JPH0425079B2 - - Google Patents

Info

Publication number
JPH0425079B2
JPH0425079B2 JP12771286A JP12771286A JPH0425079B2 JP H0425079 B2 JPH0425079 B2 JP H0425079B2 JP 12771286 A JP12771286 A JP 12771286A JP 12771286 A JP12771286 A JP 12771286A JP H0425079 B2 JPH0425079 B2 JP H0425079B2
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
reaction tank
tank
methane
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12771286A
Other languages
Japanese (ja)
Other versions
JPS62282695A (en
Inventor
Akihiro Nagano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP61127712A priority Critical patent/JPS62282695A/en
Publication of JPS62282695A publication Critical patent/JPS62282695A/en
Publication of JPH0425079B2 publication Critical patent/JPH0425079B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機物を多く含む廃水である下水、
屎尿、産業廃水等をメタン醗酵による嫌気性処理
を行なう廃水処理方法の改良に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to sewage, which is wastewater containing a large amount of organic matter;
This invention relates to the improvement of a wastewater treatment method that performs anaerobic treatment of human waste, industrial wastewater, etc. by methane fermentation.

〔従来の技術〕[Conventional technology]

従来、メタン醗酵は、屎尿、下水汚泥、高濃度
産業廃水に適用されているが、処理水として窒
素、リンを含む外、硫化水素に代表される硫黄の
還元物を多く含み、臭気を発生したり、生物に阻
害を与えたりする。そのため、下水処理場ではメ
タン醗酵の脱水後の絞り液を活性汚泥槽で再処理
している。屎尿処理では硝化、脱窒処理を行なう
必要がある。
Traditionally, methane fermentation has been applied to human waste, sewage sludge, and highly concentrated industrial wastewater, but the treated water contains not only nitrogen and phosphorus, but also a large amount of sulfur reduction products such as hydrogen sulfide, which generates odors. or cause harm to living organisms. Therefore, at sewage treatment plants, the squeezed fluid after dehydration from methane fermentation is reprocessed in activated sludge tanks. When processing human waste, it is necessary to perform nitrification and denitrification treatments.

然し、これらの後処理工程は、酸素を溶解する
ために動力が必要となること、還元性物質を酸化
するための酸素が必要となること、硫黄により生
物の増殖や代謝が阻害されること、生物を生育さ
せるために補助的な基質の添加が必要となること
といつた問題点を有している。
However, these post-treatment steps require power to dissolve oxygen, oxygen is required to oxidize reducing substances, and sulfur inhibits the growth and metabolism of organisms. It has problems such as the need to add an auxiliary substrate to grow organisms.

そこで、窒素成分を含む汚水を嫌気性処理工程
で処理した時に発生する硫化水素を硝化脱窒工程
で自栄養細菌を利用して脱窒することが提案され
ている(特公昭60−3876号公報参照)。
Therefore, it has been proposed to denitrify hydrogen sulfide generated when wastewater containing nitrogen components is treated in an anaerobic treatment process using autotrophic bacteria in a nitrification-denitrification process (Japanese Patent Publication No. 3876/1983). reference).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然し、特公昭60−3876号公報に係る発明は、脱
窒する点に於て優れているが、硝化工程を含むた
めに酸素を溶解するための動力が必要となる。
又、汚水中のリンを除去することが出来ず、而
も、補助的な基質を必要とする場合がある等の不
具合があつた。
However, although the invention disclosed in Japanese Patent Publication No. 60-3876 is superior in denitrification, it requires power to dissolve oxygen because it includes a nitrification step.
In addition, there were other problems such as the inability to remove phosphorus from wastewater and the need for an auxiliary substrate.

