JPH04254140A - Method for controlling air conditioner - Google Patents

Method for controlling air conditioner

Info

Publication number
JPH04254140A
JPH04254140A JP3035658A JP3565891A JPH04254140A JP H04254140 A JPH04254140 A JP H04254140A JP 3035658 A JP3035658 A JP 3035658A JP 3565891 A JP3565891 A JP 3565891A JP H04254140 A JPH04254140 A JP H04254140A
Authority
JP
Japan
Prior art keywords
fuzzy
fuzzy rule
air conditioner
temperature
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3035658A
Other languages
Japanese (ja)
Inventor
Yoshiaki Ogawa
善朗 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP3035658A priority Critical patent/JPH04254140A/en
Publication of JPH04254140A publication Critical patent/JPH04254140A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To suit the control of an air conditioner to the indoor atmosphere by a method wherein the number of revolutions of the compressor at the start of the air-conditioning operation is controlled according to a second fuzzy rule and, after that, the control is effected according to a specified fuzzy rule. CONSTITUTION:From the room-air temperature Ta obtained by a room-air temperature detection part 2 and a set temperature Ts at a room-air temperature-setting part 1 a calculation part 5 calculates a temperature difference Ta-Ts, which represents the condition of the indoor atmosphere, and the rate of change of the room-air temperature, and the results are inputted to a fuzzy controller 6. At the start of the operation of an air conditioner a fuzzy calculation is carried out according to a fuzzy rule in a second fuzzy rule part 5. Subsequently there is a shift to a first fuzzy rule part 4; during usual operation a fuzzy calculation is carried out according to a fuzzy rule in the first fuzzy rule part 4. As a result of the calculations, an increase or decrease in the number of revolutions appropriate for a compressor 7 is obtained and the present number of revolutions is increased or decreased accordingly. This method brings the atmosphere in the room to an agreeable stabilized state in a shortened time.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は能力可変の圧縮機を搭
載している空気調和機に係り、更に詳しくはその圧縮機
の回転数を室内の温度変化等に応じてファジィ制御し、
運転開始から室内をより快適環境に維持する空気調和機
の制御方法に関するものである。
[Industrial Application Field] This invention relates to an air conditioner equipped with a compressor with variable capacity, and more specifically, the number of revolutions of the compressor is fuzzy controlled according to changes in indoor temperature, etc.
The present invention relates to a control method for an air conditioner that maintains a more comfortable indoor environment from the start of operation.

【0002】0002

【従来例】従来、この種の空気調和機においては、室内
機の吸い込み口に設けた吸込温度センサ(サーミスタ)
で吸込空気の温度を検出し、この温度をワイヤレスリモ
コンに設けた温度センサで検出した温度で補正して室温
とし、この室温とワイヤレスリモコンによる設定温度の
差を検出し、その温度差に応じて能力可変の圧縮機の運
転周波数を切り替える。この場合、例えばその温度差に
応じた複数ゾーン毎に、その運転周波数が設定されてお
り、当該空気調和機の能力可変圧縮機がその温度差に該
当するゾーンの運転周波数で制御される。
[Conventional Example] Conventionally, in this type of air conditioner, a suction temperature sensor (thermistor) was installed at the suction port of the indoor unit.
Detects the temperature of the intake air, corrects this temperature with the temperature detected by the temperature sensor installed in the wireless remote control, and sets it as room temperature.The difference between this room temperature and the temperature set by the wireless remote controller is detected, and the temperature is adjusted according to the temperature difference. Switches the operating frequency of the variable capacity compressor. In this case, for example, the operating frequency is set for each of a plurality of zones depending on the temperature difference, and the variable capacity compressor of the air conditioner is controlled at the operating frequency of the zone corresponding to the temperature difference.

【0003】しかし、上記空気調和機においては、室内
の環境変化に対する応答が遅く、特に外的要因、例えば
ドアの開閉時、直射日光等により室温が変化する場合、
人に不快感を与えることがあった。
However, the above-mentioned air conditioners have a slow response to changes in the indoor environment, especially when the room temperature changes due to external factors such as opening/closing a door, direct sunlight, etc.
It could make people feel uncomfortable.

