JPH0425981B2 - - Google Patents

Info

Publication number
JPH0425981B2
JPH0425981B2 JP59163702A JP16370284A JPH0425981B2 JP H0425981 B2 JPH0425981 B2 JP H0425981B2 JP 59163702 A JP59163702 A JP 59163702A JP 16370284 A JP16370284 A JP 16370284A JP H0425981 B2 JPH0425981 B2 JP H0425981B2
Authority
JP
Japan
Prior art keywords
meth
paint
acrylate
molecule
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59163702A
Other languages
Japanese (ja)
Other versions
JPS6142577A (en
Inventor
Kunio Yanagisawa
Kazuo Maejima
Takahiro Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP16370284A priority Critical patent/JPS6142577A/en
Publication of JPS6142577A publication Critical patent/JPS6142577A/en
Publication of JPH0425981B2 publication Critical patent/JPH0425981B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は紫外線、電子線等の放射線等で容易に
硬化し、耐擦過傷性、導電性及び透明性に優れた
塗膜を形成しうる塗料組成物に関する。 (従来の技術) 半導体ウエハー保存容器、電子・電機部材、半
導体製造工場の床材、壁材などは、その用途によ
つては、帯電防止効果を有することが必要であ
る。そのために、従来は、これら部材をカーボン
粉末や金属粉末入り塗料でコーテイングしたり、
あるいはカーボン粉末、カーボン繊維、金属繊維
などを樹脂に練り込んで成形することが行われて
いる。しかし、これらの従来法では塗膜及び成形
品自体が着色しているため不透明であり、内容物
を透視することができない。したがつて、帯電防
止の必要な部所を窓部にすることができない。 特開昭57−85866号公報には、酸化錫を主成分
とする導電性塗料を塗料バインダー中に含有した
塗料が開示されている。この塗料は透明でかつ帯
電防止機能を有する塗膜を形成しうるが、塗料バ
インダーが熱可塑性樹脂であるため、得られる塗
膜は一般に耐擦過傷性・耐溶剤性を発現し得な
い。又、一般に酸化錫のような金属粉末は、その
比重が塗料バインダーに比べて大きいため、均一
に分散しがたい。 (発明が解決しようとする問題点) 本発明の目的は、紫外線、電子線等の放射線等
で容易に硬化し、スチールウール耐擦過傷性及び
耐汚染性に優れると共に、導電性、透明性に優れ
た塗膜を形成し得る塗料組成物を提供することに
ある。 (問題を解決するための手段) 本発明の要旨は、分子内に少なくとも2個以上
のアクリロイル基もしくはメタアクリロイル基を
有する(メタ)アクリルオリゴマーの1種または
2種以上を主成分とする塗料バインダーと、酸化
錫を主成分としその粒径が0.2μm以下の導電性粉
末と、一般式(1) (式中、R1は水素又はメチル基、R2は炭素数が
1〜8のアルキル基) で表わされる単量体、一般式(2) (式中、R3,R4は水素又はメチル基、nは1〜
10の整数) で表わされる単量体、及び分子中にフツ素原子を
有する(メタ)アクリル系単量体を主成分とする
共重合体とを含有する導電性塗料組成物に存す
る。 本発明は、分子内に少くとも2個以上のアクロ
イル基またはメタクリロイル基を有する(メタ)
アクリルオリゴマーを光硬化すれば高度に架橋
し、得られる塗膜の耐擦過傷性および硬度が向上
する、酸化錫を主成分とする導電性粉末を添加す
ることにより充分な導電性を保持しつつ優れた透
明性が得られる並びに(メタ)アクリレート単量
体、分子中に水酸基を有する(メタ)アクリレー
ト単量体及び分子中にフツ素原子を有する(メ
タ)アクリル系単量体を主成分とする共重合体を
添加することにより、導電性粉末の再結晶を防止
し、得られる塗膜の透明性が著しく向上し、さら
に塗膜のインキ等による耐汚染性が改善されると
いう知見にもとづいて完成された。 本発明の組成物は塗料バインダーとして2個以
上のアクリロイル基もしくはメタアクリロイ基を
有する(メタ)アクリルオリゴマーを含有する。
この(メタ)アクリルオリゴマーは硬化して高度
に架橋した構造となる。 (メタ)アクリルオリゴマーとしては、例え
ば、エチレングリコールジアクリレート、エチレ
ングリコールジメタクリレート、プロピレングリ
コールジメタクリレート、テトラエチレングリコ
ールジアクリレート、テトラエチレングリコール
ジメタクリレートなどの二官能アクリレートもし
くはメタクリレートが挙げられる。また、トリメ
チロールプロパントリアクリレート、トリメチロ
ールプロパントリメタクリレート、グリセロール
トリアクリレート、グリセロールトリメタクリレ
ート、ペンタエリスリトールトリアクリレート、
ペンタエリスリトールトリメタクリレート、トリ
スー(2−ヒドロキシエチル)−イソシアヌル酸
エステルアクリレート、トリスー(2−ヒドロキ
シエチル)−イソシアヌル酸エステルメタクリレ
ートなどの三官能以上のアクリレートもしくはメ
タクリレートが挙げられる。塗料の粘度を下げる
目的で反応性単官能のアクリレートもしくはメタ
クリレートが含有されてもよい。(メタ)−アクリ
ルオリゴマーがその分子骨格にウレタン結合を有
する所謂ウレタンアクリレートも好適に使用でき
る。このような分子末端にアクリロイル基もしく
はメタクリロイル基を有するウレタンオリゴマー
の調整は、ポリオール1分子に2個以上のイソシ
アネート基を有する化合物とを重合させ、その分
子末端のイソシアネート基に、活性水素を有する
アクリレートまたはメタクリレートを作用させて
行われうる。上記ポリオールには、例えば、エチ
レングリコール、1,3−プロパンジオール、ネ
オペンチルグリコール、1,2−ブタンジオー
ル、1,3−ブタンジオール、1,4−ブタンジ
オール、2,3−ブタンジオール、1,5−−ヘ
プタンジオール、1,6−ヘキサンジオール、ジ
エチレングリコール、ジプロピレングリコールな
どの短鎖のジオールがある。また、ポリエチレン
グリコール、ポリプロピレングリコール、ポリオ
キシテトラメチレングリコールなどがある。さら
に、アジピン酸とエチレングリコール、アジピン
酸とプロパンジオール、アジピン酸とネオペンチ
ルグリコール、アジピン酸とブタンジオールある
いはアジピン酸とヘキサンジオールとの縮合ポリ
エステルグリコールもある。ε−カプロラクトン
開環重合体もポリオールとして使用可能である。
1分子に2個以上のイソシアネートを有する化合
物としては、例えば、ヘキサメチレンジイソシア
ネート、メチレンジフエニルジイソシアネート、
トルエンジイソシアネート、キシレンジイソシア
ネート、メチレンジシクロヘキシルジイソシアネ
ートなどがある。活性水素含有のアクリレートも
しくはメタアクリレートとしては、例えば、2−
ヒドロキシエチルアクリレート、2−ヒドロキシ
エチルメタクリレート、3−ヒドロキシプロピル
アクリレート、3−ヒドロキシプロピルメタクリ
レート、アクリル酸などがある。 本発明の塗料組成物には、これら二官能以上の
(メタ)アクリルオリゴマーの1種あるいは2種
以上の化合物が塗料バインダーとして含有され
る。 本発明塗料組成物に含まれる酸化錫を主成分と
する導電性粉末はその平均粒径はその平均粒径が
0.2μm以下である。0.2μmを越えると可視光線を
散させるため得られる塗膜の透明性が劣る。同時
に紫外線も散乱させるため塗料バインダーの光硬
化性が低下し、ときにはまつたく硬化しない。 その含量は、塗膜の透明性と導電性を確保する
上で有機バインダー成分100重量部に対し50〜400
重量部の割合で含むことが望ましい。この導電性
粉末が50重量部を下まわるとその分散度合は充分
であつても得られる塗膜が充分な導電性を示さ
ず、従つて本発明の目的の1つである帯電防止の
効果を期待することができない。400重量部を越
えると過密状となるため、微粉末の分散が悪くな
り、その結果塗膜の透明性が損われ、又耐擦過傷
性も低下する。 本発明では、導電性粉末の分散性を高め、塗膜
の透明性を向上させ、さらにスチールウールでの
耐擦過傷性を改良し、又、インキ等による耐汚染
性を大巾に改良するため、一般式(1) (式中、R1は水素又はメチル基、R2は炭素数が
1〜8のアルキル基) で表わされる単量体、一般式(2) (式中、R3,R4は水素又はメチル基、nは1〜
10の整数) で表わされる単量体、及び分子中にフツ素原子を
有する(メタ)アクリル系単量体を主成分とする
共重合体が含有される。 一般式(1)の単量体としては、例えば、メチル
(メタ)アクリレート、エチル(メタ)アクリレ
ート、プロピル(メタ)アクリレート、ブチル
(メタ)アクリレート、アミル(メタ)アクリレ
ート、ヘキシル(メタ)アクリレート、オクチル
(メタ)アクリレート、等が挙げられる。 一般式(2)の単量体としては、例えば、2−ヒド
ロキシエチル(メタ)アクリレート、2−ヒドロ
キシプロピル(メタ)アクリレート、ポリエチレ
ングリコールモノ(メタ)アクリレート(エチレ
ンの数は2〜10)、ポリプロピレングリコールモ
ノ(メタ)アクリレート(プロピレンの数は2〜
10)等が挙げられる。 一般式(2)の単量体の成分は、共重合体中、2〜
30モル%の範囲で用いるのがよく、2モル%より
少いと十分な効果を示さず、30モル%を越えると
系の耐湿性が悪くなり好ましくない。 又、分子中にフツ素原子を含む(メタ)アクリ
ル系単量体としては、例えば、(メタ)アクリル
酸モノフルオロエチル、(メタ)アクリル酸ジフ
ルオロエチル、(メタ)アクリル酸ペンタフルオ
ロプロピル等が挙げられる。この(メタ)アクリ
ル系単量体の成分は、共重合体中、10〜60モル%
の範囲で用いるのがよく、10モル%より少いと分
散効果、耐汚染性、表面滑性付与等の十分な効果
を示さず、60モル%を越えると、一般式(1)の単量
体及び一般式(2)の単量体と共重合しにくく、又各
種有機溶剤への溶解性が悪くなり、塗料バインダ
ー成分としては好ましくない。 この共重合体の含量は、有機バインダー全量に
対し、2〜70重量%の範囲にあることが必要であ
り、特に好ましい範囲は5〜50重量%である。含
量が2重量%より少いと導電性粉末の分散が不十
分であり、透明性が低下する。又70重量%を越え
ると架橋成分が少くなり、所望の耐擦過傷性を発
現し得ない。 塗料バインダーの光硬化性を向上させる目的
で、光増感剤が選択的に添加される。この光増感
剤としては、例えば、ベンゾイン、ベンジル、ベ
ンゾインイソプロピルエーテル、ベンゾインイソ
メチルエーテル、α−メチルベンゾイン、α−フ
エニルベンゾインベンジル、ジアセチルメチルア
ントラキノン、クロルアントラキノン、ベンゾフ
エノン、ベンゾフエノン、アントラキノン、ミフ
イラーケトン、4,4′−ビス(N,N′−ジエチル
アミノ)−ベンゾフエノン、アセトフエノン等の
カルボニル化合物、ジフエニルスルフイド、ジフ
エニルジスルフイド、ジチオカーバメート等の硫
黄化合物、α−クロルメチルナフタレン、アント
ラセン等のナフタレン、アントラセン系化合物、
テトラクロルフタル酸ジメチル、ヘキサクロルブ
タジエン等のハロゲン化炭化水素、硫酸ウラニ
ル、塩化鉄、塩化銀等の金属塩類、アクリフラビ
ン、フルオレセイン、リボフラビン、ローダミン
B等の色素類が挙げられる。これら増感剤の添加
量は光硬化性オリゴマーに対して0.01重量%以上
が好ましい。 光硬化反応の助剤としてアミン類が用いられう
る。アミン類としては、例えば、トリエチルアミ
ン、トリブチルアミン、ジエチルアミノエチルメ
タクリレート等がある。 本発明の導電性塗料組成物の調整は、上記塗料
バインダー、上記共重合体及び酸化錫を主成分と
する粉末を有機溶剤に加え、混合して行われる。
粉末を塗料中に充分分散させるために塗料の分散
や配合に通常用いられる機器、例えば、サンドミ
ル、ボールミル、高速回転撹拌装置、三本ロール
等が使用され得る。 (発明の作用) 上記のようにして調整された本発明の導電性塗
料組成物はスプレー法、ロールコーター法、バー
コール法、ドクターブレード法、デイツピング法
等の一般的な塗布方法により塗布されるべき対象
物、例えば、合成樹脂シート又はプレートに塗布
される。この合成樹脂シート又はプレートの材料
としては、例えば、ポリ塩化ビニル、ポリエチレ
ンテレフタレート、ポリカーボネート、ポリ(メ
タ)アクリレート、アクリロニトリル−ブタジエ
ン−スチレン共重合体、ポリエチレン、ポリプロ
ピレン等が挙げられる。 塗布後、紫外線あるいは放射線(γ線、電子
線)を照射することにより所望の耐擦過傷性に優
れた透明導電プレート又はシートを得ることがで
きる。 これらのプレート又はシートはほとんど帯電し
ないため、着塵防止、静電破壊防止、静電誤動作
防止等の機能が必要な電子機器用材料あるいは電
子機器製造工場用材料として好適に使用される。 (実施例) 以下に本発明を実施例により説明する。 実施例 1 (A) 反応性バインダーの合成:冷却管、撹拌機及
びロールを備えた反応器に、ε−カプロラクト
ン開環重合体(平均分子量530:ダイセル社プ