〔発明の目的〕[Purpose of the invention]

本発明は斯かる従来の問題点を解決するために
為されたもので、その目的は、嫌気性下で光合成
反応を行ない硫化水素を硫酸へ転換する紅色硫黄
細菌や緑色硫黄細菌の働きにより生物細胞材料と
して除去することにより脱窒とリンの除去を行な
うことにある。
The present invention was made to solve these conventional problems, and its purpose is to improve the production of living organisms through the action of purple sulfur bacteria and green sulfur bacteria, which carry out photosynthetic reactions under anaerobic conditions and convert hydrogen sulfide into sulfuric acid. The purpose is to denitrify and remove phosphorus by removing it as cell material.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る廃水の処理方法は、下水、屎尿、
産業廃水等を、メタン醗酵槽に供給し、ここでメ
タン醗酵し、硫化水素を含むメタンガスと処理液
とに分離し、処理液を光合成反応槽に供給すると
共に、硫化水素を含むメタンガスを光合成反応槽
へ吹き込み、光合成反応槽に於て、嫌気性下で光
を照射することによつて、紅色硫酸細菌又は緑色
硫酸細菌の一種若しくは数種を優先的に培養し、
この細菌の代謝、増殖活動により、光合成反応を
行い、硫化水素を硫酸に転換すると共に、ATP
を合成することによつて、遊離リン酸を細胞内に
固定化し、窒素、リンを除去するものである。
The wastewater treatment method according to the present invention includes sewage, human waste,
Industrial wastewater is supplied to a methane fermentation tank, where methane is fermented, separated into methane gas containing hydrogen sulfide and a treated liquid, and the treated liquid is supplied to a photosynthesis reaction tank, where methane gas containing hydrogen sulfide is subjected to photosynthesis reaction. By blowing into a tank and irradiating light under anaerobic conditions in a photosynthesis reaction tank, one or more types of purple sulfate bacteria or green sulfate bacteria are preferentially cultivated,
Through the metabolism and growth activities of this bacterium, photosynthetic reactions occur, converting hydrogen sulfide to sulfuric acid, and ATP
By synthesizing this, free phosphoric acid is immobilized within cells and nitrogen and phosphorus are removed.

又、本発明に於て、メタン醗酵による処理は、
廃水の有機物分解率が高く、処理水のCODcrの
80%以上が揮発性有機酸であり、有機物のメタン
への転換率が高く、処理液中の窒素に対する
CODの割合が10以下になるような廃水を処理す
るものとする。
In addition, in the present invention, the treatment by methane fermentation is
The organic matter decomposition rate of wastewater is high, and the CODcr of treated water is low.
More than 80% of the organic acids are volatile organic acids, and the conversion rate of organic matter to methane is high.
Wastewater shall be treated so that the COD ratio is less than 10.

更に、本発明に於て、メタン醗酵による処理
は、処理液中の全硫黄量が50mg/以上の濃度で
含まれる廃水を処理するものとする。
Furthermore, in the present invention, the treatment by methane fermentation is intended to treat wastewater in which the total amount of sulfur in the treatment liquid is contained in a concentration of 50 mg/or more.

更に、本発明に於て、メタン醗酵の処理水で懸
濁物質を多く含む場合は、沈降分離フイルタによ
り処理する。又、汚泥状のものは、凝集、脱水等
の処理を行なう。
Furthermore, in the present invention, if the treated water for methane fermentation contains a large amount of suspended solids, it is treated using a sedimentation separation filter. In addition, sludge-like material is subjected to treatments such as coagulation and dewatering.

又、本発明に於て、光合成を行なう光合成バイ
オリアクタに供給される液は、必要な場合は、沈
降分離フイルタにより処理するか、又は、汚泥状
のものは、凝集、脱水等の処理を行ない、比較的
透明になつたもので、少なくとも光が透過するも
のとする。
In addition, in the present invention, the liquid supplied to the photosynthetic bioreactor that performs photosynthesis is treated with a sedimentation separation filter, if necessary, or the liquid in the form of sludge is subjected to treatments such as coagulation and dehydration. , which is relatively transparent and allows at least light to pass through it.

本発明の光合成反応で除去される有機物は、揮
発性有機酸の中でも酢酸がその主なものである。
硫化水素と炭酸ガスと水より、細胞材料が合成さ
れる反応は次式で示される。
Among the volatile organic acids, acetic acid is the main organic substance removed in the photosynthetic reaction of the present invention.
The reaction in which cell materials are synthesized from hydrogen sulfide, carbon dioxide, and water is shown by the following equation.

これにより、アンモニア性窒素1モルを除去す
るのに必要な硫化水素の量は2.5モルとなる。
As a result, the amount of hydrogen sulfide required to remove 1 mole of ammonia nitrogen is 2.5 moles.