【0004】そこで、上記室内の環境状態を検出し、こ
の検出値を入力として所定ファジィルール(制御ルール
)にしたがって演算し、この演算結果により圧縮機の回
転数を速やかに、かつ極め細かく制御する空気調和機が
種々提案されている。そのファジィルールの一つとして
、例えば下記の表1に示すものがあり、このファジィル
ールは入力1を室温(Ta)と設定温度(Ts)の差Δ
Tとし、入力2を室温(Ta)の時間的変化ΔTa/t
とした2次元マトリックスで表される。
[0004] Therefore, the above-mentioned indoor environmental condition is detected, and the detected value is used as input to perform calculations according to predetermined fuzzy rules (control rules), and the rotation speed of the compressor is quickly and extremely finely controlled based on the calculation results. Various air conditioners have been proposed. One such fuzzy rule is, for example, the one shown in Table 1 below, which uses input 1 as the difference Δ between the room temperature (Ta) and the set temperature (Ts).
T, input 2 is the temporal change in room temperature (Ta) ΔTa/t
It is expressed as a two-dimensional matrix.

【0005】[0005]

【表1】 なお、NLは負の方向に大きい、NMは負の方向に中程
度、NSは負の方向に小さい、ZOは略零、PSは正の
方向に小さい、PMは正の方向に中程度、PLは正の方
向に大きいを意味している。そして、例えば1例として
、IF  入力1=NL  AND入力2=NL  T
HEN  出力Δf=PLのファジィルールの場合、室
温が設定温度よりも非常に低く、室温が時間的に非常に
低下している場合、圧縮機の回転数Δfを非常に大きく
する。 なお、上記ファジィルールに用いられるメンバシップ関
数は図2乃至図4と同じものである。
[Table 1] Note that NL is large in the negative direction, NM is medium in the negative direction, NS is small in the negative direction, ZO is approximately zero, PS is small in the positive direction, and PM is small in the positive direction. Medium, PL means large in the positive direction. For example, as an example, IF input 1 = NL AND input 2 = NL T
In the case of the fuzzy rule of HEN output Δf=PL, if the room temperature is much lower than the set temperature and the room temperature is dropping significantly over time, the rotation speed Δf of the compressor is made very large. The membership functions used in the fuzzy rules are the same as those shown in FIGS. 2 to 4.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記空
気調和機のファジィ制御においては、運転中の制御を重
要視しているため、その運転中においては室内を快適環
境に維持することが可能であるが、朝や帰宅時等の運転
開始時においては、例えば室温が非常に低下していたり
、室温と設定温度の差が大きいと、図9の一点鎖線Aに
示すように、その室温が設定温度に達するまで時間(同
図のts時間)がかかるという不具合が生じるという問
題点があった。逆に、上記ファジィ制御が運転開始時を
重要視したものであると、その運転開始時においては良
好な制御が行われるが、運転中においては室内の快適環
境に維持する制御が困難である。すなわち、空気調和機
の運転開始時と運転中とでは室内の環境状態が異なって
いるからである。
[Problem to be Solved by the Invention] However, in the fuzzy control of the air conditioner described above, since control is emphasized during operation, it is possible to maintain a comfortable indoor environment during operation. However, at the time of starting operation in the morning or when returning home, for example, if the room temperature is very low or there is a large difference between the room temperature and the set temperature, the room temperature will be lower than the set temperature, as shown by the dashed line A in Figure 9. There is a problem in that it takes a long time (time ts in the figure) to reach . On the other hand, if the fuzzy control emphasizes the start of operation, good control is performed at the start of operation, but it is difficult to maintain a comfortable indoor environment during operation. That is, this is because the indoor environmental conditions are different between when the air conditioner starts operating and when it is in operation.

【0007】また、上記運転開始時においてはファジィ
制御を用いず、通常の制御を行なうことが考えられるが
、この場合図9の二点鎖線Bに示すように、室温がオー
バーシュートし、それ以後室内の環境を良好にするまで
時間がかかり、その分電力消費が多くなるという問題点
が生じる。
[0007]Also, it is conceivable to perform normal control without using the fuzzy control at the start of the operation, but in this case, as shown by the two-dot chain line B in Fig. 9, the room temperature overshoots and thereafter A problem arises in that it takes time to improve the indoor environment, and power consumption increases accordingly.

