JPH0424921A - Forming method for thin film by vapor deposition method - Google Patents

Forming method for thin film by vapor deposition method

Info

Publication number
JPH0424921A
JPH0424921A JP12515890A JP12515890A JPH0424921A JP H0424921 A JPH0424921 A JP H0424921A JP 12515890 A JP12515890 A JP 12515890A JP 12515890 A JP12515890 A JP 12515890A JP H0424921 A JPH0424921 A JP H0424921A
Authority
JP
Japan
Prior art keywords
gas
supply pipe
gas supply
inert gas
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12515890A
Other languages
Japanese (ja)
Other versions
JP2809817B2 (en
Inventor
Toshio Shoji
東海林 利夫
Shinji Miyazaki
伸治 宮崎
Yuichi Mikata
見方 裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12515890A priority Critical patent/JP2809817B2/en
Publication of JPH0424921A publication Critical patent/JPH0424921A/en
Application granted granted Critical
Publication of JP2809817B2 publication Critical patent/JP2809817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent mixture of material gas by feeding inert gas to gas supply tubes to be introduced and unused in a step of introducing material gas to become a film composition source in a vapor growth. CONSTITUTION:A reaction furnace 1 having a plurality of semiconductor substrates 6 to be treated, secured to a quartz port 5 and disposed is reduced under pressure, and NH3 gas is supplied through a supply tube 2c. Inert gas such as nitrogen gas is fed to an atmosphere reset inert gas supply tube 3 and an atmosphere winding preventive inert gas supply tube 4 so as to prevent mixture due to diffusion of the NH3 gas. Similarly, insert gas is fed from a connected SiH2Cl2 gas supply tube purging inert gas supply tube 10 to an SiH2Cl2 gas supply tube 2d to prevent mixture of the NH3 gas. Thereafter, the inert gas fed through the tube 2d is switched to material gas SiH2Cl2 gas to be introduced later, and fed to the furnace 1. Then, silicon nitrate is started to be deposited on semiconductor substrates 6 to be treated, and this state is maintained until a predetermined film thickness is obtained.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、気相成長法による薄膜の形成方法に関し特に
、減圧下での気相成長に好適するものである。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Industrial Application Field) The present invention relates to a method for forming a thin film by vapor phase growth, and is particularly suitable for vapor phase growth under reduced pressure.

(従来の技術) 気相成長工程では、反応炉内に配置された被処理半導体
基板を所望の温度雰囲気に保ち、続いて所定の材料気体
を供給して薄膜を形成するのが一般的である。ここで、
炉体を鉛直即ち垂直方向に配置した縦型減圧気相成長装
置の反応部の概略を第1図により説明する。縦型反応炉
1の下部には、材料ガス供給管2、大気復帰用不活性ガ
ス供給管3及び外気巻込み防止用不活性ガス供給管4か
外部から導入され更に、反応炉1には、複数の被処理半
導体基板6を固定して配置する石英製ボート(Boar
t)5を設置する。石英製ボート5は受台8により反応
炉1内支持され更にまた、加熱源としてヒータ(Hea
ter)7を反応炉lの外周に配置して所定の温度に保
持できるように配慮している。
(Prior art) In a vapor phase growth process, it is common to maintain a semiconductor substrate to be processed in a reaction furnace at a desired temperature atmosphere, and then supply a predetermined material gas to form a thin film. . here,
The outline of the reaction section of a vertical reduced pressure vapor phase growth apparatus in which the furnace body is arranged vertically will be explained with reference to FIG. A material gas supply pipe 2, an inert gas supply pipe 3 for returning to the atmosphere, and an inert gas supply pipe 4 for preventing outside air entrainment are introduced into the lower part of the vertical reactor 1 from the outside, and the reactor 1 further includes: A quartz boat (Boar) in which a plurality of semiconductor substrates 6 to be processed is fixedly arranged.
t) Install 5. The quartz boat 5 is supported in the reactor 1 by a pedestal 8, and is further equipped with a heater as a heating source.
ter) 7 is arranged around the outer periphery of the reactor l so as to be able to maintain it at a predetermined temperature.

通常反応炉1に所望の膜生成に必要な気体を材料ガス供
給管2により供給する過程では、それ以外の反応炉(図
示せず)に接続する供給管は使用されない配管構造とな
っている。また、第1図に示したように大気復帰用不活
性ガス供給管3により炉内を大気圧に復帰させ、これら
により供給する不活性ガスは、前記の目的の他に反応炉
1内を不活性気体により置換する役目も果たしている。
Normally, in the process of supplying the gas necessary for producing a desired film to the reactor 1 through the material gas supply pipe 2, the piping structure is such that no supply pipes connected to other reactors (not shown) are used. In addition, as shown in FIG. 1, the inside of the reactor is returned to atmospheric pressure by the inert gas supply pipe 3 for atmospheric return, and the inert gas supplied by these is used to inert the inside of the reactor 1 in addition to the above-mentioned purpose. It also plays the role of replacing the active gas.

