JPH0426116A - Etching method for oxide of substrate and cleaning method for substrate - Google Patents

Etching method for oxide of substrate and cleaning method for substrate

Info

Publication number
JPH0426116A
JPH0426116A JP13037890A JP13037890A JPH0426116A JP H0426116 A JPH0426116 A JP H0426116A JP 13037890 A JP13037890 A JP 13037890A JP 13037890 A JP13037890 A JP 13037890A JP H0426116 A JPH0426116 A JP H0426116A
Authority
JP
Japan
Prior art keywords
substrate
oxygen
nfo
etching
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13037890A
Other languages
Japanese (ja)
Other versions
JP3053410B2 (en
Inventor
Masataka Murahara
正隆 村原
Masaru Yonekawa
米川 勝
Koichi Shirakawa
白川 光一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP2130378A priority Critical patent/JP3053410B2/en
Publication of JPH0426116A publication Critical patent/JPH0426116A/en
Application granted granted Critical
Publication of JP3053410B2 publication Critical patent/JP3053410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To etch an oxide insulating film of a substrate at a high speed by disposing the substrate formed with the film in an NF3 gas atmosphere mixed with a small amount of oxygen or oxygen compound, emitting a laser to the atmosphere to form an NFO, and employing oxygen extraction force of the formed NFO. CONSTITUTION:A substrate formed with an oxide insulating film made of SiO2, Al2O3, TiO2, etc., on the surface is disposed in an NF3 gas atmosphere mixed with a small amount of oxygen (O2) or oxygen compound. In this state, a laser of an oscillation wavelength of 200nm or less such as an ArF excimer laser is emitted to form an NFO of reactive intermediate product, oxygen on the film is extracted by the NFO to etch the film. The deposited substrate is disposed in a chamber, NF3 gas is introduced into the chamber, the ArF laser light is emitted directly to the substrate in the atmosphere to cause deoxidizing action, thereby separating oxygen absorbed to the substrate to thereby clean the substrate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、基板に形成された酸化絶縁膜にサブミクロン
以下の微細加エバターンをエツチングするのに好適な方
法及び基板をクリーニングするのに好適な方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides a method suitable for etching a fine pattern of submicron size or less into an oxide insulating film formed on a substrate, and a method suitable for cleaning the substrate. Concerning methods.

[従来技術及びその問題点コ 超LSI製造プロセスでは、5in2やAt20、など
の絶縁膜を微細加工することにより、プロセスのスルー
ブツトを向上するようにしている。
[Prior art and its problems] In the VLSI manufacturing process, the throughput of the process is improved by microfabrication of insulating films such as 5in2 and At20.

従来の加工技術では、5in2などの酸化絶縁膜に対し
、フッ酸(HF)によるウェットエツチング、CF4+
H2によるプラズマエツチング、NF3ガスにF2を混
入させてIFの働きでSiを引抜く方法、CCρ2 F
2  CCf’ 3 FSCBr2 F2 、CBrF
3などのフロンガスをマイクロ波又は光によって分解し
、それによって生成したCF2やCF3ラジカルによっ
てエツチングする方法などがある。
Conventional processing techniques include wet etching using hydrofluoric acid (HF) and CF4+ for oxide insulating films such as 5in2.
Plasma etching with H2, method of mixing F2 into NF3 gas and extracting Si by the action of IF, CCρ2 F
2 CCf' 3 FSCBr2 F2 , CBrF
There is a method in which a fluorocarbon gas such as No. 3 is decomposed by microwaves or light, and the resulting CF2 or CF3 radicals are used for etching.

しかし、フッ酸(HF)によるウェットエツチングでは
、エツチング液の表面張力により細部まで液が浸透しに
くい。このため、この方法では、ICの集積度を向上し
たサブミクロン以下の微細回路パターンをエツチングす
ることが難しい問題がある。
However, in wet etching using hydrofluoric acid (HF), the surface tension of the etching solution makes it difficult for the solution to penetrate into the fine details. Therefore, with this method, there is a problem in that it is difficult to etch fine circuit patterns of submicron size or less that improve the degree of integration of ICs.

また、プラズマエツチングでは、半導体基板表面を加速
電子で叩くため、基板にダメージが発生し、欠陥発生の
確率が大きくなる問題がある。
Furthermore, in plasma etching, the surface of a semiconductor substrate is hit with accelerated electrons, which causes damage to the substrate and increases the probability of defect generation.