【0008】この発明は上記課題に鑑みなされたもので
あり、その目的は室内の環境状態、特に運転開始時と運
転中とでは異なるファジィルールによりファジィ制御を
行なうことができ、その環境状態に応じて適切な制御を
行なうことができるようにした空気調和機の制御方法を
提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to perform fuzzy control using different fuzzy rules depending on the indoor environmental condition, especially at the start of operation and during operation, and to perform fuzzy control according to the environmental condition. An object of the present invention is to provide a control method for an air conditioner that allows appropriate control to be performed.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、この発明は、能力可変の圧縮機を搭載し、室内温度
、室外温度、湿度、輻射熱等により室内の環境状態を検
出し、この検出値を入力とし、所定ファジィルールにし
たがってファジィ演算し、このファジィ演算結果により
その圧縮機の回転数を制御する空気調和機の制御方法で
あって、少なくとも上記所定ファジィルールと異なる第
2のファジィルールを有し、当該空気調和機の運転開始
時にはその第2のファジィルールにしたがって圧縮機の
回転数を制御し、しかる後上記所定ファジィルールにし
たがって圧縮機の回転数を制御するようにしたことを要
旨とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention is equipped with a variable capacity compressor, detects the indoor environmental condition based on indoor temperature, outdoor temperature, humidity, radiant heat, etc. A control method for an air conditioner, in which a detected value is input, a fuzzy calculation is performed according to a predetermined fuzzy rule, and the rotation speed of the compressor is controlled based on the result of the fuzzy calculation, the method comprising at least a second fuzzy calculation different from the predetermined fuzzy rule. The system has a rule, and when the air conditioner starts operating, the rotation speed of the compressor is controlled according to the second fuzzy rule, and after that, the rotation speed of the compressor is controlled according to the predetermined fuzzy rule. The gist is:

【0010】0010

【作用】上記制御方法としたので、空気調和機の運転開
始時には、室内の環境状態、室温と設定温度の差および
室温の温度変化率を入力し、上記第2のファジィルール
にしたがってファジィ演算し、この演算結果により圧縮
機の回転数が可変制御される。また、その運転中にあっ
ては、例えばその運転開始から所定時間経過後には、室
温と設定温度の差および室温の温度変化率を入力し、そ
の第2のファジィルールから所定ファジィルール(第1
のファジィルール)に切り替えられ、この第1のファジ
ィルールにしたがってファジィ演算し、この演算結果に
より圧縮機の回転数が可変制御される。すなわち、空気
調和機の運転開始時とその運転中ではファジィ制御が切
り替えられ、それぞれ最適なファジィ制御が行われる。
[Operation] With the above control method, when the air conditioner starts operating, the indoor environmental conditions, the difference between the room temperature and the set temperature, and the rate of change in room temperature are input, and fuzzy calculations are performed according to the second fuzzy rule above. , the rotation speed of the compressor is variably controlled based on this calculation result. During operation, for example, after a predetermined period of time has elapsed from the start of operation, the difference between the room temperature and the set temperature and the temperature change rate of the room temperature are input, and a predetermined fuzzy rule (first
Fuzzy calculation is performed according to this first fuzzy rule, and the rotation speed of the compressor is variably controlled based on the calculation result. That is, the fuzzy control is switched at the start of operation of the air conditioner and during its operation, and the optimal fuzzy control is performed respectively.

【0011】[0011]

【実施例】以下、この発明の実施例を図1乃至図9に基
づいて説明する。図1において、この空気調和機は、室
温を設定するリモコン等の室温設定部1と、当該室内機
の吸込口に設けたサーミスタ等の室温検出部2と、その
室内環境状態の検出温度(Ta)および設定温度(Ts
)等により、室温(Ta)と設定温度(Ts)の差(温
度差ΔT)を算出し、かつその室温(Ta)の時間的変
化(温度変化率ΔTa/t)を算出する演算部3と、こ
れら温度差ΔTおよび温度変化ΔTa/t等の環境状態
を入力とし、下記の表1に示す制御ルール(ファジィル
ール)の第1のファジィルール部4あるいは下記の表2
に示す第2のファジィルール部5の何れか一方のファジ
ィルールにしたがってファジィ演算するファジィコント
ローラ6と、圧縮機7と、そのファジィ演算結果に応じ
て圧縮機7の回転数を制御する圧縮機制御部(インバー
タ制御部)8とを備えている。
Embodiments Hereinafter, embodiments of the present invention will be explained based on FIGS. 1 to 9. In FIG. 1, this air conditioner includes a room temperature setting unit 1 such as a remote control that sets the room temperature, a room temperature detection unit 2 such as a thermistor provided at the suction port of the indoor unit, and a detected temperature (Ta) of the indoor environmental state. ) and set temperature (Ts
), etc., to calculate the difference (temperature difference ΔT) between the room temperature (Ta) and the set temperature (Ts), and calculate the temporal change in the room temperature (Ta) (temperature change rate ΔTa/t). , these environmental conditions such as temperature difference ΔT and temperature change ΔTa/t are input, and the first fuzzy rule part 4 of the control rule (fuzzy rule) shown in Table 1 below or Table 2 below is input.
A fuzzy controller 6 that performs fuzzy calculations according to one of the fuzzy rules of the second fuzzy rule section 5 shown in FIG. (inverter control unit) 8.