また、最近は、炉口開放時の外気巻込み防止のために、
反応炉1の尾部に外気巻込み防止用不活性ガス供給管4
を設置する型も多くなっている。このような縦型減圧気
相成長装置においては、反応炉1に材料ガス供給管2よ
り材料用ガスを供給している間、気体の供給を停止して
いる大気復帰用不活性ガス供給管2及び外気巻込み防止
用ガス供給管3には、差圧により材料ガスが逆流するた
めに各供給管の先端から副生成物が堆積する。また、前
項のような使用方法では、膜の組成源となる材料気体か
複数種類であり、夫々用の材料ガス供給管2・・・か個
々に反応炉に接続される配管をしているものもあるので
、反応炉への接続状況の概略を第2図に示す。即ち、第
1図に示した材料ガス供給管2を例えば二種類の材料ガ
スA、B用として反応炉の尾部に材料ガス供給管2a、
2bを設置している。なお、第2図における他の部品は
第1図と同じなので説明を省略する。ところで、この配
管には、混合・反応により低温雰囲気でも急激に副生成
物を生ずるような材料ガスを用いしかも、材料ガスとし
てA及びBを反応炉1へ同時に供給しない場合、例えば
材料ガスAを材料ガス供給管2aから先行導入すると、
後から材料気体Bを導入する材料ガス供給管2bに差圧
により材料ガスAが逆流拡散して混入する。従って、後
から材料カス供給管2bに材料ガスBを導入すると混入
している材料ガスAと反応して材料ガス供給管2bの先
端から副生成物が堆積する。
In addition, recently, in order to prevent outside air from being drawn in when opening the furnace mouth,
An inert gas supply pipe 4 for preventing outside air from being entrained in the tail of the reactor 1
There are also an increasing number of types that install . In such a vertical reduced pressure vapor phase growth apparatus, while the material gas is being supplied to the reactor 1 from the material gas supply pipe 2, the inert gas supply pipe 2 for returning to atmosphere stops supplying gas. In the gas supply pipes 3 for preventing entrainment of outside air, by-products are deposited from the tips of each supply pipe because the material gas flows back due to the differential pressure. In addition, in the usage method described in the previous section, there are multiple types of material gases that serve as the composition source of the membrane, and each material gas supply pipe 2 is connected to the reactor individually. Figure 2 shows an outline of the connection to the reactor. That is, the material gas supply pipe 2 shown in FIG. 1 is installed at the tail of the reactor, for example, for two types of material gases A and B.
2b is installed. Note that the other parts in FIG. 2 are the same as in FIG. 1, so their explanations will be omitted. By the way, if a material gas that rapidly produces by-products even in a low-temperature atmosphere is used in this piping by mixing and reaction, and if material gases A and B are not simultaneously supplied to the reactor 1, for example, if material gas A is If the material gas is introduced in advance from the supply pipe 2a,
Due to the pressure difference, the material gas A diffuses backflow and mixes into the material gas supply pipe 2b into which the material gas B is later introduced. Therefore, when the material gas B is later introduced into the material waste supply pipe 2b, it reacts with the mixed material gas A, and by-products are deposited from the tip of the material gas supply pipe 2b.

また、反応炉1に供給している材料ガスA、 Bの供給
停止時間か同時でない時では、先に供給を停止した材料
ガスB用供給管2bに、未だ供給が続けている材料ガス
Aか拡散混入するために、供給管2bに残留する材料ガ
スBとの反応による副生成物か堆積する。
In addition, if the supply of material gases A and B supplied to the reactor 1 is not stopped at the same time, the supply pipe 2b for material gas B, whose supply was stopped earlier, is replaced with the material gas A, which is still being supplied. Due to the diffusion and mixing, by-products are deposited by reaction with the material gas B remaining in the supply pipe 2b.

この材料ガスとしてジクロルシラン(以下S I H2
CQ 2と記載する)とアンモニヤ(以下N Hsと記
載する)により窒化シリコン(SiQicon)を形成
する場合では、反応炉1を減圧状態としてから膜組成と
膜厚分布の安定化を図るためにNH3ガスを先行して導
入するのが通常であるが、前記のようにSiHCQ  
ガス用供給管内に差圧によりNH3ガスが拡散混入する
。そこにS I H2CQ 2ガスが反応炉1に供給さ
れ始めると反応炉1内に配置する石英ボート5に固定し
た被処理半導体基板6に窒化珪素の堆積が始まる。材料
ガスである5iH2cQ2 +NH3系による窒化珪素
膜の堆積は、700℃〜800℃で行われるが、約15
0℃以下の低温度雰囲気で混合すると、塩化アンモニウ
ム(Ammonium)の副生成物か生ずる。このため
低温の供給管から5IH2CQ2ガスが導入され始めた
時には、そこに混入しているNH3ガスと接触して塩化
アンモンか堆積する。また、両ガスが反応炉1に供給さ
れている間に、ガス供給を停止している低温の大気復帰
用ガス供給管や外気巻込み防止用不活性ガス供給管に前
記材料ガスが拡散混入して、ここにも副生物として塩化
アンモニウムか各供給管の先端から堆積する。次に所望
の時期にS r H2CΩ2の供給を停止することによ
り被処理半導体基板に対する窒化シリコン膜の堆積か終
了するか、NH3ガスは、窒化シリコン膜表面の組成を
安定させるために反応炉1にしばらく供給を続ける。従
って、5iH2−CQ、、ガス供給管内にNH3ガスが
拡散混入して残留ガスとの接触により同様に先端から塩
化アンモニウムが堆積する。
As this material gas, dichlorosilane (hereinafter S I H2
When silicon nitride (SiQicon) is formed using CQ2) and ammonia (hereinafter referred to as NHs), NH3 It is normal to introduce gas in advance, but as mentioned above, SiHCQ
NH3 gas is diffused and mixed into the gas supply pipe due to the differential pressure. When the S I H2CQ 2 gas starts to be supplied to the reactor 1, silicon nitride starts to be deposited on the semiconductor substrate 6 to be processed fixed to the quartz boat 5 disposed in the reactor 1. The silicon nitride film is deposited using the material gas 5iH2cQ2 +NH3 at a temperature of 700°C to 800°C.
When mixed in a low temperature atmosphere below 0° C., a by-product of ammonium chloride is produced. Therefore, when 5IH2CQ2 gas starts to be introduced from the low temperature supply pipe, ammonium chloride is deposited upon contact with the NH3 gas mixed therein. In addition, while both gases are being supplied to the reactor 1, the material gas may diffuse and mix into the low-temperature atmosphere return gas supply pipe and the inert gas supply pipe for preventing outside air entrainment, to which the gas supply is stopped. Ammonium chloride is also deposited here as a by-product from the tip of each supply pipe. Next, the deposition of the silicon nitride film on the semiconductor substrate to be processed is stopped by stopping the supply of SrH2CΩ2 at a desired time, or the NH3 gas is added to the reactor 1 in order to stabilize the composition of the silicon nitride film surface. The supply will continue for a while. Therefore, 5iH2-CQ, NH3 gas is diffused and mixed into the gas supply pipe, and ammonium chloride is similarly deposited from the tip due to contact with the residual gas.