ラスセル205)530gを仕込み、窒素ガスを流し
ながら80℃まで昇温した。これにウレタン生成
触媒としてジブチルチンラウレート1gを加え
た。4,4′−ジフエニルメタンジイソシアネー
ト524gを滴下ロートに仕込み1時間かけて滴
下し、さらに80℃で1時間撹拌を続けた。 次いで、反応系に重合禁止剤ハイドロキノン
1gを加えた後、2−ヒドロキシエチルアクリ
レート232gを加え撹拌を2時間続けた。得ら
れたオリゴマーの平均分子量は1500であつた。 (B) 分散性付与共重合体の合成:冷却管、撹拌機
及び滴下ロートを備えた反応器に、メチルエチ
ルケトン400g、メチルメタクリレート200g、
2−ヒドロキシエチルメタクリレート100g、
トリフルオロエチルメタクリレート200gを仕
込み、窒素気流下80℃まで昇温した。 一方メチルエチルケトン80gに重合開始剤と
してアゾビスイソブチロニトリル1.0gを溶解さ
せ、滴下ロートに仕込んでおいた。反応容器内
の液温が80℃に上昇した後、滴下ロートより重
合開始剤溶液を4時間かけて滴下し添加した。
この後、アゾイソブチロニトリル1.5gをメチル
エチルケトン20gに溶解させ、反応器中に加
え、さらに4時間反応を継続し、分散性付与共
重合体溶液Bを合成した。 (C) 塗料の作製:前記(B)項で作製した分散性付与
共重合体溶液60g、平均粒径0.2μm以下の三酸
化アンチモン含有酸化錫230g、メチルエチル
ケトン540gをボールミルに仕込み24時間かけ
て分散させた。次に、これに前記(A)項で合成し
た反応性オリゴマー20g、トリメチロールプロ
パントリメタクリレート30g、ジエチレングリ
コールジメタクリレート20g、ペンタエリスリ
トールテトラアクリレート20g、エチルセロソ
ルブ300g、ベンゾフエノン14g、ミフイラーケ
トン2.9gを仕込みさらに24時間撹拌を継続し、
塗料を作製した。 (D) 塗料の作製及び性能評価:透明アクリル板
(三菱レーヨン社製アクリライト厚さ3mm)上
に塗膜厚さ2μm(乾燥時)になるように上記塗
料を塗布した。溶剤を50℃で5分間乾燥した
後、高圧水銀ランプ(出力5.6KW、有効ラン
プ長70cm)により、25cmの距離から15分間紫外
線照射を行つた。 得られた塗膜の表面固有抵抗率、全光線透過
率、曇価、鉛筆硬度の測定、スチールウール擦
傷テスト及び耐染色性を行つた。その結果を第
1表に示す。 尚、表面固有抵抗率はASTM−D−257、全
光線透過率及び曇価はASTM−D−1003、鉛
筆硬度はJIS K−5400にもとづく試験法により
測定した。スチールウール擦傷テストは1cm2
り500gの荷重をかけ500回こすつた後、傷の有
無により判定した。耐染色性は各試料にマジツ
クインキ、クレオン、口紅の印をつけ、1週間
後メタノールでふき取り、残留汚染の有無を判
定した。 実施例 2 反応バインダーの合成:実施例1の(A)項と同
様。 分散性付与共重合体の合成:実施例1の(B)項と
同様。 塗料の作製:実施例1の(B)項で作製した分散性
付与共重合体溶液96g、平均粒径0.2μm以下の三
酸化アンチモン含有酸化錫230g、メチルエチル
ケトン540gをボールミルに仕込み24時間かけて
分散させた。次に、これに実施例1の(A)項で合成
した反応性オリゴマー20g、トリメチロールプロ
パントリメタクリレート22g、ジエチレングリコ
ールジメタクリレート15g、ペンタエリスリトー
ルテトラアクリレート15g、エチルセロソルブ
300g、ベンゾフエノン14g、ミフイラーケトン
2.9gを仕込み、さらに24時間撹拌を継続し、塗料
を作製した。 塗膜の作製及び性能評価:上記の塗料を用いる
他は実施例1の(D)項と同様。 実施例 3 反応性バインダーの合成:実施例1の(A)項と同
様。 分散性付与共重合体の合成:実施例1の(B)項と
同様の方法で、モノマー組成を、メチルメタクリ
レート300g、2−ヒドロキシエチルメタクリレ
ート80g、トリフロオロエチルメタクリレート
120gの組成に変更し、分散性付与共重合体(B′)を
合成した。 塗料の作成:上記の分散性付与共重合体(B′)溶
液96g、平均粒径0.2μm以下の三酸化アンチモン
含有酸化錫230g、メチルエチルケトン540gをポ
ールミルに仕込み24時間かけて分散させた。次
に、これに実施例1の(A)項で合成した反応性オリ
ゴマー20g、トリメチロールプロパントリメタク
リレート22g、ジエチレングリコールジメタクリ
レート15g、ペンタエリスリトールテトラアクリ
レート15g、エチレンセロソルブ300g、ベンゾフ
エノン14g、ミフイラーケトン2.9gを仕込み、さ
らに24時間撹拌を継続し、塗料を作製した。 塗膜の作製及び性能評価:上記の塗料を用いる
他は実施例1の(D)項と同様。 実施例 4 反応性バインダーの合成:実施例1の(A)項と同
様。 分散性付与共重合体の合成:実施例1の(B)項の
方法で、モノマー組成を、メチルメタクリレート
260g、イソブチルメタクリレート40g、2−ヒド
ロキシプロピルアクリレート100g、トリフルオ
ロエチルアクリレート100gの組成に変更し、分
散性付与共重合体(B″)を合成した。 塗料の作製:上記の分散性付与共重合体(B″)溶
液60g、メチルエチルケトン540gをボールミルに
仕込み24時間かけて分散させた。次に、これに実
施例1の(A)項で合成した反応性オリゴマー20g、
トリメチロールプロパントリメタクリレート
30g、ジエチレングリコールジメタクリレート
20g、ペンタエリスリトールテトラアクリレート
20g、エチレンセロソルブ300g、ベンゾフエノン
14g、ミフイラーケトン2.9gを仕込み、さらに24
時間撹拌を継続し、塗料を作製した。 塗膜の作製及び性能の評価:上記の塗料を用い
る他は実施例1の(D)項と同様。 比較例 1 反応性バインダーの合成:実施例1の(A)項と同
様。 分散性付与共重合体の合成:実施例1の(B)項の
方法で、モノマー組成を、メチルメタクリレート
400g、2−ヒドロキシエチルメタクリレート
100gに変更し、分散性付与共重合体(B)を合成
した。 塗料の作製:上記の分散性付与共重合体(B)
溶液60g、メチルエチルケトン540gをボールミル
に仕込み24時間かけて分散させた。次に、これに
実施例1の(A)項で合成した反応性オリゴマー
20g、トリメチロールプロパントリメタクリレー
ト30g、ジエチレングリコールジメタクリレート
20g、ペンタエリスリトールテトラアクリレート
20g、エチレンセロソルブ300g、ベンゾフエノン
14g、ミフイラーケトン2.9gを仕込み、さらに24
時間撹拌を継続し、塗料を作製した。 塗膜の作製及び性能評価:上記の塗料を用いる
他は実施例1の(D)項と同様。 比較例 2 反応性バインダーの合成:実施例1の(A)項と同
様。 塗料の作製:ボールミルに、メチルエチルケト
ン200g、実施例1の(A)項で合成した反応性オリ
ゴマー30g、トリメチロールプロパントリメタク
リレート40g、ジエチレングリコールジメタクリ
レート25g、ペンタエリスリトールテトラアクリ
レート25g、エチレンセロソルブ150g、ベンゾフ
エノン14g、ミフイラーケトン2.9g、を仕込み、
24時間撹拌を継続し、塗料を作製した。 塗膜の作製及び性能評価:上記の塗料を用いる
他は実施例1の(D)項と同様。
(Industrial Application Field) The present invention relates to a coating composition that is easily cured by radiation such as ultraviolet rays and electron beams, and is capable of forming a coating film having excellent scratch resistance, conductivity, and transparency. (Prior Art) Semiconductor wafer storage containers, electronic/electrical parts, floor materials and wall materials of semiconductor manufacturing factories, etc., need to have an antistatic effect depending on their use. To this end, conventionally these parts were coated with paint containing carbon powder or metal powder, or
Alternatively, carbon powder, carbon fiber, metal fiber, etc. are kneaded into resin and molded. However, in these conventional methods, the coating film and molded article themselves are colored and are therefore opaque, making it impossible to see through the contents. Therefore, it is not possible to use a window as a portion that requires antistatic protection. Japanese Unexamined Patent Publication No. 57-85866 discloses a paint containing a conductive paint containing tin oxide as a main component in a paint binder. Although this paint can form a coating film that is transparent and has an antistatic function, since the paint binder is a thermoplastic resin, the resulting coating film generally cannot exhibit scratch resistance or solvent resistance. Furthermore, metal powder such as tin oxide generally has a higher specific gravity than a paint binder, and therefore is difficult to uniformly disperse. (Problems to be Solved by the Invention) The object of the present invention is to provide steel wool that is easily cured by radiation such as ultraviolet rays and electron beams, has excellent scratch resistance and stain resistance, and has excellent conductivity and transparency. It is an object of the present invention to provide a coating composition that can form a coating film with a high temperature. (Means for Solving the Problem) The gist of the present invention is to provide a paint binder whose main component is one or more (meth)acrylic oligomers having at least two or more acryloyl groups or methacryloyl groups in the molecule. , a conductive powder whose main component is tin oxide and whose particle size is 0.2 μm or less, and the general formula (1) (In the formula, R 1 is hydrogen or a methyl group, R 2 is an alkyl group having 1 to 8 carbon atoms) A monomer represented by the general formula (2) (In the formula, R 3 and R 4 are hydrogen or methyl groups, and n is 1 to
10) and a copolymer whose main component is a (meth)acrylic monomer having a fluorine atom in the molecule. The present invention relates to a compound having at least two or more acroyl groups or methacryloyl groups in the molecule (meth)