【0012】0012

【表2】 なお、空気調和機の運転開始時には第2のファジィルー
ル部5が用いられ、このファジィ変数の温度差ΔT(入
力1)、変化率ΔTa/t(入力2)、出力(回転数Δ
f)には図2乃至図4のメンバシップ関数が用いられて
いる。また、図2乃至図4のメンバシップ関数は第1の
ファジィルール部4のファジィ変数の温度差ΔT(入力
1)、変化率ΔTa/t(入力2)、出力(回転数Δf
)と同じである。
[Table 2] When the air conditioner starts operating, the second fuzzy rule section 5 is used, and the fuzzy variables temperature difference ΔT (input 1), rate of change ΔTa/t (input 2), output (rotational speed Δ
The membership functions of FIGS. 2 to 4 are used for f). Furthermore, the membership functions in FIGS. 2 to 4 are based on the temperature difference ΔT (input 1), rate of change ΔTa/t (input 2), and output (rotational speed Δf) of the fuzzy variables of the first fuzzy rule unit 4.
) is the same as

【0013】次に、上記構成の空気調和機に適用される
制御方法を図2乃至図9を参照して説明する。まず、こ
の空気調和機の暖房運転が開始され、このとき室内の環
境状態、温度差ΔT(入力1)および温度変化率ΔTa
/t(入力2)が図5および図6の矢印に示す値である
ものとすると、ファジィコントローラ6にはそれら図の
矢印に示す値が入力されるが、第2のファジィルール部
5のファジィルールにしたがってファジィ演算が行われ
る。この場合、以下に示す4個のファジィルールにした
がってファジィ演算が行われる。
Next, a control method applied to the air conditioner having the above configuration will be explained with reference to FIGS. 2 to 9. First, heating operation of this air conditioner is started, and at this time, the indoor environmental condition, the temperature difference ΔT (input 1), and the temperature change rate ΔTa
Assuming that /t (input 2) is the value shown by the arrow in FIGS. 5 and 6, the value shown by the arrow in those figures is input to the fuzzy controller 6, but the fuzzy Fuzzy operations are performed according to rules. In this case, fuzzy operations are performed according to the four fuzzy rules shown below.

【0014】   IF  入力1=NL  AND  入力2=ZO
  THEN  出力=PL…(1)  IF  入力
1=NL  AND  入力2=PS  THEN  
出力=PL…(2)  IF  入力1=NS  AN
D  入力2=ZO  THEN  出力=PL…(3
)  IF  入力1=NS  AND  入力2=P
S  THEN  出力=PL…(4)そして、上記(
1)乃至(4)式の各ファジィルールにおいて、前件部
の各変数と入力値の最大(MAX)をとり、それらの最
小(MIN)をとって前件部の適合度を求め、後件部の
変数と前件部の適合度の最小(MIN)をとって各ファ
ジィルールの結論とする。例えば(1)式のファジィル
ールの場合を例にして説明すると、図5および図6の矢
印に示されるように、前件部においては温度差ΔTの入
力1とNLのメンバシップ関数の交差点の縦軸値aが得
られ、後件部においては回転数の増減量のPLのメンバ
シップ関数をその得られた縦軸値aで切断し、この切断
下部の台形図形(図7の斜線部分)がファジィルールの
演算結果にされる。
IF input 1=NL AND input 2=ZO
THEN Output = PL...(1) IF Input 1 = NL AND Input 2 = PS THEN
Output = PL...(2) IF Input 1 = NS AN
D Input 2=ZO THEN Output=PL...(3
) IF input 1=NS AND input 2=P
S THEN Output = PL...(4) And the above (
In each fuzzy rule of formulas 1) to (4), take the maximum (MAX) of each variable and input value of the antecedent part, take the minimum (MIN) of them to find the fitness of the antecedent part, and then calculate the consequent part. The conclusion of each fuzzy rule is determined by taking the minimum (MIN) degree of fitness between the part variable and the antecedent part. For example, to explain the case of the fuzzy rule in equation (1), as shown by the arrows in FIGS. 5 and 6, in the antecedent part, the intersection of the input 1 of the temperature difference ΔT and the membership function of NL The vertical axis value a is obtained, and in the consequent part, the PL membership function of the increase/decrease in rotational speed is cut at the obtained vertical axis value a, and the trapezoidal figure at the bottom of this cut (hatched area in Fig. 7) is obtained. is made into the calculation result of the fuzzy rule.