最近良く使用される有機系液体材料であるテトラエトキ
シシラン[Sl (OC2H5)4以 下TEO3と記
載する]による酸化珪素膜の形成について説明する。第
1図に示した装置に液体材料TE01を使用するには、
その蒸気圧を稼ぐために加熱してガス化したものを供給
管を通して反応炉へ供給する。この場合、供給管内にお
けるT−EOSガスの再液化を防止するために供給管自
体も加熱する。このようにして600〜700℃の雰囲
気に維持した反応炉へ供給されるTEOSガスか熱分解
して被処理半導体基板に酸化珪素例えば二酸化珪素膜が
堆積する。しかし、ガスの供給を停止している大気復帰
用ガス供給管や外気巻込み防止用不活性ガス供給管には
、差圧により未分解の副生ガスが混入するが、加熱され
ていないために混入したTEOSガス及び副生ガスが再
液化してそのまま付着残留する。そして、反応炉1を大
気圧状態にした時に巻込んだ外気と接して加水分解を起
こし、供給管先端から酸化珪素が堆積する。
The formation of a silicon oxide film using tetraethoxysilane [Sl (OC2H5)4, hereinafter referred to as TEO3], which is an organic liquid material that has been frequently used recently, will be explained. To use the liquid material TE01 in the apparatus shown in FIG.
In order to increase its vapor pressure, it is heated and gasified and then supplied to the reactor through a supply pipe. In this case, the supply pipe itself is also heated to prevent reliquefaction of the T-EOS gas within the supply pipe. In this way, the TEOS gas supplied to the reactor maintained at an atmosphere of 600 to 700 DEG C. is thermally decomposed to deposit a silicon oxide film, such as a silicon dioxide film, on the semiconductor substrate to be processed. However, undecomposed by-product gas gets mixed in due to the differential pressure in gas supply pipes for returning to the atmosphere and inert gas supply pipes for preventing outside air entrainment when the gas supply is stopped, but because they are not heated, The mixed TEOS gas and by-product gas are re-liquefied and remain attached. Then, when the reactor 1 is brought to atmospheric pressure, hydrolysis occurs when it comes into contact with the outside air drawn in, and silicon oxide is deposited from the tip of the supply pipe.

(発明が解決しようとする課題) このような使用方法で成膜回数を重ねると、供給管先端
が堆積した副生成物により閉塞される。
(Problems to be Solved by the Invention) When the film is repeatedly formed using this usage method, the tip of the supply pipe becomes clogged with accumulated by-products.

この結果、ガスが流せなくなったりまた、堆積した副生
成物がガスを流す時に飛散して反応炉の汚染及び被処理
半導体基板に悪影響を与え信頼性の低下をもたらす。
As a result, the gas cannot flow or the accumulated by-products are scattered when the gas is flowed, contaminating the reactor and adversely affecting the semiconductor substrate to be processed, resulting in a decrease in reliability.

この−例として窒化珪素膜を堆積する被処理半導体基板
に付着したパーティクル(Parti−cQe)数(縦
軸)と窒化珪素膜の成膜回数(横軸)の関係を第3図に
示し、成膜回数が15回を超える頃になると、付着量が
増える。この様な悪影響を低減するために反応炉のクリ
ーニング(CQ ean i ng)に合せて大気復帰
用ガス供給管や外気巻込み防止用不活性ガス供給管更に
材料ガス供給管の先端に脱着自在に取付けるノズル(N
ozzQe)などのクリーニングも実施している。
As an example of this, Figure 3 shows the relationship between the number of particles (Parti-cQe) attached to a semiconductor substrate to be processed on which a silicon nitride film is deposited (vertical axis) and the number of times the silicon nitride film is formed (horizontal axis). When the number of coatings exceeds 15, the amount of adhesion increases. In order to reduce such adverse effects, in conjunction with reactor cleaning (CQ eaning), a gas supply pipe for returning to atmosphere, an inert gas supply pipe for preventing outside air entrainment, and a removable attachment to the tip of the material gas supply pipe are installed. Nozzle to install (N
We also carry out cleaning services such as ozzQe).