CF2やCF、ラジカルによってエツチングする方法は
、上述のように、CCρ2F2CC1)* F、CBr
z F2、CBrFiなどのフロンガスを原料として使
用するため、環境破壊の問題がある。
As mentioned above, the etching method using CF2, CF, and radicals is as follows: CCρ2F2CC1)*F, CBr
z Since fluorocarbon gas such as F2 and CBrFi is used as a raw material, there is a problem of environmental destruction.

NF3ガスの熱分解によるエツチングでは、NF、ガス
をCO□レーザーやヒーター等で1000℃以上に加熱
し、F2とN2に分解させるが、高温のため半導体基板
に悪影響を与える。
In etching by thermal decomposition of NF3 gas, NF and gas are heated to 1000° C. or higher using a CO□ laser or a heater to decompose them into F2 and N2, but the high temperature adversely affects the semiconductor substrate.

マイクロ波によってNF3を分解して、これによりエツ
チングする方法は、マイクロ波励起によってNF、をF
2とN2に分解し、また、混入させた水素により、HF
を形成させる。この方法では、微量の酸素が混入しても
、反応が進行して、中間生成物のNFOから最終生成物
のN 02が容品に形成されてしまう。この結果良好な
エツチングがおこないがたい。
The method of decomposing NF3 using microwaves and etching it is based on the method of decomposing NF3 by microwave excitation.
2 and N2, and the mixed hydrogen causes HF
to form. In this method, even if a trace amount of oxygen is mixed in, the reaction proceeds and the final product N 02 is formed from the intermediate product NFO in the container. As a result, it is difficult to perform good etching.

また、真空蒸着、電子ビーム蒸着、スパッタリング蒸着
、イオンビーム蒸芒などの手段により、基板に金属薄膜
や誘電体薄膜を付ける場合、基板表面に吸着している酸
素分子が問題になる。
Further, when a metal thin film or dielectric thin film is attached to a substrate by means such as vacuum evaporation, electron beam evaporation, sputtering evaporation, or ion beam evaporation, oxygen molecules adsorbed on the substrate surface become a problem.

[発明が解決しようとする技術的課題]本発明は上記事
情に鑑みてなされたもので、その目的とするところは、
水素を添加することなく高速で5in2などの酸化絶縁
膜をエツチングし、しかも基板への悪影響のない酸化物
のエツチング方法を提供するものである。
[Technical problem to be solved by the invention] The present invention has been made in view of the above circumstances, and its purpose is to:
The present invention provides an oxide etching method that etches a 5in2 oxide insulating film at high speed without adding hydrogen and has no adverse effect on the substrate.

また本発明は、基板表面に吸着している酸素分子を良好
に除去して、基板表面を効果的にクリーニングできる方
法を提供するものである。
The present invention also provides a method that can effectively clean the substrate surface by effectively removing oxygen molecules adsorbed on the substrate surface.

[課題を解決する手段] すなわち本発明の酸化物のエツチング方法は、微量の酸
素又は酸素化合物を混入したNF、ガス雰囲気中に、酸
化絶縁膜を形成した基板を配置し、上記ガス雰囲気中に
、ArFレーザーなどの発信波長200nm以下のレー
ザーを照射してNFOを形成し、形成されたNFOの酸
素引抜力を用いて基板の酸化絶縁膜を高速でエツチング
することを特徴とする。
[Means for Solving the Problems] That is, the oxide etching method of the present invention involves placing a substrate on which an oxide insulating film is formed in an NF or gas atmosphere mixed with a trace amount of oxygen or an oxygen compound, and then placing the substrate on which an oxide insulating film is formed in the gas atmosphere. The method is characterized in that NFOs are formed by irradiating a laser with an emission wavelength of 200 nm or less, such as an ArF laser, and the oxide insulating film of the substrate is etched at high speed using the oxygen extraction force of the formed NFOs.

また本発明は、NF、ガス雰囲気中に基板を配置し、A
rFレーザー光を照射して、基板に吸着している酸素を
脱離させて、基板をクリーニングする方法である。
Further, the present invention places the substrate in an NF and gas atmosphere, and
This method cleans the substrate by irradiating it with rF laser light to remove oxygen adsorbed on the substrate.