【0015】続いて、同様にして残りのファジィルール
に対する結論が求めれた後、全結論について最大(MA
X)がとられ、かつその重心に対応する値が推論結果と
して出力される。上記(1)乃至(4)式のファジィル
ールの場合には、上記回転数の増減量Δfのメンバシッ
プ関数PLについて上記(1)式のファジィルールの演
算結果が最大(MAX)であることから、図7の斜線に
示す台形図が演算結論にされ、この図形の重心が推論結
果として出力される。なお、その出力値Δfは、図7の
図形の重心を横軸に降ろした点である。この場合、同図
から明らかなように、その出力値Δfが+1に近くなっ
ていることから、圧縮機の回転数の増量Δfは略最大値
にされることになる。
Subsequently, after the conclusions for the remaining fuzzy rules are found in the same way, the maximum (MA
X) is taken, and the value corresponding to its center of gravity is output as the inference result. In the case of the fuzzy rules in equations (1) to (4) above, since the calculation result of the fuzzy rule in equation (1) is the maximum (MAX) for the membership function PL of the increase/decrease Δf in the rotation speed, , the trapezoidal diagram indicated by diagonal lines in FIG. 7 is used as the calculation conclusion, and the center of gravity of this diagram is output as the inference result. Note that the output value Δf is the point where the center of gravity of the figure in FIG. 7 is placed on the horizontal axis. In this case, as is clear from the figure, since the output value Δf is close to +1, the increase Δf in the rotational speed of the compressor is approximately the maximum value.

【0016】ここで、上記ファジィコントローラ6にて
第1のファジィルール部4にしたがってファジィ演算が
行われた場合を説明すると、この場合入力1および入力
2の値が上記例と同じであれば、以下に示す3個のファ
ジィルールにしたがってファジィ演算が行われる。
[0016] Now, to explain the case where the fuzzy controller 6 performs the fuzzy operation according to the first fuzzy rule unit 4, in this case, if the values of input 1 and input 2 are the same as in the above example, Fuzzy operations are performed according to the three fuzzy rules shown below.

【0017】   IF  入力1=NL  AND  入力2=ZO
  THEN  出力=PM…(5)  IF  入力
1=NL  AND  入力2=PS  THEN  
出力=PS…(6)  IF  入力1=NS  AN
D  入力2=ZO  THEN  出力=PS…(7
)そして、上記(5)乃至(7)式の各ファジィルール
について、上記同様にファジィ演算を行なうと、図8の
斜線部分に示す演算結果が得られる。この場合、同図か
ら明らかなように、重心Δfが図7の台形図形よりも左
側(0側)に寄っており、つまり回転数の増量Δfがそ
れだけ少なくなる。したがって、図9の二点鎖線Bに示
すように、表1に示す第1のファジィルール部4による
ファジィ演算においては回転数の増量Δfがそれほど大
きくならず、室温(Ta)が設定温度(Ts)に達する
まではある程度の時間(同図のts時間)が必要となる
IF input 1=NL AND input 2=ZO
THEN Output = PM...(5) IF Input 1 = NL AND Input 2 = PS THEN
Output = PS...(6) IF Input 1 = NS AN
D Input 2=ZO THEN Output=PS...(7
) Then, when fuzzy calculations are performed in the same manner as above for each of the fuzzy rules in equations (5) to (7) above, the calculation results shown in the shaded area in FIG. 8 are obtained. In this case, as is clear from the figure, the center of gravity Δf is closer to the left side (0 side) than the trapezoidal shape in FIG. 7, that is, the increase Δf in the number of rotations is correspondingly smaller. Therefore, as shown by the two-dot chain line B in FIG. ) It takes a certain amount of time (ts time in the figure).