しかし、定期的なりリーニングの間には、前記の問題は
解決されずまた、ノズルなどのクリーニングを行っても
反応炉までの距離か短い大気復帰用カス供給管や外気巻
込み防止用不活性ガス供給管更に材料ガス供給管は徐々
に副生成物が堆積して汚染される。2系統のガスを供給
している時、一方のガス供給系統に設置し、図面に示し
ていないマスフローコントローラ(Mass  FQ。
However, during periodic cleaning, the above problems are not resolved, and even if the nozzle is cleaned, the distance to the reactor is too short, and the waste supply pipe for returning to atmosphere and the inert gas supply pipe for preventing outside air from being entrained. The supply pipes and also the material gas supply pipes gradually become contaminated with the accumulation of by-products. When two systems of gas are being supplied, a mass flow controller (Mass FQ) is installed in one gas supply system and is not shown in the drawing.

w  ControQQer)の故障やガスボンベ(G
as  Bonbe)が開いていないなどの操作ミス(
Miss)により、反応炉に対する材料ガスの供給を停
止していても反応炉を介して供給している材料ガスか供
給を停止している材料ガス供給管全体に拡散混入して副
生成物が堆積して汚染してしまう時かある。大気復帰用
ガス供給管や外気巻込み防止用不活性ガス供給管更に材
料ガス供給管などの配管系全体をクリーニングすること
は、通常不可能で複雑な配管ではなおさらである。
w ControQQer) failure or gas cylinder (G
Operation error (as Bombe) such as not opening
Even if the supply of material gas to the reactor is stopped, by-products may diffuse into the material gas being supplied through the reactor or the entire material gas supply pipe whose supply has been stopped, and deposit by-products. There are times when it becomes contaminated. It is usually impossible to clean the entire piping system, such as the atmosphere return gas supply pipe, the inert gas supply pipe for preventing outside air entrainment, and the material gas supply pipe, and this is especially true for complicated piping.

このように配管のの先端部のノズルまでは洗浄できても
配管そのものは副生成物が堆積した状態で使用している
のが実状であり、被処理半導体基板へのパーティクルな
どの汚染源として問題視されつつある。本発明は、この
ような事情により成されたもので、ガス供給管側々の本
来の機能を発揮できる条件を提供することを目的とする
ものである。
Even if it is possible to clean the nozzle at the tip of the piping, the actual situation is that the piping itself is used with by-products deposited on it, and this is considered a problem as a source of contamination such as particles to the semiconductor substrates being processed. It is being done. The present invention was made under these circumstances, and an object of the present invention is to provide conditions under which gas supply pipes can perform their original functions.

[発明の構成〕 (課題を解決するための手段) 気相成長反応炉に接続する複数の反応用気体供給管に予
め不活性気体を流す点に本発明に係わる気相成長法によ
る薄膜の形成方法の特徴がある。
[Structure of the Invention] (Means for Solving the Problems) Formation of a thin film by the vapor phase growth method according to the present invention in which an inert gas is flowed in advance into a plurality of reaction gas supply pipes connected to a vapor phase growth reactor. There are characteristics of the method.

(作用) 本発明は、気相成長において膜組成源となる材料ガスの
導入過程で導入予定及び未使用のガス供給管に不活性ガ
スを流しておくことにより材料ガスの混入を防止する。
(Function) The present invention prevents the material gas from being mixed in by flowing an inert gas through the gas supply pipes that are scheduled to be introduced and are not in use during the introduction process of the material gas that will become a film composition source in vapor phase growth.

その結果、供給管内で発生していた副生成物を抑えかっ
、二次的に発生していた副生成物の飛散による被処理半
導体基板へのパーティクルの再付着・汚染をも抑えて、
膜精製過程で発生する不良要因を軽減するものである。
As a result, the by-products generated in the supply pipe are suppressed, and the re-adhesion and contamination of particles on the semiconductor substrate to be processed due to the scattering of the secondary generated by-products is also suppressed.
This reduces defects that occur during the membrane purification process.

