方向になるように積むかランダムに積む積層方法ある
いは積層厚みは圧力応答性, 耐久性, 耐水性により
決定されるが、同一方向に積層する場合は15〜30段
、ランダムに積層する場合は10〜20段程度が適当で
ある。このような金属メッシュにゲル材92を接触させ
、真空脱泡法により含浸させて硬化させる。このときの
含浸ゲル剤92には、ステム4内に注入したゲル材9と
同程度の硬さのもの、すなわち針入度100 〜130
 のゲル材を用いて衝撃的な圧力波に対して緩衝の効果
を持つようにする。
In the embodiment shown in FIG. 3, a metal mesh 12 is laminated inside a container top 5 with an open top, although some parts are not shown in the figure, and is impregnated with gel 92. The metal mesh is made of stainless steel with corrosion resistance in mind, and is woven with fine wires with a wire diameter of 30 to 80 μm.The lamination method or lamination thickness is determined by stacking the mesh so that the weaves are in the same direction or randomly. Although determined by responsiveness, durability, and water resistance, it is appropriate to have 15 to 30 layers when laminated in the same direction, and about 10 to 20 layers when laminated randomly. The gel material 92 is brought into contact with such a metal mesh, impregnated with the gel material 92 by a vacuum defoaming method, and cured. The impregnated gel material 92 at this time has a hardness comparable to that of the gel material 9 injected into the stem 4, that is, a penetration degree of 100 to 130.
This gel material is used to provide a buffering effect against impactful pressure waves.

【0012】0012

【発明の効果】本発明は、感圧ダイヤフラム半導体素体
の上に第一のゲル材の層と第二のゲル材の層を積層させ
、流体の圧力が二つのゲル材の層を介して感圧ダイヤフ
ラムに加わるようにすることにより、圧力伝達のための
ダイヤフラム構造が不要となり、組立のコストが低減す
る。また、ゲル材の充填、その際の空気のゲル材への混
入の管理が容易になる。そして、第二のゲル材に第一の
ゲル材より針入度の小さいもの、すなわち硬い材料を用
いるか、第二のゲル材を金属メッシュに含浸させること
により、第一のゲル材の層への機械的な保護を行うこと
ができ、防水性,耐久性が良好でセンサ精度は従来と変
わらない安価な水圧センサを製造することができる。
[Effects of the Invention] In the present invention, a first gel material layer and a second gel material layer are laminated on a pressure-sensitive diaphragm semiconductor element, and the pressure of the fluid is applied through the two gel material layers. By applying it to the pressure-sensitive diaphragm, a diaphragm structure for pressure transmission is not required, and the cost of assembly is reduced. In addition, it becomes easier to fill the gel material and control the mixing of air into the gel material at that time. Then, by using a second gel material with a smaller penetration than the first gel material, that is, a hard material, or by impregnating a metal mesh with the second gel material, the second gel material can be penetrated into the first gel material layer. It is possible to manufacture an inexpensive water pressure sensor that has good waterproofness and durability, and has the same sensor accuracy as conventional ones.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の水圧センサの断面図FIG. 1 is a cross-sectional view of a water pressure sensor according to an embodiment of the present invention.

【図2
】従来の水圧センサの断面図
[Figure 2
] Cross-sectional view of a conventional water pressure sensor

【図3】本発明の異なる実施例の水圧センサの断面図FIG. 3 is a sectional view of a water pressure sensor according to a different embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1    感圧ダイヤフラムチップ 4    容器ステム 5    容器キャップ 6    台座 9    ゲル 91    キャップ内ゲル 92    含浸用ゲル 12    金属メッシュ 1 Pressure sensitive diaphragm chip 4 Container stem 5 Container cap 6 Pedestal 9 Gel 91 Gel inside the cap 92 Gel for impregnation 12 Metal mesh

