JPH04254504A - Preparation of superfine noble metal particle - Google Patents

Preparation of superfine noble metal particle

Info

Publication number
JPH04254504A
JPH04254504A JP3251791A JP3251791A JPH04254504A JP H04254504 A JPH04254504 A JP H04254504A JP 3251791 A JP3251791 A JP 3251791A JP 3251791 A JP3251791 A JP 3251791A JP H04254504 A JPH04254504 A JP H04254504A
Authority
JP
Japan
Prior art keywords
noble metal
solution
soln
cationic surfactant
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3251791A
Other languages
Japanese (ja)
Inventor
Kenjiro Meguro
目黒 謙次郎
Kunio Esumi
江角 邦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP3251791A priority Critical patent/JPH04254504A/en
Publication of JPH04254504A publication Critical patent/JPH04254504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To prepare the superfine particles of noble metal having a narrow range of particle diameters of 10-100nm and stabilized. CONSTITUTION:A noble metal-contg. soln. is allowed to react with a soln. contg. a reducing agent to prepare the superfine particles of noble metal. In this case, a cationic surfactant is added to the noble metal-contg. soln. to obtain a soln. of the precipitated complex, the complex is deposited in the soln., and the soln. is allowed to react with a soln. contg. such a reducing agent as cetylpyridinium chloride, dodecylpyridinium chloride and cetyltrimethylammonium chloride.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は触媒、各種ペースト、コ
ロイド溶液等貴金属の超微粒子を調製する方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing ultrafine particles of noble metals such as catalysts, various pastes, and colloidal solutions.

【0002】0002

【従来技術とその問題点】従来、貴金属の微粒子として
は200Å以上の大きさのものしか安定した微粒子とし
て調製することが出来ていない。その主な方法として、
貴金属の酸性溶液に保護コロイドとしてゼラチン等を加
え、貴金属を水素やヒドラジン等の還元剤で還元する方
法や、貴金属を有機溶媒に抽出したのち、該有機溶媒を
微細な粒子として不活性ガス気流中に分散させ加熱分解
して、貴金属金属に還元し微粒子とする方法等がある。 しかし、貴金属の溶液の濃度や保護コロイドの量や、他
の高分子の界面活性剤等の種類や量を変えても安定した
微粒子として調製できるのは粒子径が200Å程度が限
界であった。
[Prior Art and its Problems] Conventionally, only fine particles of noble metals with a size of 200 Å or more have been able to be prepared as stable fine particles. The main method is
There is a method in which gelatin or the like is added as a protective colloid to an acidic solution of a precious metal and the precious metal is reduced with a reducing agent such as hydrogen or hydrazine, or a method in which the precious metal is extracted into an organic solvent and then the organic solvent is made into fine particles in an inert gas stream. There are methods such as dispersing it in water, thermally decomposing it, and reducing it to noble metal to form fine particles. However, even if the concentration of the noble metal solution, the amount of protective colloid, the type and amount of other polymeric surfactants, etc. are changed, stable fine particles can be prepared only when the particle diameter is about 200 Å.

【0003】0003

【発明の目的】本発明は、上記の欠点を解決するために
成されたもので、貴金属の超微粒子として粒子径が10
〜100nmで粒子径の範囲がせまく安定したのものを
調製する方法を提供することを目的とする。
OBJECT OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks.
The object of the present invention is to provide a method for preparing particles with a narrow and stable particle size range of ~100 nm.

【0004】0004

【問題点を解決するための手段】本発明は、貴金属含有
溶液と還元剤を含む溶液を反応させて、貴金属の超微粒
子を調製するに際し、貴金属含有溶液に陽イオン性界面
活性剤を加えて錯体の沈澱溶液を調製したのち、該沈澱
を溶液中に分散させながら還元剤を含む溶液を加えて反
応させることを特徴とする貴金属超微粒子の調製方法で
、前記陽イオン性界面活性剤がセチルピリジウムクロラ
イド、ドデシルピリジウムクロライドまたはセチルトリ
メチルアンモニウムクロライドの1種以上である貴金属
超微粒子の調製方法である。
[Means for Solving the Problems] The present invention involves adding a cationic surfactant to the precious metal-containing solution when preparing ultrafine noble metal particles by reacting a noble metal-containing solution with a reducing agent-containing solution. A method for preparing ultrafine precious metal particles, which comprises preparing a precipitating solution of a complex, and then adding a solution containing a reducing agent to react while dispersing the precipitate in the solution, wherein the cationic surfactant is cetyl. This is a method for preparing ultrafine noble metal particles of one or more of pyridium chloride, dodecylpyridium chloride, or cetyltrimethylammonium chloride.