以下、本発明の詳細な説明する。まず表面にSiO□、
Al2O5、TiO2などの酸化絶縁膜を形成した基板
(シリコンウニl〜等)を用意する。そしてこの基板を
微量の酸素(0□)又は酸素化合物を混入したNF、ガ
ス雰囲気中に配置する。ガス雰囲気に混入する酸素化合
物としては、No、N、01NO2が挙げられる。この
状態で、ArFエキシマレーザ−など発信波長200n
m以下のレーザーを照射する。NF3ガスは、第1図の
符号aに示すように、200nm以下の光に吸収を呈す
る。また、No、N20,02等も、同様に、200n
m以下の光を吸収して分解する。
The present invention will be explained in detail below. First, SiO□ on the surface,
A substrate (silicon sea urchin, etc.) on which an oxide insulating film of Al2O5, TiO2, etc. is formed is prepared. Then, this substrate is placed in an NF or gas atmosphere mixed with a trace amount of oxygen (0□) or an oxygen compound. Examples of oxygen compounds mixed in the gas atmosphere include No, N, and 01NO2. In this state, the emission wavelength is 200n, such as ArF excimer laser.
Irradiate with a laser of less than m. NF3 gas exhibits absorption of light of 200 nm or less, as shown by reference numeral a in FIG. In addition, No., N20, 02, etc. are also 200n
It absorbs and decomposes light with a wavelength of less than m.

一般にN F 3は、熱、マイクロ波、又は光によって
分解し、N2とF2とに遊離するが、N01N20.N
O2,02等の存在下で、ArFレザー光を入射すると
、第1図の符号すに示すように、反応中間体であるNF
Oが形成される。ArFエキシマレーザ−は、光子エネ
ルギーがガス分子を構成する結合エネルギーに近く(発
信波長193nm)、またレーザーのパルス幅が10ナ
ノ秒と極く短い。このため、光反応が連鎖的に起こるこ
とがなく、反応中間物(N F O)を生成されるのに
都合がよい。このNFOは、酸素を引抜く力が大きく、
酸化絶縁膜上の酸素を引抜いて、高速で酸化絶縁膜をエ
ツチングする。
In general, NF3 is decomposed by heat, microwaves, or light and liberated into N2 and F2, but N01N20. N
When ArF laser light is incident in the presence of O2,02, etc., the reaction intermediate NF
O is formed. In the ArF excimer laser, the photon energy is close to the binding energy of gas molecules (emission wavelength: 193 nm), and the laser pulse width is extremely short, 10 nanoseconds. Therefore, a photoreaction does not occur in a chain manner, which is convenient for producing a reaction intermediate (N F O). This NFO has a large ability to extract oxygen,
Oxygen on the oxide insulating film is extracted and the oxide insulating film is etched at high speed.

酸素、酸素化合物を微量とする理由は、酸素又は酸素化
合物の量が多すぎると、形成されたNFOが酸素又は酸
素化合物と結合して、NO2を形成してしまい(第1図
の符号C参照)、この結果、5j02から酸素を引抜く
ことができなくなるためである。従って、本発明の目的
を達成するために、酸素又は酸素化合物の混入量は、通
常0.1%以内が好ましく、特に0.001〜0.05
%程度が好適である。
The reason why the amount of oxygen and oxygen compounds is so small is that if the amount of oxygen or oxygen compounds is too large, the formed NFO will combine with oxygen or oxygen compounds to form NO2 (see symbol C in Figure 1). ), as a result, oxygen cannot be extracted from 5j02. Therefore, in order to achieve the object of the present invention, the amount of oxygen or oxygen compound mixed is preferably within 0.1%, particularly 0.001 to 0.05%.
% is suitable.

なお、中間生成物のNFOを酸化絶縁膜にさらすと、N
O2が生成され、NFOが消滅し、ガスの色が褐色にな
っていく。しかし、再度ArFレーザー光を照射すると
、NO2が減少し、褐色も消える。そしてNFOが再び
作られる。すなわち、ガス雰囲気の初期に微量な酸素、
酸素化合物と多量のNF、が存在していれば、初期のレ
ーザー照射によってNFOを作り、これによってSfO
Note that when the intermediate product NFO is exposed to an oxide insulating film, NFO
O2 is produced, NFO disappears, and the color of the gas becomes brown. However, when ArF laser light is irradiated again, NO2 decreases and the brown color disappears. And the NFO will be re-created. In other words, at the beginning of the gas atmosphere, a small amount of oxygen,
If oxygen compounds and a large amount of NF are present, the initial laser irradiation will create NFO, which will lead to SfO
.