(実施例) 本発明に係わる一実施例として縦型減圧気相成長法に配
置した被処理半導体基板に材料ガスSiHCQ  とN
Hを膜組成源とする窒化珪素膜を堆積させる過程を第4
図を参照して説明するが、従来の技術欄と同一の部品に
は同一の番号を付ける。即ち、石英ボート5に固定した
複数個の被処理半導体基板6を配置する反応炉1は、減
圧状態とし、NH3ガスを供給管2cにより供給するが
、大気復帰用不活性ガス供給管3や外気巻込み防止用不
活性ガス供給管4には、NH3ガスの拡散による混入防
止のために不活性ガス例えば窒素ガスを流しておく。同
じく5iH2CQ2ガス供給管2dには、連結した5i
H2CQ2ガス供給管パージ(Purge)用不活性ガ
ス供給管10から不活性ガスを流しておいてNH3ガス
の混入を防止する。しかる後、S iH2CQ 2ガス
供給管2dを流れている不活性ガスを後から導入する材
料ガス5iH2CQ2ガスに切換えて反応炉1に流すと
被処理半導体基板6に窒化珪素の堆積が開始して所定膜
厚に達するまでこの状態を維持する。この時、大気復帰
用不活性ガス供給管3や外気巻込み防止用不活性ガス供
給管4には、材料ガスの拡散混入を防止するために不活
性ガスを所定の時間中流し続ける。次に所望の時期に膜
生成を終えるために5iH2CQ2ガスの供給を先行停
止するがここでまた、窒化珪素膜表面の組成を安定させ
るためと更に、反応炉1に供給し続けているNH3ガス
の拡散混入を防止するためにS I Ha CQ 2ガ
ス供給管3に不活性ガスを流す。
(Example) As an example of the present invention, material gases SiHCQ and N were applied to a semiconductor substrate placed in a vertical low pressure vapor phase growth method.
The process of depositing a silicon nitride film using H as the film composition source is the fourth step.
This will be explained with reference to the drawings, but the same parts as in the conventional technology column are given the same numbers. That is, the reactor 1 in which a plurality of semiconductor substrates 6 to be processed fixed to a quartz boat 5 is placed is in a reduced pressure state, and NH3 gas is supplied through the supply pipe 2c, but the inert gas supply pipe 3 for returning to the atmosphere or the outside air is An inert gas such as nitrogen gas is flowed through the inert gas supply pipe 4 for preventing entrainment in order to prevent NH3 gas from being mixed in due to diffusion. Similarly, the connected 5i H2CQ2 gas supply pipe 2d
Inert gas is flowed from the H2CQ2 gas supply pipe purge inert gas supply pipe 10 to prevent NH3 gas from being mixed in. Thereafter, when the inert gas flowing through the SiH2CQ2 gas supply pipe 2d is switched to the material gas 5iH2CQ2 gas to be introduced later and the gas is fed into the reactor 1, silicon nitride starts to be deposited on the semiconductor substrate 6 to be processed. This state is maintained until the film thickness is reached. At this time, inert gas continues to flow through the inert gas supply pipe 3 for returning to the atmosphere and the inert gas supply pipe 4 for preventing outside air entrainment for a predetermined period of time in order to prevent the material gas from diffusing and mixing. Next, in order to finish the film formation at the desired time, the supply of 5iH2CQ2 gas is stopped in advance, but here also, in order to stabilize the composition of the silicon nitride film surface, the NH3 gas that is being continuously supplied to the reactor 1 is also stopped. An inert gas is passed through the S I Ha CQ 2 gas supply pipe 3 to prevent diffusion and contamination.

更に、大気復帰用不活性ガス供給管3と外気巻込み防止
用不活性ガス供給管4内にもNH3ガス混入防止用とし
て継続して不活性ガスを流しておく。
Further, inert gas is continuously flowed into the inert gas supply pipe 3 for returning to the atmosphere and the inert gas supply pipe 4 for preventing outside air entrainment to prevent NH3 gas from being mixed in.

このように材料ガスを供給している以外の供給管内にも
NH3ガスの混入防止用として不活性ガスを流しておく
ことにより、従来技術で副生成物として生じた塩化アン
モンの堆積が防止できた。
In this way, by flowing an inert gas into the supply pipes other than those supplying the material gas to prevent NH3 gas from getting mixed in, it was possible to prevent the accumulation of ammonium chloride, which was produced as a by-product in the conventional technology. .

従って、副生成物の飛散による反応炉1及び被処理半導
体基板5へのパーティクルの再付着などによる汚染が軽
減される。また、5iH2CQ2とNH3ガスが反応炉
に供給されている時、どちらか一方の材料ガスが何らか
のトラブル(Tro−ubQe)例えばマスフローコン
トローラの故障やガスボンベが開いていないなどにより
反応炉1への供給が停止した場合、この材料ガス用供給
管に接続した不活性ガス供給管から不活性ガスを流すイ
ンターロック(Inter  Lock)対策を講する
ことにより他方のガスの混入を確実に防止することかで
きる。
Therefore, contamination caused by particles re-adhering to the reactor 1 and the semiconductor substrate 5 to be processed due to scattering of by-products is reduced. In addition, when 5iH2CQ2 and NH3 gases are being supplied to the reactor, it is possible that one of the material gases is experiencing some kind of trouble (Tro-ubQe), such as a malfunction in the mass flow controller or a gas cylinder not being opened, which prevents the supply to the reactor 1. When it is stopped, interlocking measures are taken to flow the inert gas from the inert gas supply pipe connected to this material gas supply pipe to reliably prevent the other gas from mixing.