When acrylic oligomer is photocured, it becomes highly crosslinked, improving the scratch resistance and hardness of the resulting coating film.By adding a conductive powder whose main component is tin oxide, it maintains sufficient conductivity while maintaining excellent conductivity. The main components are (meth)acrylate monomers, (meth)acrylate monomers having a hydroxyl group in the molecule, and (meth)acrylic monomers having a fluorine atom in the molecule. Based on the knowledge that adding a copolymer prevents recrystallization of the conductive powder, significantly improves the transparency of the resulting coating film, and further improves the stain resistance of the coating film from ink, etc. completed. The composition of the present invention contains a (meth)acrylic oligomer having two or more acryloyl or methacryloyl groups as a paint binder.
This (meth)acrylic oligomer is cured into a highly crosslinked structure. Examples of the (meth)acrylic oligomer include bifunctional acrylates or methacrylates such as ethylene glycol diacrylate, ethylene glycol dimethacrylate, propylene glycol dimethacrylate, tetraethylene glycol diacrylate, and tetraethylene glycol dimethacrylate. In addition, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, glycerol triacrylate, glycerol trimethacrylate, pentaerythritol triacrylate,
Examples include trifunctional or higher functional acrylates or methacrylates such as pentaerythritol trimethacrylate, tris(2-hydroxyethyl)-isocyanurate acrylate, and tris(2-hydroxyethyl)-isocyanurate methacrylate. A reactive monofunctional acrylate or methacrylate may be included for the purpose of lowering the viscosity of the paint. So-called urethane acrylates, in which (meth)-acrylic oligomers have urethane bonds in their molecular skeletons, can also be suitably used. To prepare such a urethane oligomer having an acryloyl group or a methacryloyl group at the end of the molecule, one molecule of polyol is polymerized with a compound having two or more isocyanate groups, and an acrylate having active hydrogen is added to the isocyanate group at the end of the molecule. Alternatively, it can be carried out by using methacrylate. Examples of the polyols include ethylene glycol, 1,3-propanediol, neopentyl glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1 , 5-heptanediol, 1,6-hexanediol, diethylene glycol, dipropylene glycol and the like. Other examples include polyethylene glycol, polypropylene glycol, and polyoxytetramethylene glycol. Furthermore, there are also condensed polyester glycols of adipic acid and ethylene glycol, adipic acid and propanediol, adipic acid and neopentyl glycol, adipic acid and butanediol, or adipic acid and hexanediol. Ring-opened ε-caprolactone polymers can also be used as polyols.
Examples of compounds having two or more isocyanates in one molecule include hexamethylene diisocyanate, methylene diphenyl diisocyanate,
Examples include toluene diisocyanate, xylene diisocyanate, and methylene dicyclohexyl diisocyanate. Examples of active hydrogen-containing acrylates or methacrylates include 2-
Examples include hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 3-hydroxypropyl acrylate, 3-hydroxypropyl methacrylate, and acrylic acid. The coating composition of the present invention contains one or more compounds of these difunctional or higher-functional (meth)acrylic oligomers as a coating binder. The conductive powder containing tin oxide as a main component contained in the coating composition of the present invention has an average particle size of
It is 0.2 μm or less. If it exceeds 0.2 μm, visible light is scattered, resulting in poor transparency of the resulting coating film. At the same time, it also scatters ultraviolet rays, which reduces the photocurability of the paint binder and sometimes does not cure it properly. Its content is 50 to 400 parts by weight per 100 parts by weight of the organic binder component to ensure transparency and conductivity of the coating film.
It is desirable to include it in parts by weight. If the amount of this conductive powder is less than 50 parts by weight, even if the degree of dispersion is sufficient, the resulting coating film will not exhibit sufficient conductivity, and the antistatic effect, which is one of the purposes of the present invention, will not be achieved. I can't wait. If it exceeds 400 parts by weight, it will become overcrowded, resulting in poor dispersion of the fine powder, resulting in a loss of transparency of the coating film and a decrease in scratch resistance. In the present invention, in order to improve the dispersibility of the conductive powder, improve the transparency of the coating film, further improve the scratch resistance with steel wool, and greatly improve the stain resistance with ink etc., General formula (1) (In the formula, R 1 is hydrogen or a methyl group, R 2 is an alkyl group having 1 to 8 carbon atoms) A monomer represented by the general formula (2) (In the formula, R 3 and R 4 are hydrogen or methyl groups, and n is 1 to
It contains a copolymer whose main components are a monomer represented by (an integer of 10) and a (meth)acrylic monomer having a fluorine atom in the molecule. Examples of the monomer of general formula (1) include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, amyl (meth)acrylate, hexyl (meth)acrylate, Examples include octyl (meth)acrylate. Examples of the monomer of general formula (2) include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, polyethylene glycol mono(meth)acrylate (the number of ethylene is 2 to 10), polypropylene Glycol mono(meth)acrylate (number of propylene is 2~
10) etc. The components of the monomer of general formula (2) are 2-
It is preferable to use it in a range of 30 mol%; if it is less than 2 mol%, sufficient effects will not be exhibited, and if it exceeds 30 mol%, the moisture resistance of the system will deteriorate, which is not preferred. Examples of (meth)acrylic monomers containing fluorine atoms in the molecule include monofluoroethyl (meth)acrylate, difluoroethyl (meth)acrylate, and pentafluoropropyl (meth)acrylate. Can be mentioned. This (meth)acrylic monomer component is 10 to 60 mol% in the copolymer.