このように硫化水素を多量に必要とするため、
硫黄の含有量の少ない一般的廃水の場合、処理水
を前段のメタン醗酵槽に返送したり、前段のメタ
ン醗酵槽で発生したガスを光合成槽へ吹き込んだ
り、硫化物を添加したりする工夫をする。この場
合、発生ガス中の脱硫も同時に行なわれる。又、
紅色硫黄細菌や緑色硫黄細菌以外の嫌気性光合成
細菌を同一の反応槽内で培養することにより、除
去する。
Because a large amount of hydrogen sulfide is required in this way,
In the case of general wastewater with a low sulfur content, methods such as returning the treated water to the methane fermentation tank in the previous stage, blowing the gas generated in the methane fermentation tank in the previous stage to the photosynthesis tank, and adding sulfide are considered. do. In this case, desulfurization in the generated gas is also carried out at the same time. or,
Anaerobic photosynthetic bacteria other than purple sulfur bacteria and green sulfur bacteria are removed by culturing them in the same reaction tank.

又、光合成を行なうことにより細菌は、ATP
を合成するため、遊離リン酸を細胞内に固定す
る。よつて、リンの含有量は他の細菌に比してか
なり大きい。
Also, by photosynthesizing, bacteria produce ATP.
In order to synthesize free phosphate, it is fixed inside the cell. Therefore, the phosphorus content is quite large compared to other bacteria.

〔発明の作用〕[Action of the invention]

本発明に於ては、酸素溶解に必要なブロアー等
の動力は全く必要とせず、それに代わつて極めて
僅かの光源ですむ。又、これらの細菌は硫黄化合
物(H2S、HS-、S、S2O3、SO2- 4)に極めて強
い耐性を持つ。更に、光合成により炭酸塩
(HCO- 3、CO2- 3)等を同化して増殖に必要な有機
物を合成するため、補助的な有機物の添加を全く
必要としない。
In the present invention, there is no need for any power such as a blower necessary for dissolving oxygen, and instead, only a very small number of light sources are required. Furthermore, these bacteria have extremely strong resistance to sulfur compounds (H 2 S, HS - , S, S 2 O 3 , SO 2-4 ). Furthermore, since the organic matter necessary for growth is synthesized by assimilating carbonates (HCO - 3 , CO 2-3 ), etc. through photosynthesis, there is no need to add any auxiliary organic matter.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に基づいて説明す
る。
Embodiments of the present invention will be described below based on the drawings.

第1図は一般的な廃液(硫黄の含有量が窒素の
含有量より小さい場合)の好適な処理フローを示
す。
FIG. 1 shows a preferred treatment flow for a typical waste liquid (where the sulfur content is lower than the nitrogen content).

先ず、廃水はメタン醗酵槽1に供給され、此処
で分解されてメタンガスと処理液に分離される。
次いで、処理液は固液分離器(消火汚泥のような
高濃度のものは脱水機等で処理する)2によつて
不溶性物質や菌体が分離される。そして、分離さ
れて比較的透明になつた液体は、光合成反応槽3
に供給される。
First, wastewater is supplied to the methane fermentation tank 1, where it is decomposed and separated into methane gas and treated liquid.
Next, insoluble substances and bacterial cells are separated from the treated liquid by a solid-liquid separator 2 (highly concentrated sludge such as fire extinguishing sludge is treated with a dehydrator or the like). The separated and relatively transparent liquid is then transferred to the photosynthesis reaction tank 3.
supplied to

光合成反応槽3は光源4を装備しており、反応
槽内に5000ux以上の照度を与えることができ
る。更に、メタン醗酵槽1で発生した消火ガス
は、ライン5を通つてデイフユーザ6から細泡と
して光合成反応槽3内に供給され、ガスの中の硫
化水素が液に溶解する。これにより、発生ガス中
の硫化水素が除去され、光合成反応槽3内の菌体
に付与される。この光合成反応槽3内を通り抜け
たガスは、ガス貯留槽10に貯留され、エネルギ
ーとして利用される。
The photosynthesis reaction tank 3 is equipped with a light source 4, which can provide illuminance of 5000ux or more into the reaction tank. Furthermore, the extinguishing gas generated in the methane fermentation tank 1 is supplied from the diffuser 6 through the line 5 into the photosynthesis reaction tank 3 as fine bubbles, and the hydrogen sulfide in the gas is dissolved in the liquid. Thereby, hydrogen sulfide in the generated gas is removed and applied to the bacterial cells in the photosynthesis reaction tank 3. The gas that has passed through the photosynthesis reaction tank 3 is stored in a gas storage tank 10 and used as energy.