【0005】以下、本発明の詳細について説明する。本
発明の貴金属含有溶液は最も一般的である塩化金酸の水
溶液でよく、貴金属濃度は0.1〜1.0×10−3/
mol・dm−3で良い。上記の理由は調製した貴金属
の超微粒子が凝集せずまた調製する量が経済的な範囲で
あるからである。
[0005] The details of the present invention will be explained below. The noble metal-containing solution of the present invention may be the most common aqueous solution of chloroauric acid, and the noble metal concentration is 0.1 to 1.0 x 10-3/
mol・dm-3 is sufficient. The reason for the above is that the prepared ultrafine noble metal particles do not aggregate and the amount to be prepared is within an economical range.

【0006】陽イオン性界面活性剤がセチルピリジウム
クロライド(以下「CPCL」という。)、ドデシルピ
リジウムクロライド(以下「DPCL」という。)また
はセチルトリメチルアンモニウムクロライド(以下「C
TAC」という。)の1種以上を用い、貴金属イオンと
のコンプレックスを形成し還元剤を加えて貴金属金属に
還元して調製した超微粒子を安定させる効果を有するも
のと考えられる。上記陽イオン性界面活性剤を加える量
は反応させる溶液中の濃度を1〜50mMに変化させる
ことにより、貴金属の粒子径を10〜100nmに調製
することができ、粒子径と陽イオン性界面活性剤の濃度
との関係は陽イオン性界面活性剤の濃度を高くするに従
い粒子径が小さくなり、粒子径の分布範囲は平均粒子径
の±10%で90%以上のものが得られる。還元剤は水
素、ヒドラジン等貴金属の種類により適した還元剤を選
んで用いるのがよく、ガスを吹き込むか水溶液として加
えることでよく、還元反応当量の2倍程度が好ましく、
過剰に加えると経済的でないばかりか金の超微粒子の粒
子径の分布が広くなってしまう等の問題が生ずる。また
反応に際して必要により加温することで粒子径をコント
ロールさせることができる。なお、陽イオン性界面活性
剤と貴金属イオンとのコンプレックスを形成させて沈澱
溶液とし、次いで還元剤を加える際に該沈澱を分散させ
る方法として、例えば超音波により分散させて還元反応
させるのが望ましい。
The cationic surfactant is cetylpyridium chloride (hereinafter referred to as "CPCL"), dodecylpyridium chloride (hereinafter referred to as "DPCL") or cetyltrimethylammonium chloride (hereinafter referred to as "C
It's called "TAC". ) is considered to have the effect of stabilizing the ultrafine particles prepared by forming a complex with noble metal ions and reducing them to noble metal by adding a reducing agent. The amount of the above cationic surfactant added can be adjusted to adjust the particle size of the noble metal to 10 to 100 nm by changing the concentration in the reaction solution from 1 to 50 mM, and the particle size and cationic surfactant Regarding the relationship with the concentration of the agent, as the concentration of the cationic surfactant increases, the particle size becomes smaller, and a particle size distribution range of 90% or more can be obtained within ±10% of the average particle size. It is best to select a reducing agent suitable for the type of noble metal, such as hydrogen or hydrazine, and use it by blowing gas or adding it as an aqueous solution, preferably about twice the reduction reaction equivalent,
If it is added in excess, it is not only uneconomical but also causes problems such as the particle size distribution of the ultrafine gold particles becoming broader. Furthermore, the particle size can be controlled by heating if necessary during the reaction. Note that it is preferable to form a complex between a cationic surfactant and a noble metal ion to form a precipitate solution, and then to disperse the precipitate when adding a reducing agent, for example, by using ultrasound to disperse the precipitate and cause a reduction reaction. .

【0007】以下、本発明の実施例について記載するが
、該実施例は本発明を限定するものではない。
[0007] Examples of the present invention will be described below, but the examples are not intended to limit the present invention.