【0018】しかし、図9の実線Cに示すように、表2
に示す第2のファジィルール部5によるファジィ演算に
おいてはその回転数の増減量Δfが非常に大きくなるこ
とから、室温(Ta)を急峻に上げ、速やかに設定温度
(Ts)に近づけることができる。また、その室温(T
a)が設定温度(Ts)に接近したときには、つまりそ
の温度差ΔTが略零に近づいたときには、表2に示すフ
ァジィルールおよび各メンバシップ関数によると、回転
数の増減量Δfが極め細かく、かつ速やかに変えられる
ため、室温(Ta)が設定温度(Ts)を大幅に越える
こともなく、またむらのない安定した制御が行われる。
However, as shown by the solid line C in FIG.
In the fuzzy calculation by the second fuzzy rule unit 5 shown in FIG. 1, the increase/decrease Δf in the rotational speed becomes very large, so that the room temperature (Ta) can be rapidly raised and quickly brought close to the set temperature (Ts). . Also, the room temperature (T
When a) approaches the set temperature (Ts), that is, when the temperature difference ΔT approaches approximately zero, according to the fuzzy rules and membership functions shown in Table 2, the increase/decrease Δf in the rotation speed becomes extremely fine. Moreover, since it can be changed quickly, the room temperature (Ta) does not significantly exceed the set temperature (Ts), and even and stable control is performed.

【0019】続いて、図9に示すように、一定時間経過
したときには、例えば室温(Ta)が設定温度(Ts)
近傍で保たれるようになったときには、ファジィルール
を切り替え、表1に示す第1のファジィルール部4のル
ールにしたがってファジィ演算が行われる。すなわち、
空気調和機の運転開始時のみ、第2のファジィルール部
5のルールが用いられるが、しかる後の通常運転中には
第1のファジィルール部4の制御ルールが用いられる。
Subsequently, as shown in FIG. 9, when a certain period of time has elapsed, for example, the room temperature (Ta) reaches the set temperature (Ts).
When the values are maintained close to each other, the fuzzy rules are switched and fuzzy calculations are performed according to the rules of the first fuzzy rule unit 4 shown in Table 1. That is,
The rules of the second fuzzy rule unit 5 are used only when the air conditioner starts operating, but the control rules of the first fuzzy rule unit 4 are used thereafter during normal operation.

【0020】このように、室内の環境状態に応じて最適
のファジィルールに切り替え、この切り替えたファジィ
ルールにしたがってファジィ演算制御を行なうようにし
たので、各環境状態に応じたファジィ演算を行なうこと
ができることから、室内をより快適環境に維持すること
ができる。
[0020] In this way, the optimal fuzzy rule is switched according to the indoor environmental condition, and the fuzzy calculation control is performed according to the switched fuzzy rule, so that the fuzzy calculation can be performed according to each environmental condition. This allows you to maintain a more comfortable indoor environment.

【0021】なお、上記実施例では暖房運転を例にして
説明したが、冷房運転であっても同様のファジィ制御を
行なうことができ、第1および第2のファジィルール部
4,5の他に異なるファジィルールを用いてもよい。ま
た、室内の環境状態を検出する方法としては、室温と設
定温度差、室温の温度変化率だけなく、他の条件によっ
てもよい。さらに、上記第1のファジィルール部4と第
2のファジィルール部5の切り替えは、例えば室温(T
a)が設定温度(Ts)に達したとき、その設定温度(
Ts)に達してから所定時間経過したとき、あるいは室
温(Ta)が所定温度(Ts±α)に達したときであっ
てもよい。さらに、上記発明のファジィ演算は代表的な
ものであり、この他にも種々メンバシップ関数を用いて
もよい。さらに、ファジィコントローラ6を上記ファジ
ィ演算機能を有するマイクロコンピュータあるいはディ
スクリートな制御回路等に代えてもよい。
Although the above embodiment has been explained using heating operation as an example, similar fuzzy control can be performed even in cooling operation, and in addition to the first and second fuzzy rule sections 4 and 5, Different fuzzy rules may be used. Further, as a method of detecting the indoor environmental condition, it is possible to use not only the difference between the room temperature and the set temperature, the temperature change rate of the room temperature, but also other conditions. Furthermore, switching between the first fuzzy rule section 4 and the second fuzzy rule section 5 is performed at, for example, room temperature (T
a) reaches the set temperature (Ts), the set temperature (
The temperature may be set when a predetermined time has elapsed after reaching Ts), or when the room temperature (Ta) reaches a predetermined temperature (Ts±α). Further, the fuzzy operation of the invention described above is a typical one, and various other membership functions may also be used. Furthermore, the fuzzy controller 6 may be replaced with a microcomputer or a discrete control circuit having the above-mentioned fuzzy calculation function.