をエツチングしNO2が形成される。レーザー光の照射
を停止すれば、NFOの形成が止るため、存在するNF
Oによってのみ5i02のエツチングが進み、次第にN
FOがなくなり、S I O2のエツチングが止るが、
再度この系にArFレーザー光を照射すれば、形成され
ているNO□を分解し、NF3と反応して、NFOを作
る。この結果、再び5in2のエツチングが出来る(第
2図参照)従来NF、を使ってS】02をエツチングす
るには、水素は不可欠であるといわれていたが、本発明
によれば、水素を用いないでも5i02がエツチングさ
れる。
etching and NO2 is formed. If the laser beam irradiation is stopped, the formation of NFOs will stop, so the existing NFs will be
Etching of 5i02 progresses only by O, and gradually N
FO disappears and etching of SIO2 stops, but
When this system is irradiated with ArF laser light again, the formed NO□ is decomposed and reacts with NF3 to form NFO. As a result, 5in2 etching can be performed again (see Figure 2).It was said that hydrogen was indispensable for etching S]02 using conventional NF, but according to the present invention, hydrogen can be used. 5i02 is etched even if it is not there.

[実施例] 以下本発明の実験例および実施例を説明する。[Example] Experimental examples and examples of the present invention will be explained below.

実験例1 (1)02ガスを0.1容量%混入させたNF3ガスを
チャンバー内に入れてArFレーザー光を入射させた場
合、(2)N20ガスを0.1容量%混入させたNF、
ガスをチャンバー内に入れてArFレーザー光を入射さ
せた場合、又は(3)Noガスを0.1容量%混入させ
たNF、ガスガスをチャンバー内に入れてArFレーザ
ー光を入射させた場合について、それぞれ紫外線吸収特
性を測定した。
Experimental Example 1 (1) When NF3 gas mixed with 0.1% by volume of 02 gas was placed in the chamber and ArF laser light was incident, (2) NF3 gas mixed with 0.1% by volume of N20 gas,
When gas is put into the chamber and ArF laser light is made incident, or (3) when NF or gas mixed with 0.1% by volume of No gas is put into the chamber and ArF laser light is made incident, The ultraviolet absorption characteristics of each were measured.

その結果を第3図(a)、(b)、(c)にそれぞれ示
す。
The results are shown in FIGS. 3(a), (b), and (c), respectively.

実験例2 CI) 〜(3)について(A r Fレーザーを10
PPSで照射しつづけた場合)、それぞれ、5i02を
入れた時と入れない時とで、NO□発生量を比較した。
Experimental Example 2 CI) Regarding (3) (A r F laser at 10
When irradiation with PPS was continued), the amount of NO□ generated was compared when 5i02 was added and when 5i02 was not added.

NO2の発生量の比較結果を第4図に、エッチレートを
第5図に示す。ここでは、効果的にSiO2をエツチン
グするために、アルゴン、ヘリウム、又は高純度のN2
ガスでチャン/(−内を大気圧に保ち、外部から大気中
の空気が入り込まないようにしておく。
The comparison results of the amount of NO2 generated are shown in FIG. 4, and the etch rate is shown in FIG. Here, in order to effectively etch SiO2, argon, helium, or high-purity N2 is used.
Keep the inside at atmospheric pressure and prevent atmospheric air from entering from outside.

実施例l 5i02表面に弗素系レジストを塗布し、露光後、ウェ
ット現像し、これを(1)、 (2) 、 (3)のガ
ス雰囲気中でΔrFレーザー光を試料に対して水平方向
から入射し、露光された5iOz面のみをエツチングし
た。
Example 1 A fluorine-based resist was applied to the surface of 5i02, exposed to light, wet developed, and ΔrF laser light was applied horizontally to the sample in the gas atmosphere of (1), (2), and (3). Then, only the exposed 5iOz surface was etched.