他の実施例として有機液体材料であるTE01を材料ガ
スとする酸化珪素膜を縦型減圧気相成長装置を利用する
形成方法を第5図を参照して説明する。TEOSソース
(Source)タンク(Tank)12の加熱により
ガス化されて供給管2eを通して反応炉1に供給される
と、熱分解して被処理半導体基板6に酸化珪素例えば二
酸化珪素膜が堆積か始まる。この時、大気復帰用不活性
ガス供給管3と外気巻込み防止用不活性ガス供給管4内
へのTEOSガスの拡散混入を防ぐために不活性ガスを
流しておく。そのために供給管内には、副生成物の堆積
せず、更に生成物の飛散による反応炉1や被処理半導体
基板6の汚染か軽減される。被処理半導体基板6への酸
化珪素例えば二酸化珪素膜の堆積過程が終了して反応炉
1内を大気圧状態にする場合、TEOSガス供給管2e
内に不活性ガス供給管11から不活性ガスを流しておく
と外気混入を防止でき、しかもTEOSガスが残留した
場合に発生する生成物の堆積を抑えることができる。
As another example, a method of forming a silicon oxide film using an organic liquid material TE01 as a material gas using a vertical reduced pressure vapor phase growth apparatus will be described with reference to FIG. When it is gasified by heating in the TEOS source tank 12 and supplied to the reactor 1 through the supply pipe 2e, it thermally decomposes and begins to deposit silicon oxide, for example, a silicon dioxide film, on the semiconductor substrate 6 to be processed. . At this time, an inert gas is allowed to flow in order to prevent the TEOS gas from diffusing and mixing into the inert gas supply pipe 3 for returning to the atmosphere and the inert gas supply pipe 4 for preventing entrainment of outside air. Therefore, by-products do not accumulate in the supply pipe, and contamination of the reactor 1 and the semiconductor substrate 6 to be processed due to scattering of the products is reduced. When the deposition process of silicon oxide, for example, a silicon dioxide film on the semiconductor substrate 6 to be processed is completed and the inside of the reactor 1 is brought to atmospheric pressure, the TEOS gas supply pipe 2e
By flowing an inert gas from the inert gas supply pipe 11 into the inside of the chamber, it is possible to prevent outside air from entering the chamber, and also to suppress the accumulation of products generated when TEOS gas remains.

このようにして供給管内への材料ガスの残留または外気
の拡散混入防止を目的として供給管内に不活性ガスを流
すことにより供給管内及び反応炉1の汚染を防止し、ひ
いては被処理半導体基板6への汚染をも防止できる。し
かし、不活性ガスが多く流れ過ぎると反応炉の圧力変化
など膜生成のための成膜条件か変わり、生成膜の組成や
特性に影響を与えることが予想される。第6図は、外気
巻込み防止用不活性ガス供給管4内への材料ガス混入防
止として流したN2流量(横軸)と被処理半導体基板6
に堆積した窒化珪素膜の膜厚均一性(縦軸)の関係を示
しており、N2流量が50cc/minを超えるあたり
から膜厚均一性が徐々に悪化している。第7図は、外気
巻込み防止用不活性ガス供給管4内への材料ガス混入防
止用として流したN2流量(横軸)と窒化珪素膜を堆積
させた被処理半導体基板6に付着したパーティクル数(
縦軸)の関係を示している。
In this way, by flowing an inert gas into the supply pipe for the purpose of preventing material gas remaining in the supply pipe or diffusion of outside air, contamination of the inside of the supply pipe and the reactor 1 is prevented, and as a result, the semiconductor substrate 6 to be processed is prevented from being contaminated. It can also prevent contamination. However, if too much inert gas flows, the film formation conditions for film formation, such as changes in the pressure of the reactor, will change, which is expected to affect the composition and properties of the formed film. Figure 6 shows the N2 flow rate (horizontal axis) flowed to prevent material gas from getting mixed into the inert gas supply pipe 4 for preventing outside air entrainment and the semiconductor substrate 6 to be processed.
The relationship between the film thickness uniformity (vertical axis) of the silicon nitride film deposited is shown, and the film thickness uniformity gradually deteriorates when the N2 flow rate exceeds 50 cc/min. FIG. 7 shows the N2 flow rate (horizontal axis) flowed to prevent material gas from getting mixed into the inert gas supply pipe 4 for preventing outside air entrainment, and particles attached to the semiconductor substrate 6 to be processed on which a silicon nitride film is deposited. number(
(vertical axis).

この図から明らかなように、N2ガスの流量が10 c
 c / m i n以上なら本発明の効果か見られ、
第5図と第6図からN2ガスの流量か10cc/min
乃至50cc/minなら生成膜の組成や特性に影響を
与えずに効果を発揮できる。
As is clear from this figure, the flow rate of N2 gas is 10 c
c/min or more, the effect of the present invention can be seen;
From Figures 5 and 6, the flow rate of N2 gas is 10cc/min.
If the rate is 50 cc/min, the effect can be exhibited without affecting the composition or characteristics of the produced film.

以上のように縦型減圧気相成長法により窒化珪素膜また
は、酸化珪素膜例えば二酸化珪素膜の形成例について説
明したが、反応炉を水平に配置した横型減圧気相成長法
あるいはプラズマ(PQ−a zma)気相成長法に本
発明を適用しても同様な結果か得られることを付記する
As described above, examples of forming a silicon nitride film or a silicon oxide film, such as a silicon dioxide film, using the vertical low pressure vapor phase growth method have been described. It should be noted that similar results can be obtained even if the present invention is applied to azma) vapor phase growth method.