If it is less than 10 mol%, sufficient effects such as dispersion effect, stain resistance, and surface smoothness imparting will not be exhibited, and if it exceeds 60 mol%, the monomer of general formula (1) will be used. It is difficult to copolymerize with the monomer of general formula (2) and has poor solubility in various organic solvents, making it undesirable as a paint binder component. The content of this copolymer needs to be in the range of 2 to 70% by weight, with a particularly preferable range of 5 to 50% by weight based on the total amount of the organic binder. If the content is less than 2% by weight, the conductive powder will be insufficiently dispersed and transparency will decrease. If it exceeds 70% by weight, the amount of crosslinking component will decrease and the desired abrasion resistance will not be achieved. A photosensitizer is selectively added for the purpose of improving the photocurability of the paint binder. Examples of the photosensitizer include benzoin, benzyl, benzoin isopropyl ether, benzoin isomethyl ether, α-methylbenzoin, α-phenylbenzoinbenzyl, diacetylmethylanthraquinone, chloranthraquinone, benzophenone, benzophenone, anthraquinone, mifilar ketone, Carbonyl compounds such as 4,4'-bis(N,N'-diethylamino)-benzophenone and acetophenone, sulfur compounds such as diphenyl sulfide, diphenyl disulfide, and dithiocarbamates, α-chloromethylnaphthalene, anthracene, etc. naphthalene, anthracene compounds,
Examples include halogenated hydrocarbons such as dimethyl tetrachlorophthalate and hexachlorobutadiene, metal salts such as uranyl sulfate, iron chloride, and silver chloride, and pigments such as acriflavin, fluorescein, riboflavin, and rhodamine B. The amount of these sensitizers added is preferably 0.01% by weight or more based on the photocurable oligomer. Amines can be used as auxiliaries for the photocuring reaction. Examples of amines include triethylamine, tributylamine, diethylaminoethyl methacrylate, and the like. The conductive coating composition of the present invention is prepared by adding the coating binder, the copolymer, and a powder containing tin oxide as main components to an organic solvent and mixing them.
In order to sufficiently disperse the powder in the coating material, equipment commonly used for dispersing and compounding coating materials, such as a sand mill, a ball mill, a high-speed rotating stirrer, a triple roll, etc., may be used. (Action of the invention) The conductive coating composition of the present invention prepared as described above should be applied by a general coating method such as a spray method, a roll coater method, a barcoal method, a doctor blade method, or a dipping method. It is applied to an object, for example a synthetic resin sheet or plate. Examples of the material for this synthetic resin sheet or plate include polyvinyl chloride, polyethylene terephthalate, polycarbonate, poly(meth)acrylate, acrylonitrile-butadiene-styrene copolymer, polyethylene, and polypropylene. After coating, a transparent conductive plate or sheet with desired scratch resistance can be obtained by irradiating it with ultraviolet rays or radiation (gamma rays, electron beams). Since these plates or sheets are hardly charged, they are suitably used as materials for electronic devices or materials for electronic device manufacturing factories that require functions such as preventing dust accumulation, preventing electrostatic damage, and preventing electrostatic malfunctions. (Example) The present invention will be explained below with reference to Examples. Example 1 (A) Synthesis of reactive binder: 530 g of ε-caprolactone ring-opening polymer (average molecular weight 530: Daicel Plascel 205) was charged into a reactor equipped with a cooling tube, a stirrer, and a roll, and nitrogen gas was added. The temperature was raised to 80°C while flowing water. To this was added 1 g of dibutyltin laurate as a urethane production catalyst. 524 g of 4,4'-diphenylmethane diisocyanate was placed in the dropping funnel and added dropwise over 1 hour, and stirring was continued at 80°C for 1 hour. Next, the polymerization inhibitor hydroquinone is added to the reaction system.
After adding 1 g, 232 g of 2-hydroxyethyl acrylate was added and stirring was continued for 2 hours. The average molecular weight of the obtained oligomer was 1500. (B) Synthesis of dispersibility-imparting copolymer: In a reactor equipped with a cooling tube, a stirrer, and a dropping funnel, add 400 g of methyl ethyl ketone, 200 g of methyl methacrylate,
2-hydroxyethyl methacrylate 100g,
200 g of trifluoroethyl methacrylate was charged, and the temperature was raised to 80°C under a nitrogen stream. On the other hand, 1.0 g of azobisisobutyronitrile as a polymerization initiator was dissolved in 80 g of methyl ethyl ketone and charged into a dropping funnel. After the temperature of the liquid in the reaction vessel rose to 80°C, the polymerization initiator solution was added dropwise from the dropping funnel over a period of 4 hours.
Thereafter, 1.5 g of azoisobutyronitrile was dissolved in 20 g of methyl ethyl ketone and added into the reactor, and the reaction was continued for an additional 4 hours to synthesize a dispersibility-imparting copolymer solution B. (C) Preparation of paint: 60 g of the dispersibility-imparting copolymer solution prepared in section (B) above, 230 g of tin oxide containing antimony trioxide with an average particle size of 0.2 μm or less, and 540 g of methyl ethyl ketone were placed in a ball mill and dispersed over 24 hours. I let it happen. Next, 20 g of the reactive oligomer synthesized in section (A) above, 30 g of trimethylolpropane trimethacrylate, 20 g of diethylene glycol dimethacrylate, 20 g of pentaerythritol tetraacrylate, 300 g of ethyl cellosolve, 14 g of benzophenone, and 2.9 g of Mifilar ketone were added to the mixture. Continue stirring for an hour,