又、光合成反応槽3内では、細菌がATPを合
成して、遊離リン酸を細胞内に固定するため、リ
ンの除去が効果的に為される。
Furthermore, in the photosynthesis reaction tank 3, bacteria synthesize ATP and fix free phosphoric acid within the cells, so that phosphorus is effectively removed.

更に、光合成反応槽3により処理された処理水
は、固液分離槽7で菌体が分離され、一部は光合
成反応槽3へ返送され、余剰の菌体は別途処理さ
れる。液は更にSS等を除去する場合は砂濾過器
8で処理され、放流される。
Furthermore, the treated water treated by the photosynthesis reaction tank 3 has bacterial cells separated in a solid-liquid separation tank 7, a part of which is returned to the photosynthesis reaction tank 3, and excess bacteria are treated separately. The liquid is further treated with a sand filter 8 to remove SS and the like, and then discharged.

尚、硫黄の濃度が低い場合には、処理水返送ラ
イン9を設置し、光合成反応槽3に供給される硫
黄の濃度を窒素濃度の1/2以上に保つて置くこと
が望ましい。
In addition, when the concentration of sulfur is low, it is desirable to install a treated water return line 9 to maintain the concentration of sulfur supplied to the photosynthesis reaction tank 3 at 1/2 or more of the nitrogen concentration.

第2図は窒素濃度に比べて硫黄を多く含む廃水
を処理する場合の処理フローを示す。
FIG. 2 shows a processing flow when wastewater containing a higher concentration of sulfur than nitrogen is treated.

先ず、廃水はメタン醗酵槽21に供給される。
このフローでは、メタン醗酵槽21のガスをブロ
ワ26でライン25を介してデイフユーザ27で
光合成反応槽23に吹き込み、戻りのガスをライ
ン28を介してメタン醗酵槽21に吹き込んでそ
の撹拌に役立てる。メタン醗酵は硫化物の阻害を
受けるため、光合成反応槽23で硫黄を除去する
ことによりメタン醗酵槽21の硫黄濃度を低下す
ることができ、より効率の高いメタン醗酵を行な
うことができる。生成したメタンはメタン醗酵槽
21に連結するガス貯留槽21に貯留される。
First, wastewater is supplied to the methane fermentation tank 21.
In this flow, gas from the methane fermentation tank 21 is blown into the photosynthesis reaction tank 23 by a diffuser 27 via a line 25 using a blower 26, and the returned gas is blown into the methane fermentation tank 21 via a line 28 to be used for stirring. Since methane fermentation is inhibited by sulfides, the sulfur concentration in the methane fermentation tank 21 can be lowered by removing sulfur in the photosynthesis reaction tank 23, and more efficient methane fermentation can be performed. The generated methane is stored in a gas storage tank 21 connected to a methane fermentation tank 21.

尚、メタン醗酵槽31で分離された処理液は、
固液分離液22によつて不溶性物質や菌体が分離
され、液体は光合成反応槽23に供給される。光
合成反応槽23は閉塞されていると共に、光源2
4を装備しており、反応槽内に500ux以上の照
度を与えることができる。更に、光合成反応槽2
3により処理された処理水は、固液分離槽29で
菌体が分離され、一部は光合成反応槽23へ返送
され、余剰の菌体は別途処理される。液は更に
SS等を除去する場合は砂濾過器30で処理され、
放流される。
The treated liquid separated in the methane fermentation tank 31 is
Insoluble substances and bacterial cells are separated by the solid-liquid separation liquid 22, and the liquid is supplied to the photosynthesis reaction tank 23. The photosynthetic reaction tank 23 is closed, and the light source 2
4 and can provide illuminance of 500ux or more inside the reaction tank. Furthermore, photosynthesis reaction tank 2
In the treated water treated in step 3, bacterial cells are separated in a solid-liquid separation tank 29, a part of which is returned to the photosynthetic reaction tank 23, and excess bacterial cells are processed separately. The liquid is further
When removing SS etc., it is processed with a sand filter 30,
It is released into the river.