【0008】[0008]

【実施例1】塩化金酸1mM水溶液を10ml比色管に
3本取り、濃度をCPCLとCTACは6mM、DPC
Lは30mMとした陽イオン性界面活性剤水溶液を全量
が20mlになるようにそれぞれ攪拌しながら滴下して
塩化金酸イオンと陽イオン性界面活性剤の錯体の沈澱溶
液を調製し、1時間攪拌したのち、該沈澱溶液を24時
間静置したのち、この沈澱溶液を10分間超音波にかけ
て分散させ、その後ヒドラジン水溶液1mlを溶液中で
濃度が1mMになるように添加し、2時間攪拌すること
によって単分散な金超微粒子を調製した。この微粒子を
拡大して観察したところ、それぞれ平均粒径が、CPC
Lを加えたものは22nm、DPCLを加えたものは1
10nm、CTACを加えたものは22nmで、それぞ
れ単分散したものであった。
[Example 1] Place three 1mM aqueous chloroauric acid solutions in 10ml colorimeter tubes and adjust the concentrations to 6mM for CPCL and CTAC, and 6mM for DPC.
A precipitate solution of a complex of chlorauric acid ions and a cationic surfactant was prepared by adding dropwise an aqueous solution of a cationic surfactant (L = 30mM) to a total volume of 20ml while stirring, and stirring for 1 hour. After that, the precipitate solution was allowed to stand for 24 hours, and the precipitate solution was dispersed by ultrasonication for 10 minutes. Then, 1 ml of hydrazine aqueous solution was added to the solution so that the concentration was 1 mM, and the solution was stirred for 2 hours. Monodisperse ultrafine gold particles were prepared. When these fine particles were enlarged and observed, the average particle size of each was found to be CPC.
The one with L added is 22 nm, the one with DPCL added is 1
The diameter was 10 nm, and the diameter was 22 nm when CTAC was added, and each was monodispersed.

【0009】[0009]

【実施例2】陽イオン性界面活性剤としてCPCLとD
PCLを用いそれぞれ加える量を、1×10−3〜4×
10−2/mol・dm−3とした以外は実施例1と同
様の方法で行ったところ図1のような結果であった。
[Example 2] CPCL and D as cationic surfactants
The amount to be added using PCL is 1 x 10-3 to 4 x
When the same method as in Example 1 was carried out except that the setting was 10-2/mol·dm-3, the results were as shown in FIG. 1.

【0010】0010

【実施例3】陽イオン性界面活性剤としてCPCLとC
TACを用いそれぞれ加える濃度を3、5/mol・d
m−3とし塩化金酸の濃度を0.1×10−3〜0.9
×10−3/mol・dm−3に変化させた以外は実施
例1と同様の方法で行ったところ図2のような結果であ
った。
[Example 3] CPCL and C as cationic surfactants
Add concentrations of 3 and 5/mol・d using TAC, respectively.
m-3, and the concentration of chloroauric acid is 0.1 x 10-3 to 0.9.
When the same method as in Example 1 was carried out except that the concentration was changed to x10-3/mol·dm-3, the results shown in FIG. 2 were obtained.

【0011】[0011]

【実施例4】塩化金酸の代わりに塩化パラジウム酸水溶
液を陽イオン性界面活性剤をCPCL3mMとし、還元
反応の際の液温を60℃の条件とした以外は実施例1と
同様の方法で行ったところ平均粒径    nmで単分
散した超微粒子が得られた。
[Example 4] The same method as in Example 1 was carried out, except that the cationic surfactant was 3 mM of CPCL, and the solution temperature during the reduction reaction was 60°C. As a result, monodispersed ultrafine particles with an average particle diameter of nm were obtained.

【0012】0012

【発明の効果】本発明は、以上の結果から明確なように
、従来法では得られなかった30〜100nmの貴金属
超微粒子の粒子径を調製することができ、反応条件等も
極めて簡便であり、貴金属の超微粒子をそれぞれの特性
を利用した触媒、ペースト、あるいは薄膜形成用材料の
原料等広く利用することが期待されるものである。
[Effects of the Invention] As is clear from the above results, the present invention makes it possible to prepare precious metal ultrafine particles with a particle diameter of 30 to 100 nm, which could not be obtained by conventional methods, and the reaction conditions are extremely simple. It is expected that ultrafine noble metal particles will be widely used as raw materials for catalysts, pastes, and thin film forming materials that take advantage of their respective properties.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例2の陽イオン性界面活性剤の加える量と
金超微粒子の粒径との関係グラフ。
FIG. 1 is a graph showing the relationship between the amount of cationic surfactant added and the particle size of ultrafine gold particles in Example 2.