The paint was made. (D) Preparation and performance evaluation of paint: The above paint was applied onto a transparent acrylic plate (Acrylite manufactured by Mitsubishi Rayon Co., Ltd., thickness 3 mm) to a film thickness of 2 μm (when dry). After drying the solvent at 50° C. for 5 minutes, ultraviolet rays were irradiated for 15 minutes from a distance of 25 cm using a high-pressure mercury lamp (output 5.6 KW, effective lamp length 70 cm). The surface resistivity, total light transmittance, haze value, and pencil hardness of the resulting coating film were measured, as well as a steel wool scratch test and stain resistance. The results are shown in Table 1. Incidentally, the surface resistivity was measured by a test method based on ASTM-D-257, the total light transmittance and haze value by ASTM-D-1003, and the pencil hardness by a test method based on JIS K-5400. In the steel wool abrasion test, the material was rubbed 500 times under a load of 500 g per cm 2 , and then judged based on the presence or absence of scratches. For stain resistance, each sample was marked with magic ink, Creon, or lipstick, and after one week, it was wiped with methanol to determine the presence or absence of residual contamination. Example 2 Synthesis of reactive binder: Same as Section (A) of Example 1. Synthesis of dispersibility-imparting copolymer: Same as Section (B) of Example 1. Preparation of paint: 96 g of the dispersibility-imparting copolymer solution prepared in Section (B) of Example 1, 230 g of tin oxide containing antimony trioxide with an average particle size of 0.2 μm or less, and 540 g of methyl ethyl ketone were placed in a ball mill and dispersed over 24 hours. I let it happen. Next, 20 g of the reactive oligomer synthesized in Section (A) of Example 1, 22 g of trimethylolpropane trimethacrylate, 15 g of diethylene glycol dimethacrylate, 15 g of pentaerythritol tetraacrylate, and ethyl cellosolve.
300g, Benzophenone 14g, Mifilar Ketone
2.9g was added and stirring was continued for an additional 24 hours to prepare a paint. Preparation of coating film and performance evaluation: Same as Example 1 (D) except that the above coating material was used. Example 3 Synthesis of reactive binder: Same as Example 1, section (A). Synthesis of dispersibility-imparting copolymer: In the same manner as in Section (B) of Example 1, the monomer composition was changed to 300 g of methyl methacrylate, 80 g of 2-hydroxyethyl methacrylate, and trifluoroethyl methacrylate.
The composition was changed to 120 g, and a dispersibility-imparting copolymer (B') was synthesized. Preparation of paint: 96 g of the above dispersibility-imparting copolymer (B') solution, 230 g of tin oxide containing antimony trioxide with an average particle size of 0.2 μm or less, and 540 g of methyl ethyl ketone were charged into a Pall mill and dispersed over 24 hours. Next, 20 g of the reactive oligomer synthesized in Section (A) of Example 1, 22 g of trimethylolpropane trimethacrylate, 15 g of diethylene glycol dimethacrylate, 15 g of pentaerythritol tetraacrylate, 300 g of ethylene cellosolve, 14 g of benzophenone, and 2.9 g of Mifilar ketone were added to this. After preparation, stirring was continued for another 24 hours to produce a paint. Preparation of coating film and performance evaluation: Same as Example 1 (D) except that the above coating material was used. Example 4 Synthesis of reactive binder: Same as Example 1, section (A). Synthesis of dispersibility-imparting copolymer: The monomer composition was changed to methyl methacrylate using the method described in Example 1 (B).
260g, isobutyl methacrylate 40g, 2-hydroxypropyl acrylate 100g, and trifluoroethyl acrylate 100g to synthesize a dispersion-imparting copolymer (B''). Preparation of paint: the above dispersion-imparting copolymer 60 g of solution (B'') and 540 g of methyl ethyl ketone were placed in a ball mill and dispersed over 24 hours. Next, 20 g of the reactive oligomer synthesized in Section (A) of Example 1,
Trimethylolpropane trimethacrylate
30g, diethylene glycol dimethacrylate
20g, pentaerythritol tetraacrylate
20g, ethylene cellosolve 300g, benzophenone
14g, Mihuira Ketone 2.9g, and 24g
Stirring was continued for a period of time to prepare a paint. Preparation of coating film and evaluation of performance: Same as Section (D) of Example 1 except that the above coating material was used. Comparative Example 1 Synthesis of reactive binder: Same as Section (A) of Example 1. Synthesis of dispersibility-imparting copolymer: The monomer composition was changed to methyl methacrylate using the method described in Example 1 (B).
400g, 2-hydroxyethyl methacrylate
The amount was changed to 100 g, and a dispersibility-imparting copolymer (B) was synthesized. Preparation of paint: the above dispersibility-imparting copolymer (B)
60 g of the solution and 540 g of methyl ethyl ketone were placed in a ball mill and dispersed over 24 hours. Next, the reactive oligomer synthesized in Section (A) of Example 1 was added to this.
20g, trimethylolpropane trimethacrylate 30g, diethylene glycol dimethacrylate
20g, pentaerythritol tetraacrylate
20g, ethylene cellosolve 300g, benzophenone
14g, Mihuira Ketone 2.9g, and 24g
Stirring was continued for a period of time to prepare a paint. Preparation of coating film and performance evaluation: Same as Example 1 (D) except that the above coating material was used. Comparative Example 2 Synthesis of reactive binder: Same as Section (A) of Example 1. Preparation of paint: In a ball mill, add 200 g of methyl ethyl ketone, 30 g of the reactive oligomer synthesized in Section (A) of Example 1, 40 g of trimethylolpropane trimethacrylate, 25 g of diethylene glycol dimethacrylate, 25 g of pentaerythritol tetraacrylate, 150 g of ethylene cellosolve, and 14 g of benzophenone. , prepare 2.9g of Mifilar Ketone,
Stirring was continued for 24 hours to prepare a paint. Preparation of coating film and performance evaluation: Same as Example 1 (D) except that the above coating material was used.