実施例2 第6図のブロック図に示す工程に基づき、第7図の装置
を用いて、リソグラフィーのオールドライ化し、(1,
) 、 (2) 、 (3)のガス雰囲気中でArFレ
ーザー光を試料に対して水平方向から入射し、露光され
た5i02面のみをエツチングした。すなわち、熱酸化
シリコンウニ/へ−表面にPMMAレジストをスピンコ
ーティングし、これをNF3ガスの満たされたセルの中
に入れ、ArFレーザーによって回路パターンを縮小投
影する。これによってレジストの露光部分のみ低分子量
化する。それと同時に、その界面近傍のNF、が光分解
されドライ現象をおこなわせる。さらに、このレーザー
露光を続けるか、または水平方向からのレーザー光を入
射すると、NFOが形成され、下地の5in2と光によ
って活性化されたNFOとが反応して脱酸素反応がおき
、熱酸化5in2のエツチングが完了する。以上のよう
に、露光工程のみでレジストの現像及び基板のエツチン
グも完了するためプロセス時間が大いに短縮される。こ
の方法でエツチングされた酸化絶縁膜のエツチング状況
を第8図の走査型顕微鏡写真に示す。
Example 2 Based on the steps shown in the block diagram of FIG. 6, the apparatus of FIG. 7 was used to carry out all-dry lithography.
), (2), and (3), ArF laser light was applied horizontally to the sample in the gas atmosphere, and only the exposed 5i02 surface was etched. That is, a PMMA resist is spin-coated on the thermally oxidized silicon surface, placed in a cell filled with NF3 gas, and a circuit pattern is reduced and projected using an ArF laser. As a result, only the exposed portions of the resist are reduced in molecular weight. At the same time, NF near the interface is photodecomposed and a dry phenomenon occurs. Furthermore, when this laser exposure is continued or laser light is incident from the horizontal direction, NFO is formed, and the underlying 5in2 reacts with the NFO activated by the light to cause a deoxidation reaction, resulting in thermal oxidation 5in2. The etching is completed. As described above, development of the resist and etching of the substrate are completed by only the exposure step, so the process time is greatly shortened. The etching state of the oxide insulating film etched by this method is shown in the scanning micrograph of FIG.

なお、SiO2のエツチングに関しては、NFOの形成
後、ArFレーザーの照射を止めても、NFOによるO
の引抜反応があるため、エツチングは進行する。
Regarding etching of SiO2, even if the ArF laser irradiation is stopped after the formation of NFO, the O
Etching progresses because of the pull-out reaction.

実施例3 上記第7図に示した装置を用いて、NF、ガス中でsi
裏表面レジストレスエツチングを行ない、その後St裏
表面下面のSiO2面が露出すると、微量の酸素又は酸
素化合物を混入させ、ArFレーザー光を照射し、NF
Oを作り、これにより下面のSiO□をエツチングした
。このSiのみのエッチレートを第5図に示す。
Example 3 Using the apparatus shown in FIG. 7 above, Si
After performing resistless etching on the back surface, when the SiO2 surface on the lower surface of the St back surface is exposed, a trace amount of oxygen or an oxygen compound is mixed in, irradiated with ArF laser light, and NF
The SiO □ on the lower surface was etched using this. The etch rate of this Si alone is shown in FIG.

実施例4 Si基板上の自然酸化絶縁膜のクリーニング:Si基板
のCVDを行なう前に、基板に対して(1)、(2)、
(3)のガス雰囲気中でArFレーザー光を照射した。
Example 4 Cleaning of native oxide insulating film on Si substrate: Before performing CVD on the Si substrate, (1), (2),
ArF laser light was irradiated in the gas atmosphere of (3).

この結果、NFOにより基板をクリーニングがなされ、
基板上の自然酸化絶縁膜のクリニングがなされ、以下の
エツチング工程後において、得られたStのパターンC
VDのコントラストが向上した。
As a result, the substrate is cleaned by NFO,
The natural oxide insulating film on the substrate is cleaned, and after the following etching process, the resulting St pattern C
The contrast of VD has improved.