【0022】[0022]

【発明の効果】以上説明したように、この発明によれば
、室内の環境状態を検出し、この検出値を入力とし、所
定ファジィルールにしたがってファジィ演算し、この演
算結果により圧縮機の回転数を制御する空気調和機の制
御方法であって、その所定ファジィルールと異なる第2
のファジィルールを有し、当該空気調和機の運転開始時
にはその第2のファジィルールにしたがってファジィ演
算し、この演算結果により回転数を制御するようにした
ので、室内の環境状態の異なる運転開始時および運転中
にあっては最適のファジィルールを用いることができ、
特に運転開始時における室内の環境をより早く、かつ安
定して良好なものにすることができ、しかる後の運転中
にあっても室内を快適環境に維持することができるとい
う効果がある。
As explained above, according to the present invention, the indoor environmental condition is detected, the detected value is used as input, fuzzy calculation is performed according to a predetermined fuzzy rule, and the rotation speed of the compressor is calculated based on the calculation result. A method for controlling an air conditioner that controls a second fuzzy rule that is different from the predetermined fuzzy rule.
When the air conditioner starts operating, fuzzy calculations are performed according to the second fuzzy rule, and the rotation speed is controlled based on the calculation result. And while driving, optimal fuzzy rules can be used.
In particular, the indoor environment can be quickly and stably made favorable at the start of driving, and the indoor environment can be maintained in a comfortable environment even during subsequent driving.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例を示す空気調和機の概略的
制御ブロック図
FIG. 1 is a schematic control block diagram of an air conditioner showing an embodiment of the present invention.

【図2】図1に示す空気調和機のファジィ演算に用いた
温度差ΔTのメンバシップ関数のグラフ図
[Figure 2] A graph of the membership function of the temperature difference ΔT used in the fuzzy calculation of the air conditioner shown in Figure 1.

【図3】図1
に示す空気調和機のファジィ演算に用いた温度変化率Δ
Ta/tのメンバシップ関数のグラフ図
[Figure 3] Figure 1
Temperature change rate Δ used for fuzzy calculation of air conditioner shown in
Graph diagram of membership function of Ta/t

【図4】図1に
示す空気調和機のファジィ演算結果を得る圧縮機の回転
数の増減量Δfのメンバシップ関数のグラフ図
FIG. 4 is a graph diagram of the membership function of the increase/decrease Δf in the rotational speed of the compressor to obtain the fuzzy calculation result of the air conditioner shown in FIG.

【図5】図1に示す空気調和機における1ファジィルー
ルの演算を説明する図
[Fig. 5] A diagram explaining the calculation of one fuzzy rule in the air conditioner shown in Fig. 1.

【図6】図1に示す空気調和機における1ファジィルー
ルの演算を説明する図
[Fig. 6] A diagram explaining the calculation of one fuzzy rule in the air conditioner shown in Fig. 1.

【図7】図1に示す空気調和機における1ファジィルー
ルの演算結果を説明する図
[Fig. 7] A diagram explaining the calculation results of one fuzzy rule in the air conditioner shown in Fig. 1.

【図8】図1に示す空気調和機における1ファジィルー
ルの演算結果を説明する図
[Fig. 8] A diagram explaining the calculation results of one fuzzy rule in the air conditioner shown in Fig. 1.

【図9】室温の温度変化曲線を示すグラフ図[Figure 9] Graph diagram showing the temperature change curve of room temperature

【符号の説明】[Explanation of symbols]