【表】 (発明の効果) 本発明導電性塗料組成物は、分子内に少くとも
2個以上のアクロイル基またはメタクリロイル基
を有する(メタ)アクリルオリゴマーを有するの
で、この(メタ)アクリルオリゴマーを光硬化等
をすれば高度に架橋し、得られる塗膜の耐擦過傷
性および硬度が向上し、酸化錫を主成分とする導
電性粉末を含有するので、より充分な導電性を保
持しつつ優れた透明性が得られ、又、前記の(メ
タ)アクリレート単量体、分子中に水酸基を有す
る(メタ)アクリレート単量体及び分子中にフツ
素原子を有する(メタ)アクリル系単量体を主成
分とする共重合体を含有するので、導電性粉末の
再結晶を防止し、得られる塗膜の透明性が著しく
向上し、さらに塗膜の耐擦過傷性及びインキ等に
よる耐汚染性が優れている。
[Table] (Effects of the Invention) The conductive coating composition of the present invention has a (meth)acrylic oligomer having at least two or more acroyl groups or methacryloyl groups in the molecule. When cured, etc., it becomes highly cross-linked, improving the scratch resistance and hardness of the resulting coating film.Since it contains conductive powder whose main component is tin oxide, it maintains more sufficient conductivity and has excellent properties. Transparency can be obtained, and the above-mentioned (meth)acrylate monomers, (meth)acrylate monomers having a hydroxyl group in the molecule, and (meth)acrylic monomers having a fluorine atom in the molecule are mainly used. Contains a copolymer as a component, which prevents recrystallization of the conductive powder, significantly improves the transparency of the resulting coating film, and furthermore provides excellent scratch resistance and stain resistance from ink, etc. There is.