[発明の効果コ 本発明方法を適用した減圧気相成長法によれば、成膜回
数を重ねても反応炉に接続するガス供給量内に副生成物
が殆ど堆積されずまた、副生成物の飛散による被処理半
導体基板への汚染が抑制できる。更に、被処理半導体基
板における)く−ティクルサイズ(ParticQe 
 5ize粒径)が0.3μm以上のパーティクル(粒
子)数(縦軸)と成膜回数(横軸)の関係を示した第8
図では、成膜回数の増加に伴う被処理半導体基板への付
着粒子数の増加度が従来方法に比べて本発明方法の方か
抑えられているのか明らかである。また、反応炉に接続
される供給管内に副生成物か殆ど堆積されないために供
給管先端からの閉塞などの難点か解消され、ひいては信
頼性が向上した。
[Effects of the Invention] According to the reduced pressure vapor phase growth method to which the method of the present invention is applied, hardly any by-products are deposited within the gas supply connected to the reactor even if the film is formed many times. Contamination of the semiconductor substrate to be processed due to the scattering of particles can be suppressed. Furthermore, the particle size (ParticQe in the semiconductor substrate to be processed)
The eighth graph shows the relationship between the number of particles (vertical axis) with a particle size of 0.3 μm or more and the number of film formations (horizontal axis).
From the figure, it is clear that the increase in the number of particles adhering to the semiconductor substrate to be processed due to the increase in the number of times of film formation is suppressed in the method of the present invention compared to the conventional method. In addition, since almost no by-products are deposited in the supply pipe connected to the reactor, problems such as blockage from the tip of the supply pipe are eliminated, and reliability is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の減圧気相成長装置の断面図、第2図は
、二種類の材料ガス供給管が接続されている減圧気相成
長装置の供給管近傍の断面図、第3図は、従来の減圧気
相成長法における窒化珪素膜の成膜回数(横軸)と窒化
珪素膜が堆積した被処理半導体基板における粒子数の関
係を示す図、第4図は、本発明方法を適用した窒化珪素
膜形成用減圧気相成長装置の断面図、第5図は、本発明
方法を適用した酸化珪素膜形成用減圧気相成長装置の断
面図、第6図は、本発明方法により窒化珪素膜を外気巻
込み防止用N2供給管を使用して形成する際に供給した
N2ガス量(横軸)と窒化珪素膜の膜厚均一性(縦軸%
)を示すグラフ、第7図は、本発明方法における窒化珪
素膜を外気巻込み防止用N2供給管を使用して形成する
際に供給したN2ガス量(横軸)と被処理半導体基板に
付着した粒子数の関係を示すグラフ、第8図は、窒化珪
素膜の成膜回数(横軸)と被処理半導体基板に付着した
粒子数(縦軸)の関係を従来と本発明方法と比較して示
すグラフである。 1・反応炉、 2.2a、2b、2C。 2d、2e:材料ガス供給管、 3:大気復帰用不活性ガス供給管、 4:外気巻込み防止用ガス供給管、 5:石英製ボード、  6:被処理半導体基板、7:ヒ
ータ、      8:受は台、9:NH2ガス供給管
パージ用 不活性ガス供給管、 10 : S iH2CQ 2ガス供給管パージ用不活
性ガス供給管、 11:TEOSガス供給管パージ用 不活性ガス供給管、 12、ソースタンク。
Fig. 1 is a sectional view of a conventional reduced pressure vapor phase growth apparatus, Fig. 2 is a sectional view of the vicinity of the supply pipe of the reduced pressure vapor growth apparatus to which two types of material gas supply pipes are connected, and Fig. 3 is a sectional view of a conventional reduced pressure vapor phase growth apparatus. , a diagram showing the relationship between the number of times a silicon nitride film is deposited (horizontal axis) and the number of particles on a semiconductor substrate to be processed on which a silicon nitride film is deposited in the conventional low-pressure vapor phase growth method. FIG. 5 is a sectional view of a low pressure vapor phase growth apparatus for forming a silicon oxide film to which the method of the present invention is applied, and FIG. The amount of N2 gas supplied when forming a silicon film using an N2 supply pipe for preventing outside air entrainment (horizontal axis) and the film thickness uniformity of the silicon nitride film (vertical axis %)
), Figure 7 shows the amount of N2 gas supplied (horizontal axis) when forming a silicon nitride film in the method of the present invention using an N2 supply pipe for preventing outside air entrainment, and the amount of N2 gas attached to the semiconductor substrate to be processed. Figure 8 is a graph showing the relationship between the number of particles adhered to the silicon nitride film (horizontal axis) and the number of particles attached to the semiconductor substrate to be processed (vertical axis), comparing the conventional method and the method of the present invention. This is a graph showing 1. Reactor, 2.2a, 2b, 2C. 2d, 2e: Material gas supply pipe, 3: Inert gas supply pipe for atmospheric return, 4: Gas supply pipe for preventing outside air entrainment, 5: Quartz board, 6: Semiconductor substrate to be processed, 7: Heater, 8: 9: NH2 gas supply pipe purge inert gas supply pipe, 10: SiH2CQ 2 gas supply pipe purge inert gas supply pipe, 11: TEOS gas supply pipe purge inert gas supply pipe, 12, source tank.