実施例5 また、本発明のクリーニング方法は、蒸着される基板を
チャンバー内に配置し、このチャンバー内にNF、ガス
を入れ、このガス雰囲気中で基板に直接ArFレーザー
光を照射すると、脱酸素作用が起こり、基板がクリーニ
ングされる。そしてこの処理を行った後、蒸着を行うと
、膜の付着力が強くなり、従来法では85〜90%内外
のAg蒸着膜の反射率であったのが、この処理を施すこ
とにより98%に向上した。
Example 5 In addition, in the cleaning method of the present invention, a substrate to be vapor-deposited is placed in a chamber, NF and gas are placed in the chamber, and the substrate is directly irradiated with ArF laser light in this gas atmosphere to remove oxygen. Action occurs and the substrate is cleaned. When vapor deposition is performed after this treatment, the adhesion of the film becomes stronger, and the reflectivity of the Ag vapor deposited film was around 85-90% with the conventional method, but with this treatment, the reflectance of the Ag vapor-deposited film was 98%. improved.

[発明の効果] 以上説明したように、本発明によれば、NFOの強力な
酸素引抜力を利用することにより、基板に損傷を与える
ことなく、酸化絶縁膜にサブミクロン以下の微細加エバ
ターンを高速でエツチングするすることができる。
[Effects of the Invention] As explained above, according to the present invention, by utilizing the strong oxygen extraction force of NFO, it is possible to form a submicron or less microscopic evaporation on an oxide insulating film without damaging the substrate. Can be etched at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、紫外線i’jFJ定及び可視光線−P1定を
して、本発明のエツチングガス雰囲気中に形成された中
間生成物の分析結果を示す図である。 第2図は、紫外線n1定及び可視光線測定をして、Ar
Fレーザーの照射により、NO2が光分解され、NOと
NFOが形成され、更に照射によりNFOのみとなるこ
とを示す図である。 第3図(a)〜(c)は、本発明の各エツチングガスの
紫外線吸収特性を示す図である。 第4図は、SiO2を入れた時と5i02を入れない時
とのNO2発生量の比較結果を示す図である。 第5図は、Stと5in2のエッチレートを示す図であ
る。 第6図は、本発明方法の一例(リソグラフィーのオール
ドライ化)を示すブロック図である。 第7図は、第6図の本発明方法をおこなう装置の概略説
明図である。 第8図は、本発明方法でエツチングされた絶縁酸化膜の
粒子の構造を示す走査型顕微鏡写真である。 出願人代理人 弁理士 鈴江武彦 透通T (’/、 ) 違遇千 造、置キ (’10 ) レーサ゛−エネル久“−音度(mJ/(m2)第 図 第8図 手続補正書 平成2キ゛ 6足A 日
FIG. 1 is a diagram showing the analysis results of intermediate products formed in the etching gas atmosphere of the present invention, using ultraviolet i'j FJ constants and visible light -P1 constants. Figure 2 shows the Ar
FIG. 3 is a diagram showing that NO2 is photolyzed by F laser irradiation to form NO and NFO, and further irradiation leaves only NFO. FIGS. 3(a) to 3(c) are diagrams showing the ultraviolet absorption characteristics of each etching gas of the present invention. FIG. 4 is a diagram showing a comparison result of the NO2 generation amount when SiO2 is added and when 5i02 is not added. FIG. 5 is a diagram showing the etch rate of St and 5in2. FIG. 6 is a block diagram showing an example of the method of the present invention (all-dry lithography). FIG. 7 is a schematic illustration of an apparatus for carrying out the method of the invention shown in FIG. 6. FIG. 8 is a scanning micrograph showing the grain structure of an insulating oxide film etched by the method of the present invention. Applicant's agent Patent attorney Toruichi Suzue Takehiko T ('/, ) Senzo Senzo, Oki ('10) Laser "-Energy" - Sound intensity (mJ/(m2) Figure 8 Procedural amendment Heisei 2 keys 6 pairs A day

Claims (2)