Claims (1)

【特許請求の範囲】 1 分子内に少なくとも2個以上のアクリロイル
基もしくはメタクリロイル基を有する(メタ)ア
クリルオリゴマーの1種または2種以上を主成分
とする塗料バインダーと、酸化錫を主成分としそ
の粒径が0.2μm以下の導電性粉末と、 一般式(1) (式中、R1は水素又はメチル基、R2は炭素数が
1〜8のアルキル基)で表わされる単量体、一般
式(2) (式中、R3,R4は水素又はメチル基、nは1〜
10の整数) で表わされる単量体、及び分子中にフツ素原子を
有する(メタ)アクリル系単量体を主成分とする
共重合体とを含有する導電性塗料組成物。
[Claims] 1. A paint binder whose main component is one or more (meth)acrylic oligomers having at least two or more acryloyl or methacryloyl groups in the molecule, and a paint binder whose main component is tin oxide. Conductive powder with a particle size of 0.2 μm or less and general formula (1) (In the formula, R 1 is hydrogen or a methyl group, R 2 is an alkyl group having 1 to 8 carbon atoms), a monomer represented by the general formula (2) (In the formula, R 3 and R 4 are hydrogen or methyl groups, and n is 1 to
An electrically conductive coating composition containing a monomer represented by (an integer of 10) and a copolymer whose main component is a (meth)acrylic monomer having a fluorine atom in the molecule.
JP16370284A 1984-08-02 1984-08-02 Conductive coating composition Granted JPS6142577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16370284A JPS6142577A (en) 1984-08-02 1984-08-02 Conductive coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16370284A JPS6142577A (en) 1984-08-02 1984-08-02 Conductive coating composition