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ゲージ抵抗を備えたダイヤフラム部を有す
る半導体素体のダイヤフラムの表面に第一のゲル材より
なる層が接し、そのゲル層の半導体素体より遠い側に硬
化後第一のゲル材より小さい針入度値を有する第二のゲ
ル材よりなる層が接することを特徴とする水圧センサ。
1. A layer made of a first gel material is in contact with the surface of a diaphragm of a semiconductor body having a diaphragm portion provided with a gauge resistance, and a layer of the first gel material is in contact with the surface of the diaphragm of a semiconductor body having a diaphragm portion provided with a gauge resistance, and a layer of the first gel material is placed on the side of the gel layer remote from the semiconductor body after hardening. A water pressure sensor characterized in that a layer made of a second gel material having a penetration value smaller than that of the material contacts the water pressure sensor.
【請求項2】ゲージ抵抗を備えたダイヤフラム部を有す
る半導体素体のダイヤフラムの表面に第一のゲル材より
なる層が接し、そのゲル層の半導体素体より遠い側に金
属メッシュに含浸された第二のゲル材よりなる層が接す
ることを特徴とする水圧センサ。
Claim 2: A layer made of a first gel material is in contact with the surface of a diaphragm of a semiconductor body having a diaphragm portion provided with a gauge resistance, and a metal mesh is impregnated on the side of the gel layer remote from the semiconductor body. A water pressure sensor characterized by being in contact with a layer made of a second gel material.
【請求項3】おけ状容器底部上にゲージ抵抗を備えたダ
イヤフラム部を有する半導体素体をダイヤフラム面を上
にして固定し、容器底部内部空間に半導体素体を覆って
第一のゲル材を充填したのち硬化させ、別に頂面に開口
部を有するおけ状容器上蓋内部空間に硬化後の針入度値
が第一のゲル材より小さい第二のゲル材を充填し、その
あと容器底部および上蓋を結合して第一および第二のゲ
ル材を接触させることを特徴とする水圧センサの製造方
法。
3. A semiconductor element having a diaphragm portion provided with a gauge resistor is fixed on the bottom of a basin-shaped container with the diaphragm surface facing upward, and a first gel material is applied to the inner space of the container bottom to cover the semiconductor element. After filling and hardening, a second gel material having a smaller penetration value after hardening than the first gel material is filled into the inner space of the upper lid of a basin-shaped container having an opening on the top surface, and then the bottom of the container and A method of manufacturing a water pressure sensor, comprising: combining a top cover and bringing first and second gel materials into contact with each other.
【請求項4】おけ状容器底部上にゲージ抵抗を備えたダ
イヤフラム部を有する半導体素体をダイヤフラム面を上
にして固定し、容器底部内空間に半導体素体を覆って第
一のゲル材を充填したのち硬化させ、別に頂面に開口部
を有するおけ状容器上蓋内空間に金属メッシュを積層し
たのちその金属メッシュに第二のゲル材を含浸させて硬
化させ、そのあと容器底部および上蓋を結合して第一お
よび第二のゲル材を接触させることを特徴とする水圧セ
ンサの製造方法。
4. A semiconductor body having a diaphragm portion provided with a gauge resistor is fixed on the bottom of a basin-shaped container with the diaphragm surface facing upward, and a first gel material is applied to cover the semiconductor body in the space inside the bottom of the container. After filling and curing, a metal mesh is laminated in the space inside the upper lid of a basin-shaped container having an opening on the top surface, and the metal mesh is impregnated with the second gel material and hardened, and then the bottom of the container and the upper lid are laminated. A method for manufacturing a water pressure sensor, comprising combining first and second gel materials into contact with each other.
JP2246091A 1991-02-18 1991-02-18 Hydraulic sensor and manufacture thereof Pending JPH04262217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2246091A JPH04262217A (en) 1991-02-18 1991-02-18 Hydraulic sensor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2246091A JPH04262217A (en) 1991-02-18 1991-02-18 Hydraulic sensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04262217A true JPH04262217A (en) 1992-09-17

Family

ID=12083323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2246091A Pending JPH04262217A (en) 1991-02-18 1991-02-18 Hydraulic sensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04262217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122037A (en) * 2008-11-19 2010-06-03 Denso Corp Pressure sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122037A (en) * 2008-11-19 2010-06-03 Denso Corp Pressure sensor

Similar Documents

Publication Publication Date Title
JP4369127B2 (en) Photoelectric element arrangement
US4967600A (en) Manometer
US10544035B2 (en) Sensor component having two sensor functions
JPH05291590A (en) Semiconductor pressure sensor
JP3858577B2 (en) Semiconductor pressure sensor device
US6186008B1 (en) Semiconductor sensor component
US5642332A (en) Acoustic transducer
JPH04262217A (en) Hydraulic sensor and manufacture thereof
JPH10503021A (en) Protective diaphragm for silicon pressure sensor
JP3858927B2 (en) Semiconductor pressure sensor device
CN113155299A (en) Waterproof and moistureproof temperature sensor
US10466197B2 (en) Component part having a MECS component on a mounting carrier
JP2007139517A (en) Method for manufacturing pressure sensor, pressure sensor, and method for mounting pressure sensor
JPH04370726A (en) Semiconductor pressure sensor
JPH09246430A (en) Semiconductor device
JP7445920B2 (en) gas sensor device
JPH03251704A (en) Manufacture of strain gauge
WO1998025437A2 (en) Method of making an acoustic transducer
JPH0820326B2 (en) Semiconductor pressure sensor
JPH05133827A (en) Semiconductor pressure sensor
JPH08193898A (en) Package assembling structure for semiconductor pressure sensor
JPH0543599Y2 (en)
JPS5829670Y2 (en) Ultrasonic transducer
JPH0541617Y2 (en)
JPH07311111A (en) Differential pressure sensor