Claims (2)

【特許請求の範囲】[Claims] (1)窒化珪素膜を形成するためにジクロルシランガス
とアンモニアガス用の反応ガス供給管が夫々バルブを介
して接続された反応炉または酸化珪素膜を形成するため
にテトラエトキシシランガスの反応ガスの供給管がバル
ブを介して接続された反応炉において、かつ反応炉に不
活性ガス供給管がバルブを介して接続された場合、供給
管系全体を閉じ、真空に排気する場合及び反応ガス供給
管から反応ガスを供給する場合を除き常時反応ガス供給
管から当該不活性ガスを供給し、かつ不活性ガス供給管
には少なくとも薄膜用原料ガスを供給する場合に不活性
ガス供給管から不活性ガスを供給することを特徴とする
気相成長法による薄膜の形成方法
(1) A reactor in which reaction gas supply pipes for dichlorosilane gas and ammonia gas are connected via valves to form a silicon nitride film, or a reaction gas for tetraethoxysilane gas to form a silicon oxide film. In a reactor where the supply pipe is connected via a valve, and when the inert gas supply pipe is connected to the reactor via a valve, the entire supply pipe system is closed and evacuated to vacuum, and the reaction gas supply pipe The inert gas is always supplied from the reaction gas supply pipe, except when the reaction gas is supplied from the inert gas supply pipe. A method for forming a thin film by a vapor phase growth method characterized by supplying
(2)前記形成薄膜が減圧気相成長法であることを特徴
とする薄膜の形成方法
(2) A method for forming a thin film, characterized in that the formed thin film is formed by a low pressure vapor phase epitaxy method.
JP12515890A 1990-05-15 1990-05-15 Method of forming thin film by vapor phase epitaxy Expired - Lifetime JP2809817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12515890A JP2809817B2 (en) 1990-05-15 1990-05-15 Method of forming thin film by vapor phase epitaxy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12515890A JP2809817B2 (en) 1990-05-15 1990-05-15 Method of forming thin film by vapor phase epitaxy

Publications (2)

Publication Number Publication Date
JPH0424921A true JPH0424921A (en) 1992-01-28
JP2809817B2 JP2809817B2 (en) 1998-10-15

Family

ID=14903315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12515890A Expired - Lifetime JP2809817B2 (en) 1990-05-15 1990-05-15 Method of forming thin film by vapor phase epitaxy

Country Status (1)

Country Link
JP (1) JP2809817B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103561A (en) * 2010-01-27 2010-05-06 Hitachi Kokusai Electric Inc Substrate processing apparatus and method for manufacturing semiconductor device
JP2010166088A (en) * 2010-04-14 2010-07-29 Hitachi Kokusai Electric Inc Substrate treating apparatus and method for manufacturing semiconductor device
US9169553B2 (en) 2002-11-11 2015-10-27 Hitachi Kokusai Electric Inc. Semiconductor device producing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3670524B2 (en) 1998-09-11 2005-07-13 株式会社日立国際電気 Manufacturing method of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9169553B2 (en) 2002-11-11 2015-10-27 Hitachi Kokusai Electric Inc. Semiconductor device producing method
JP2010103561A (en) * 2010-01-27 2010-05-06 Hitachi Kokusai Electric Inc Substrate processing apparatus and method for manufacturing semiconductor device
JP2010166088A (en) * 2010-04-14 2010-07-29 Hitachi Kokusai Electric Inc Substrate treating apparatus and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2809817B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
TWI699448B (en) Thin film forming method and substrate processing apparatus
TWI245310B (en) Atomic layer deposition (ALD) thin film deposition equipment having cleaning apparatus and cleaning method
US6355107B1 (en) Compound gas injection system
US6573184B2 (en) Apparatus and method for depositing thin film on wafer using atomic layer deposition
EP1038048B1 (en) Gas feeding system for chemical vapor deposition reactor and method of controlling the same
US20060249253A1 (en) Manifold assembly for feeding reactive precursors to substrate processing chambers
JP4836347B2 (en) Method for growing a thin film on a substrate
EP0637058B1 (en) Method of supplying reactant gas to a substrate processing apparatus
US6500734B2 (en) Gas inlets for wafer processing chamber
US8465587B2 (en) Modern hydride vapor-phase epitaxy system and methods
US20050223987A1 (en) Film forming apparatus
EP0537854B1 (en) Method of manufacturing a semiconductor device whereby a layer of material is deposited on the surface of a semiconductor wafer from a process gas
EP1593755A1 (en) Film forming apparatus and method
US20050136657A1 (en) Film-formation method for semiconductor process
JPS6115322A (en) Homogeneous chemical depositing method and device therefor
JP2016538719A (en) Control of powder and deposits in throttle valve
US20050170090A1 (en) Chemical vapor deposition apparatus and film deposition method
US4781945A (en) Process for the formation of phosphosilicate glass coating
GB1595659A (en) Providing conductive tracks on semiconductor devices
CN109576674B (en) Atomic layer deposition apparatus
JPH0424921A (en) Forming method for thin film by vapor deposition method
JP4356943B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP4537101B2 (en) Liquid material supply device and control method for liquid material supply device
JP2007335800A (en) Method and device of manufacturing semiconductor thin film
CN218404394U (en) Precursor source bottle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 12

EXPY Cancellation because of completion of term