Publications (2)

Publication Number Publication Date
JPS6142577A JPS6142577A (en) 1986-03-01
JPH0425981B2 true JPH0425981B2 (en) 1992-05-06

Family

ID=15778991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16370284A Granted JPS6142577A (en) 1984-08-02 1984-08-02 Conductive coating composition

Country Status (1)

Country Link
JP (1) JPS6142577A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215704A (en) * 1987-03-04 1988-09-08 Nippon Oil Co Ltd Curable electrically conductive composition
JP2550614B2 (en) * 1987-10-26 1996-11-06 東レ株式会社 Fluorine-based graft polymer curable composition
JPH028285A (en) * 1988-06-28 1990-01-11 Kansai Paint Co Ltd Composition capable of forming water repellent coating film
JP3008493B2 (en) * 1989-12-01 2000-02-14 大日本インキ化学工業株式会社 Insulated wire and its manufacturing method
US5183599A (en) * 1990-01-19 1993-02-02 Smuckler Jack H Rapid curing, electrically conductive adhesive
KR100413800B1 (en) * 2001-10-17 2004-01-03 삼성에스디아이 주식회사 Fluoride copolymer, polymer electrolyte comprising the same and lithium battery employing the polymer electrolyte
JP4912844B2 (en) * 2006-11-22 2012-04-11 昭和電工株式会社 LIGHT EMITTING DEVICE AND DISPLAY DEVICE USING THE SAME
JP5424623B2 (en) * 2008-01-21 2014-02-26 キヤノン株式会社 Resin composition and optical element, diffractive optical element and laminated diffractive optical element molded thereby
JP5554904B2 (en) * 2008-06-20 2014-07-23 日揮触媒化成株式会社 Paint for forming transparent film and substrate with transparent film
CN103450807A (en) * 2013-09-03 2013-12-18 江苏中瀛涂料有限公司 Steel wool resisting UV (ultraviolet) curable varnish and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165252A (en) * 1981-04-06 1982-10-12 Fuji Photo Film Co Ltd Antistatic plastic film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165252A (en) * 1981-04-06 1982-10-12 Fuji Photo Film Co Ltd Antistatic plastic film

Also Published As

Publication number Publication date
JPS6142577A (en) 1986-03-01

Similar Documents

Publication Publication Date Title
EP0659844B1 (en) Transparent conductive coating composition and transparent antistatic molded article
JPH0425981B2 (en)
JPH0148874B2 (en)
JP3186868B2 (en) Photocurable conductive coating composition
JPS6060166A (en) Photocurable electrically conductive paint composition
JPH0576505B2 (en)
JPS6328943B2 (en)
JPH07310033A (en) Photosetting electrically conductive coating material
JPS60219270A (en) Electrically conductive clear paint composition and electrically conductive plastic sheet or plate obtained by using the same
JPH0519464B2 (en)
JPH0425980B2 (en)
JP3375410B2 (en) Photocurable conductive coating composition and antistatic electromagnetic wave shielding laminate using the same
JPS6328946B2 (en)
JPH0619072B2 (en) Conductive coating composition
JPH0519463B2 (en)
JPH0665529A (en) Conductive coating composition
JPH0665530A (en) Conductive coating composition
JPS5986001A (en) Method for coating surface of plastic lens
JPH0332008Y2 (en)
JPS60248745A (en) Coating material
JPH0959536A (en) Production of antistatic plastic plate or sheet
JPH06248202A (en) Photo-setting electrically conductive paint composition
JPH068394B2 (en) Conductive coating composition
JPS62170331A (en) Transparent conductive plastic molded shape
JPH06316687A (en) Electrically conductive coating composition