実施例 合成廃水、BOD10000mg/、T−N200mg/
、T−S100mg/、T−P50mg/を第1図の
フローで処理したところ、メタン醗酵槽1の滞留
時間12hr、光合成処理槽3の滞留時間3hr程度で
処理した。この時、生成ガス中には、硫化水素は
検出されず、処理水のT−Nは5mg/以下、T
−Pも5mg/以下であつた。光合成槽3内には
紅色の細菌が500mg−VS/程度得られた。
Example Synthetic wastewater, BOD 10000mg/, T-N 200mg/
, T-S 100 mg/, and T-P 50 mg/ were treated according to the flow shown in FIG. 1, and the residence time in the methane fermentation tank 1 was about 12 hours, and the residence time in the photosynthesis treatment tank 3 was about 3 hours. At this time, no hydrogen sulfide was detected in the generated gas, and the T-N of the treated water was less than 5 mg/T.
-P was also less than 5 mg/. Approximately 500 mg-VS/red bacteria were obtained in photosynthesis tank 3.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、メタン醗酵と硫黄を硫
酸に転換する嫌気性光合成を主体と為す光合成反
応を組み合わせることにより、有機物をメタンと
して回収するだけでなく、硫黄による阻害を防
ぎ、硫化水素を硫酸に転換し、窒素、リンを除去
するといつた非常に有効な廃水処理法である。
As described above, the present invention not only recovers organic matter as methane by combining methane fermentation with a photosynthetic reaction mainly consisting of anaerobic photosynthesis that converts sulfur into sulfuric acid, but also prevents inhibition by sulfur and generates hydrogen sulfide. This is a very effective wastewater treatment method that converts it into sulfuric acid and removes nitrogen and phosphorus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の処理フローを示す
図である。 1,21……メタン醗酵槽、2,7,22,2
9……固液分離器、3,23……光合成反応槽、
4,24……光源、5,9,25,28……ライ
ン、6,27……デイフユーザ、8,30……砂
濾過器、10,31……ガス貯留槽。
1 and 2 are diagrams showing the processing flow of the present invention. 1, 21...Methane fermentation tank, 2, 7, 22, 2
9...Solid-liquid separator, 3,23...Photosynthesis reaction tank,
4, 24... light source, 5, 9, 25, 28... line, 6, 27... diffuser, 8, 30... sand filter, 10, 31... gas storage tank.

Claims (1)

【特許請求の範囲】[Claims] 1 下水、屎尿、産業廃水等を、メタン醗酵槽に
供給し、ここでメタン醗酵し、硫化水素を含むメ
タンガスと処理液とに分離し、処理液を光合成反
応槽に供給すると共に、硫化水素を含むメタンガ
スを光合成反応槽へ吹き込み、光合成反応槽に於
て、嫌気性下で光を照射することによつて、紅色
硫酸細菌又は緑色硫酸細菌の一種若しくは数種を
優先的に培養し、その細菌の代謝、増殖活動によ
り、光合成反応を行い、硫化水素を硫酸に転換す
ると共に、ATPを合成することによつて、遊離
リン酸を細胞内に固定化し、窒素、リンを除去す
ることを特徴とする廃水の処理方法。
1 Sewage, human waste, industrial wastewater, etc. are supplied to a methane fermentation tank, where methane is fermented, separated into methane gas containing hydrogen sulfide and a treated liquid, and the treated liquid is supplied to a photosynthesis reaction tank, and hydrogen sulfide is By blowing the containing methane gas into a photosynthetic reaction tank and irradiating it with light under anaerobic conditions, one or more types of purple sulfuric acid bacteria or green sulfuric acid bacteria are preferentially cultivated, and the bacteria are grown. The metabolic and proliferative activities of the cells carry out photosynthetic reactions, converting hydrogen sulfide to sulfuric acid, and by synthesizing ATP, free phosphoric acid is immobilized within cells and nitrogen and phosphorus are removed. How to treat wastewater.
JP61127712A 1986-06-02 1986-06-02 Treatment of waste water Granted JPS62282695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61127712A JPS62282695A (en) 1986-06-02 1986-06-02 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61127712A JPS62282695A (en) 1986-06-02 1986-06-02 Treatment of waste water