1  室温設定部 2  室温検出部 3  演算部 4  第1のファジィルール部 5  第2のファジィルール部 6  ファジィコントローラ 7  圧縮機 8  圧縮機制御部 1 Room temperature setting section 2 Room temperature detection part 3 Arithmetic unit 4 First fuzzy rule section 5 Second fuzzy rule section 6 Fuzzy controller 7 Compressor 8 Compressor control section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  能力可変の圧縮機を搭載し、室内温度
、室外温度、湿度、輻射熱等により室内の環境状態を検
出し、この検出値を入力とし、所定ファジィルールにし
たがってファジィ演算し、このファジィ演算結果により
その圧縮機の回転数を制御する空気調和機の制御方法で
あって、少なくとも前記所定ファジィルールと異なる第
2のファジィルールを有し、当該空気調和機の運転開始
時にはその第2のファジィルールにしたがって圧縮機の
回転数を制御し、しかる後前記所定ファジィルールにし
たがって圧縮機の回転数を制御するようにしたことを特
徴とする空気調和機の制御方法。
[Claim 1] Equipped with a variable capacity compressor, the indoor environmental condition is detected based on indoor temperature, outdoor temperature, humidity, radiant heat, etc., and this detected value is used as input and fuzzy calculation is performed according to a predetermined fuzzy rule. A control method for an air conditioner that controls the rotation speed of a compressor based on a fuzzy calculation result, the method having at least a second fuzzy rule different from the predetermined fuzzy rule, and when the air conditioner starts operating, the second fuzzy rule is A method for controlling an air conditioner, comprising: controlling the rotation speed of the compressor according to the fuzzy rule, and then controlling the rotation speed of the compressor according to the predetermined fuzzy rule.
【請求項2】  前記ファジィルールによる演算に際し
、室温と設定温度の差およびその室温の温度変化率を入
力とし、この入力による演算結果を前記圧縮機の回転数
の増減量とした請求項1記載の空気調和機の制御方法。
2. In the calculation based on the fuzzy rule, the difference between the room temperature and the set temperature and the temperature change rate of the room temperature are input, and the calculation result based on this input is used as the increase/decrease in the rotation speed of the compressor. How to control an air conditioner.
【請求項3】  前記第2のファジィルールは、前記所
定ファジィルールと比較し、少なくとも室温が設定温度
(Ts)に近づくまでは前記圧縮機の回転数をより高く
した請求項1記載の空気調和機の制御方法。
3. The air conditioner according to claim 1, wherein the second fuzzy rule makes the rotation speed of the compressor higher than the predetermined fuzzy rule until at least the room temperature approaches a set temperature (Ts). How to control the machine.
JP3035658A 1991-02-04 1991-02-04 Method for controlling air conditioner Pending JPH04254140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3035658A JPH04254140A (en) 1991-02-04 1991-02-04 Method for controlling air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3035658A JPH04254140A (en) 1991-02-04 1991-02-04 Method for controlling air conditioner

Publications (1)

Publication Number Publication Date
JPH04254140A true JPH04254140A (en) 1992-09-09

Family

ID=12447975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3035658A Pending JPH04254140A (en) 1991-02-04 1991-02-04 Method for controlling air conditioner

Country Status (1)

Country Link
JP (1) JPH04254140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240571A (en) * 2011-05-20 2012-12-10 Mitsubishi Electric Corp Air conditioner for vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875637A (en) * 1981-10-30 1983-05-07 Toshiba Corp Control system of heating operation
JPH02219941A (en) * 1989-02-21 1990-09-03 Mitsubishi Heavy Ind Ltd Method for controlling air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875637A (en) * 1981-10-30 1983-05-07 Toshiba Corp Control system of heating operation
JPH02219941A (en) * 1989-02-21 1990-09-03 Mitsubishi Heavy Ind Ltd Method for controlling air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240571A (en) * 2011-05-20 2012-12-10 Mitsubishi Electric Corp Air conditioner for vehicle

Similar Documents

Publication Publication Date Title
JPH0861737A (en) Air conditioner
JP2001280663A (en) Air conditioner and method for controlling it
JPH06185787A (en) Controlling method of air conditioner
JP3276028B2 (en) Ventilation equipment
JP3188048B2 (en) Air conditioner
JPH04254140A (en) Method for controlling air conditioner
JPH06185796A (en) Controlling method of air conditioner
JP3523963B2 (en) Control method of air conditioner
JPH0322322B2 (en)
JPH0886489A (en) Air conditioning system
JPH06185786A (en) Controlling method of air conditioner
JPH06137635A (en) Control method of air conditioner
JPH06159773A (en) Controller for air conditioner
JP2508511Y2 (en) Air conditioner
JPH06109307A (en) Air conditioner controlling method
JPH05133588A (en) Air conditioner
JPH04236049A (en) Controlling method for air-conditioner
JPH08152176A (en) Air conditioner
JPH06147610A (en) Control for air conditioner
JPH04363534A (en) Control device for air-conditioner
JP2770070B2 (en) Air conditioner
JPH04236050A (en) Air-conditioner
JPH06147585A (en) Air conditioner
JPS6064019A (en) Heating control device for vehicle
JP2870928B2 (en) Air flow control method for air conditioner

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960709