【図2】実施例3の塩化金酸の濃度を変化と金超微粒子
の粒径との関係グラフ。
FIG. 2 is a graph showing the relationship between changing the concentration of chloroauric acid and the particle size of ultrafine gold particles in Example 3.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  貴金属含有溶液と還元剤を含む溶液を
反応させて、貴金属の超微粒子を調製するに際し、貴金
属含有溶液に陽イオン性界面活性剤を加えて錯体の沈澱
溶液を調製したのち、該沈澱を溶液中に分散させながら
還元剤を含む溶液を加えて反応させることを特徴とする
貴金属超微粒子の調製方法。
Claim 1: When preparing ultrafine noble metal particles by reacting a noble metal-containing solution with a reducing agent-containing solution, a cationic surfactant is added to the noble metal-containing solution to prepare a complex precipitation solution; A method for preparing ultrafine precious metal particles, which comprises adding a solution containing a reducing agent to react while dispersing the precipitate in a solution.
【請求項2】  前記陽イオン性界面活性剤がセチルピ
リジウムクロライド、ドデシルピリジウムクロライドま
たはセチルトリメチルアンモニウムクロライドの1種以
上である請求項1に記載の貴金属超微粒子の調製方法。
2. The method for preparing ultrafine noble metal particles according to claim 1, wherein the cationic surfactant is one or more of cetylpyridium chloride, dodecylpyridium chloride, or cetyltrimethylammonium chloride.
JP3251791A 1991-02-01 1991-02-01 Preparation of superfine noble metal particle Pending JPH04254504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3251791A JPH04254504A (en) 1991-02-01 1991-02-01 Preparation of superfine noble metal particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3251791A JPH04254504A (en) 1991-02-01 1991-02-01 Preparation of superfine noble metal particle

Publications (1)

Publication Number Publication Date
JPH04254504A true JPH04254504A (en) 1992-09-09

Family

ID=12361162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3251791A Pending JPH04254504A (en) 1991-02-01 1991-02-01 Preparation of superfine noble metal particle

Country Status (1)

Country Link
JP (1) JPH04254504A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018838A1 (en) * 2006-08-08 2008-02-14 Agency For Science, Technology And Research Method for preparing 10b enriched polyhedron boron clusters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018838A1 (en) * 2006-08-08 2008-02-14 Agency For Science, Technology And Research Method for preparing 10b enriched polyhedron boron clusters

Similar Documents

Publication Publication Date Title
US10981231B2 (en) Methods for production of silver nanostructures
US5134039A (en) Metal articles having a plurality of ultrafine particles dispersed therein
US4944985A (en) Method for electroless plating of ultrafine or colloidal particles and products produced thereby
Goia Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions
JP5070138B2 (en) Method for producing metal nanoparticles
US8529963B2 (en) Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from said dispersions
JP2010513718A (en) Method for producing monodisperse and stable nanometallic silver and product obtained by said method
Yakutik et al. Self-organization of silver nanoparticles forming on chemical reduction to give monodisperse spheres
JPS59116303A (en) Manufacture of fine copper powder
US5275999A (en) Process of preparing catalyst supporting highly dispersed metal particles
CN105642908A (en) Preparation method for aqueous phase solutions of monovalent gold complex ions (AuBr2<->) controllable in stability and preparation method for gold-silver alloy nanoparticles
JP3402214B2 (en) Method for producing metal fine particle dispersion
Yakutik et al. The formation of monodisperse spherical silver particles
US5275998A (en) Process of preparing catalyst supporting highly dispersed metal particles
Matijević Preparation and properties of well defined finely dispersed metals
JP2011017071A (en) Method for producing nanoparticle of binary metal
Larios-Rodríguez et al. Green-chemical synthesis of monodisperse Au, Pd and bimetallic (core–shell) Au–Pd, Pd–Au nanoparticles
JPH04254504A (en) Preparation of superfine noble metal particle
CN112916864A (en) Water-phase copper nanocrystal and preparation method and application thereof
JP3973236B2 (en) Method for producing monodisperse noble metal powder
JPH10265812A (en) Production of superfine silver particle
JP4683399B2 (en) Metal colloid liquid
JP2550586B2 (en) Method for producing fine silver alloy powder
JPH11189812A (en) Manufacture of granular silver powder
JPH06122905A (en) Production of globular fine silver powder