Publications (2)

Publication Number Publication Date
JPS62282695A JPS62282695A (en) 1987-12-08
JPH0425079B2 true JPH0425079B2 (en) 1992-04-28

Family

ID=14966840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61127712A Granted JPS62282695A (en) 1986-06-02 1986-06-02 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPS62282695A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631043B2 (en) * 2003-09-04 2011-02-16 国立大学法人 筑波大学 Methane generation method and two-phase methane generator used therefor
JP2005288371A (en) * 2004-04-01 2005-10-20 Sumitomo Heavy Ind Ltd Wastewater treatment method
JP2006035094A (en) * 2004-07-27 2006-02-09 Takashi Yamaguchi Method and apparatus for treating high concentration waste water
JP2006212467A (en) * 2005-02-01 2006-08-17 National Institute Of Advanced Industrial & Technology Organic waste treatment method
JP2007125490A (en) * 2005-11-02 2007-05-24 National Institute Of Advanced Industrial & Technology Anaerobic ammonia treatment method
JP2013119073A (en) * 2011-12-08 2013-06-17 Toshiba Corp Water treatment apparatus
CN103922488B (en) * 2014-05-06 2016-01-20 常州市生活废弃物处理中心 A kind of Concentrated liquid recharge technique
JP7262750B2 (en) * 2018-02-28 2023-04-24 学校法人 創価大学 Method for treating methane fermentation product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156588A (en) * 1979-05-26 1980-12-05 Nippon Carbide Ind Co Ltd Method for culturing photosynthetic bacteria, and covering material using therefor
JPS6087835A (en) * 1983-10-19 1985-05-17 Atsuhiro Honda Process and apparatus for desulfurization of methane fermentation gas using activated sludge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156588A (en) * 1979-05-26 1980-12-05 Nippon Carbide Ind Co Ltd Method for culturing photosynthetic bacteria, and covering material using therefor
JPS6087835A (en) * 1983-10-19 1985-05-17 Atsuhiro Honda Process and apparatus for desulfurization of methane fermentation gas using activated sludge

Also Published As

Publication number Publication date
JPS62282695A (en) 1987-12-08

Similar Documents

Publication Publication Date Title
KR100196556B1 (en) Process for the treatment of water containing sulphur compounds
Golueke et al. Anaerobic digestion of algae
EP0051888B1 (en) Process for the purification of waste water and/or waste water sludge
JP2005522399A (en) Animal fertilizer treatment method and treatment apparatus
JP3821011B2 (en) Wastewater treatment method and treatment apparatus
FR2586411A1 (en) METHOD AND DEVICE FOR REDUCING THE TOXICITY OF SULPHITES
KR100807219B1 (en) Purification apparatus and method for high organic wastewater
JPH0425079B2 (en)
KR100274534B1 (en) Nitrogen and phosphorus removal methods with using fermented organic wastes
JP3856218B2 (en) Startup method of activated sludge treatment equipment
CN110963658B (en) Method for recycling livestock and poultry waste
JP2003053309A (en) Method of treating organic solid waste
JP2511326B2 (en) Method for treating organic wastewater with photosynthetic microorganisms
JP2001232388A (en) Method and apparatus for treating waste liquor
JP3364018B2 (en) Wastewater treatment method
KR100350051B1 (en) Removal of nitrogen and phosphorus by metabolism of aquatic plant and method for efficiently treating wastewater by using aquatic plant as electron donor in denitrification reaction
JP2511325B2 (en) Method for treating organic wastewater with photosynthetic microorganisms
JP7262750B2 (en) Method for treating methane fermentation product
JP3444560B2 (en) Aerobic nitrification denitrification method
EP0634370A1 (en) Process for treatment of nitrogenous effluents using sludges as substrate
JP2603392B2 (en) Treatment method for sulfur compound-containing water
Toprak Methane emissions originating from the anaerobic waste stabilization ponds case study: Izmir wastewater treatment system
JP2000107787A (en) Method for treating wastewater
JPH0691289A (en) Method for treating drainage containing dimethyl sulfoxide
JPH11128985A (en) Treatment of separated liquid by wet oxidizing treatment