【特許請求の範囲】[Claims] (1)微量の酸素又は酸素化合物を混入したNF_3ガ
ス雰囲気中に、酸化絶縁膜を形成した基板を配置する工
程と、 上記ガス雰囲気中に、発信波長200nm以下のレーザ
ーを照射してNFOを形成し、このNFOにより基板の
酸化絶縁膜をエッチングする工程とを具備した基板の酸
化物のエッチング方法。
(1) A step of placing a substrate on which an oxide insulating film is formed in an NF_3 gas atmosphere containing a trace amount of oxygen or oxygen compounds, and forming an NFO by irradiating a laser with an emission wavelength of 200 nm or less in the gas atmosphere. and a step of etching the oxide insulating film of the substrate using the NFO.
(2)NF_3ガス雰囲気中に基板を配置し、基板にA
rFレーザー光を照射して、基板に吸着している酸素を
脱離させ、基板をクリーニングする方法。
(2) Place the substrate in an NF_3 gas atmosphere, and place A on the substrate.
A method of cleaning a substrate by irradiating it with rF laser light to remove oxygen adsorbed on the substrate.
JP2130378A 1990-05-22 1990-05-22 Method of etching substrate oxide and method of cleaning substrate Expired - Fee Related JP3053410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2130378A JP3053410B2 (en) 1990-05-22 1990-05-22 Method of etching substrate oxide and method of cleaning substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2130378A JP3053410B2 (en) 1990-05-22 1990-05-22 Method of etching substrate oxide and method of cleaning substrate

Publications (2)

Publication Number Publication Date
JPH0426116A true JPH0426116A (en) 1992-01-29
JP3053410B2 JP3053410B2 (en) 2000-06-19

Family

ID=15032914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2130378A Expired - Fee Related JP3053410B2 (en) 1990-05-22 1990-05-22 Method of etching substrate oxide and method of cleaning substrate

Country Status (1)

Country Link
JP (1) JP3053410B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025713A1 (en) * 2000-09-25 2002-03-28 Research Institute Of Innovative Technology For The Earth Gas compositions for cleaning the interiors of reactors as well as for etching films of silicon-containing compounds
JP2003144905A (en) * 2001-11-16 2003-05-20 Central Glass Co Ltd Gas cleaning method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025713A1 (en) * 2000-09-25 2002-03-28 Research Institute Of Innovative Technology For The Earth Gas compositions for cleaning the interiors of reactors as well as for etching films of silicon-containing compounds
EP1320875A1 (en) * 2000-09-25 2003-06-25 Research Institute of Innovative Technology for the Earth Gas compositions for cleaning the interiors of reactors as well as for etching films of silicon-containing compounds
EP1320875A4 (en) * 2000-09-25 2008-01-23 Tokyo Electron Ltd Gas compositions for cleaning the interiors of reactors as well as for etching films of silicon-containing compounds
EP2372753A1 (en) * 2000-09-25 2011-10-05 Tokyo Electron Limited Gas Compositions for Cleaning the Interiors of Reactors as Well as for Etching Films of Silicon-Containing Compounds
JP2003144905A (en) * 2001-11-16 2003-05-20 Central Glass Co Ltd Gas cleaning method

Also Published As

Publication number Publication date
JP3053410B2 (en) 2000-06-19

Similar Documents

Publication Publication Date Title
US6395650B1 (en) Methods for forming metal oxide layers with enhanced purity
KR100255960B1 (en) Uv-enhanced dry stripping method of silicon nitride films
JPS60187026A (en) Method of etching metal layer
JPS61174639A (en) Method of photo etching
JPS61117822A (en) Equipment for manufacturing semiconductor device
JP2005158796A (en) Treatment equipment
Steinfeld Reactions of photogenerated free radicals at surfaces of electronic materials
JP3226315B2 (en) Fine processing method and fine processing device
JPH0426116A (en) Etching method for oxide of substrate and cleaning method for substrate
JP2948110B2 (en) Method for oxidizing the surface of an object to be treated or a substance on the surface under reduced pressure
KR100544226B1 (en) Method and apparatus for radical oxidation of silicon
Kurogi Recent trends in dry etching
JPH0793293B2 (en) Post-processing method
JP2536588B2 (en) Disassembly and removal device
JP2001028362A (en) Method and apparatus for manufacturing semiconductor device
JPH03155621A (en) Dry etching method
JPH0475336A (en) Method and apparatus for surface processing
JPS6236668A (en) Ashing method
KR940020475A (en) PATTERN FORMING METHOD AND APPARATUS THE SAME
JPH0388328A (en) Resist ashing method
JPS61143585A (en) Thin film forming method
JPS6191930A (en) Cleaning method of semiconductor substrate
JPH0517291A (en) Treatment of substrate for deposition of diamond thin film
JP3432013B2 (en) Method of forming oxide film
JPS6175528A (en) Si surface processing by irradiation of multiple laser beam

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees