JPH04247849A - Cold rolled steel sheet excellent in press formability and phosphating property and its manufacture - Google Patents

Cold rolled steel sheet excellent in press formability and phosphating property and its manufacture

Info

Publication number
JPH04247849A
JPH04247849A JP3025695A JP2569591A JPH04247849A JP H04247849 A JPH04247849 A JP H04247849A JP 3025695 A JP3025695 A JP 3025695A JP 2569591 A JP2569591 A JP 2569591A JP H04247849 A JPH04247849 A JP H04247849A
Authority
JP
Japan
Prior art keywords
rolled steel
steel sheet
cold
press formability
phosphate treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3025695A
Other languages
Japanese (ja)
Inventor
Toyofumi Watanabe
豊文 渡辺
Akihiko Furuta
彰彦 古田
Tadashi Ono
尾野 忠
Yoshinori Yomura
吉則 余村
Shuichi Iwato
岩藤 秀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3025695A priority Critical patent/JPH04247849A/en
Priority to CA002058678A priority patent/CA2058678A1/en
Priority to AU10137/92A priority patent/AU638371B2/en
Priority to ZA92202A priority patent/ZA92202B/en
Priority to KR1019920000473A priority patent/KR920014947A/en
Priority to BR929200205A priority patent/BR9200205A/en
Priority to EP92101186A priority patent/EP0496423A1/en
Priority to CN92100427A priority patent/CN1065690A/en
Publication of JPH04247849A publication Critical patent/JPH04247849A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To offer a cold rolled steel sheet excellent in press formability and phosphating properties. CONSTITUTION:This cold rolled steel sheet has a chemical componental compsn. contg., by weight, <=0.06% C, <=0.05% Si, <=2.50% Mn, <=0.100% P, <=0.025% S, <=0.10% Sol.Al and <=0.0050% N, contg., at need, <=0.15% Ti and/or Nb and the balance Fe with inevitable impurities. On the surface of the above cold rolled steel sheet, an Ni film precipitated into a granular shape with 5 to 60mg/m<2> coating weight at >=1X10<12> pieces/m<2> distribution density is formed, and the surface of the above Ni film is coated with an oxidized film having 0.0005 to 0.003mum, preferably 0.001 to 0.002mum average thickness.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、プレス成形性および
燐酸塩処理性に優れた冷延鋼板およびその製造方法に関
し、連続焼鈍法によって製造される深絞り用冷延鋼板を
プレス成形するに際し、鋼板表面の摩擦係数を低下させ
てプレス成形時においてプレス型と鋼板の滑りを改善す
ることで、成形機内への材料の流れ込みを良くし、プレ
ス加工割れを防止するとともに、塗装前の燐酸塩処理性
を改善し、塗装後の耐食性と塗料の密着性を向上するも
のである。
[Field of Industrial Application] This invention relates to a cold rolled steel sheet with excellent press formability and phosphate treatment properties, and a method for producing the same. By lowering the coefficient of friction on the surface of the steel plate and improving the slippage between the press mold and the steel plate during press forming, the flow of material into the forming machine is improved, preventing press processing cracks, and phosphate treatment before painting. This improves corrosion resistance and paint adhesion after painting.

【0002】0002

【従来の技術】一般に、冷延鋼板が自動車、電気製品な
どに加工される工程では、所定の形状を得るために、大
型のプレス成形機が使用される。特に、自動車の製造に
おいては、車体の大型化、また、走行時における空気抵
抗の低減およびスタイリッシュな外観を得るために、フ
ェンダーやドア、リヤ・クオータなどにまるみを持たせ
たデザインが主流になっている。
2. Description of the Related Art Generally, in the process of processing cold-rolled steel sheets into automobiles, electrical products, etc., large-sized press forming machines are used to obtain predetermined shapes. In particular, in automobile manufacturing, designs with rounded fenders, doors, rear quarters, etc. have become mainstream in order to increase the size of car bodies, reduce air resistance during driving, and achieve a stylish appearance. ing.

【0003】一方、経済性の追求のみならず、環境保護
の面から燃費の低減が火急の課題とされ、車体の軽量化
すなわち板厚のゲージ・ダウンが進んでいる。このゲー
ジ・ダウンにおいては、外板パネルなどにおいては薄い
板厚で耐デント性および張り剛性(押しても凹み難い状
態・形状凍結性)を得るために、深絞りを必要とする部
位においてまでも高張力鋼板が使用されるようになった
。このような薄くて強度の高い冷延鋼板を深絞り成形す
るためには、プレス時に発生するシワを防止するために
、強力なプレス機械を用いて、シワ抑え力を高めておく
必要がある。
[0003] On the other hand, reducing fuel consumption is an urgent issue not only in pursuit of economy but also in terms of environmental protection, and progress is being made in reducing the weight of vehicle bodies, that is, reducing the gauge of the plate thickness. In this gage down, in order to obtain dent resistance and tensile rigidity (hard to dent even when pressed, shape fixability) with a thin plate thickness for exterior panels, etc., high drawing strength is applied even in areas that require deep drawing. Tensile steel plates began to be used. In order to deep draw such a thin and strong cold-rolled steel sheet, it is necessary to use a powerful press machine to increase the wrinkle suppressing ability in order to prevent wrinkles that occur during pressing.

【0004】ところで、冷延鋼板の製造方法は、冷間圧
延で大きく歪みを受けた結晶を再結晶させるための焼鈍
工程の違いから、連続焼鈍法(以下、「CAL 」とい
う)と箱型焼鈍法(以下、「BAF 」という)に分け
られる。 これまで深絞りに供される軟質冷延鋼板の製造には、一
般的な低炭素アルミキルド鋼が、また深絞り用高張力高
には、低炭素アルミキルド鋼にSi、Mn、P などが
添加されたものが用いられ、加熱・冷却時間が長く結晶
粒が成長しやすく、高いランクフォード値 (以下、「
r 値」という)を持った材料が得られるBAF で製
造されてきた。
By the way, there are two methods for producing cold-rolled steel sheets: continuous annealing (hereinafter referred to as "CAL") and box annealing, due to the difference in annealing process for recrystallizing crystals that have been severely strained during cold rolling. (hereinafter referred to as "BAF"). Until now, general low-carbon aluminum killed steel has been used to manufacture soft cold-rolled steel sheets for deep drawing, and Si, Mn, P, etc. have been added to low carbon aluminum killed steel for high tensile strength deep drawing. The heating and cooling times are long and crystal grains grow easily, resulting in a high Lankford value (hereinafter referred to as
BAF has been manufactured using BAF, which yields materials with a high value (r-value).

【0005】BAF 焼鈍の場合は、CAL に比べる
と遙かに長時間高温にさらされるため、鋼板の表面には
、鋼中に含有されるSi、Mn、P 、S などが酸化
物となって濃化する。この表面酸化物が、プレス成形時
に潤滑膜として作用すること、および、BAF 材はC
AL 材と比較してr 値が高いことから、BAF に
おいてはプレス割れなどのトラブルは極めて少なかった
。また、プレス成形した後、塗装後の塗料密着性および
耐食性を向上させるための、燐酸塩被膜の形成において
も、鋼中に添加された元素および表面に濃化したMnな
どを中心とした元素が被膜形成反応を活性化するため、
きめ細かい薄い結晶被膜が得られていた。
[0005] In the case of BAF annealing, the steel plate is exposed to high temperatures for a much longer time than in CAL, so Si, Mn, P, S, etc. contained in the steel become oxides on the surface of the steel plate. Concentrate. This surface oxide acts as a lubricating film during press forming, and the BAF material is C
Since the r value is higher than that of the AL material, troubles such as press cracks were extremely rare with BAF. In addition, in the formation of a phosphate film after press forming and painting to improve paint adhesion and corrosion resistance, elements added to the steel and elements such as Mn concentrated on the surface are used. To activate the film formation reaction,
A fine, thin crystalline film was obtained.

【0006】このようなことにもかかわらず、最近では
、製造工程の短縮、歩留りの向上、省力化などの観点か
ら、BAF からCAL への切替えが盛んに行われて
きた。 特に、プレス成形性の指標となるr 値を高める手段と
して、製鋼の段階で脱ガス技術を利用して含有C 量を
100ppm以下に抑え、その他の不純物となる元素も
極めて少なくして結晶の成長が短時間で出来るようにし
た極低C 鋼や、さらに、それにTiおよび/またはN
bなどを添加して固溶元素となるC およびN を固定
して、より高いr 値が短時間の焼鈍で得られるように
したInter−sticial Free(IF)鋼
(例えば、特公昭61−32375号公報) が開発さ
れて以降、CAL においても、高いr 値を持った深
絞り用冷延鋼板の製造が可能となった。
[0006] Despite this, recently, switching from BAF to CAL has been actively carried out from the viewpoint of shortening the manufacturing process, improving yield, and saving labor. In particular, as a means to increase the r value, which is an index of press formability, degassing technology is used during the steelmaking stage to suppress the amount of carbon content to 100 ppm or less, and other impurity elements are also extremely reduced to allow crystal growth. Ultra-low C steel that can be formed in a short time, and also Ti and/or N
Inter-sticial free (IF) steel (e.g., IF steel) in which a higher r value can be obtained by short-time annealing by fixing C and N, which become solid solution elements, by adding b and the like (for example, Japanese Patent Publication No. 61-32375 Since the development of CAL, it has become possible to produce cold-rolled steel sheets for deep drawing with a high r value.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、本発明
者らは、このようにしてCAL で製造された、高r 
値の冷延鋼板は、従来のBAF で製造された絞り用冷
延鋼板に比べてr 値が同等ないしは高いにも関わらず
プレス時の割れが発生し易く、また、複雑な形状の加工
においては、やや型かじり(Galling) が発生
し易いことを知見した。 この原因について種々の検討を重ねた結果、表1に示す
ように、表面の摩擦係数の相対値にBAF材とCAL 
材とではかなりの差があることを発見した。表1は、従
来のめっき無しの状態で、BAF 材およびCAL 材
について、表面の摩擦係数とともにr 値およびLDR
 値を比較したものである。
[Problems to be Solved by the Invention] However, the present inventors have found that high r
Compared to cold-rolled steel sheets for drawing manufactured by conventional BAF, cold-rolled steel sheets with high R values are more likely to crack during pressing, even though they have the same or higher r value, and they are difficult to process when processing complex shapes. It was found that galling was slightly likely to occur. As a result of various studies regarding the cause of this problem, we found that the relative value of the surface friction coefficient differs between BAF material and CAL material, as shown in Table 1.
I discovered that there is a considerable difference between the materials. Table 1 shows the surface friction coefficient, r value, and LDR for BAF material and CAL material in the conventional state without plating.
This is a comparison of values.

【0008】[0008]

【表1】[Table 1]

【0009】それを実験的に証明したものが図1に示し
た、r 値と限界絞り比{Limiting Draw
ing Ratio=円筒絞り試験において割れが発生
しない限度となる絞り用ポンチと原板との直径比(以下
、「LDR 」という) }との関係である。図1は各
々のr 値とLDR 値との関係をプロットしたグラフ
である。このように差が生じる原因については、板表面
の摩擦係数が高いと、鋼板とシワ抑え治具およびダイス
の滑りが悪い上に、プレス型内部での材料の流れが悪く
なるためであろうと考えられる。また、プレス成形後の
燐酸塩処理被膜の形成については、鋼中に含有される不
純物元素が少ないうえに、CAL の場合は鋼板表面が
高温にさらされる時間がBAF に比べると極端に短い
ため表面への濃化もおこらないため、燐酸塩結晶の析出
核となるべきカソードが極めて少なく、図6に写真で示
すように粗くて大きい結晶被膜となり、塗料密着性およ
び塗装後の耐食性がともに低下する。
The experimental proof of this is shown in FIG. 1, which shows the r value and limiting draw ratio.
ing Ratio=diameter ratio between the drawing punch and the original plate (hereinafter referred to as "LDR") which is the limit at which cracks do not occur in the cylindrical drawing test. FIG. 1 is a graph plotting the relationship between each r value and LDR value. The reason for this difference is thought to be that when the friction coefficient of the plate surface is high, the slippage between the steel plate, the anti-wrinkle jig, and the die is poor, and the flow of material inside the press die is also poor. It will be done. In addition, regarding the formation of a phosphate treatment film after press forming, there are fewer impurity elements contained in the steel, and in the case of CAL, the time that the steel plate surface is exposed to high temperatures is extremely short compared to BAF, so the surface Since no concentration occurs, there are very few cathodes that can become precipitation nuclei for phosphate crystals, resulting in a coarse and large crystal coating as shown in the photograph in Figure 6, which reduces both paint adhesion and post-painting corrosion resistance. .

【0010】このCAL 材において、燐酸塩処理性が
低下する問題は、この発明に提示されるような極低C 
材の場合のみならず、通常の低CAl−K鋼やCapp
ed鋼の場合においても、CAL プロセス内部に中間
での水冷却や気水冷却などの急冷装置と、該冷却過程に
おいて表面に発生するスケールを除去するために、無機
酸による酸洗を行った場合に認められる。その改善対策
として、酸洗後の鋼板表面にNiなどの金属を極小量析
出させる方法が、例えば、特開昭56−116883 
号公報、特開昭56−116887 号公報に開示され
ている。
[0010] In this CAL material, the problem of deterioration in phosphatability is caused by the extremely low CAL material as presented in this invention.
Not only in the case of steel, but also in ordinary low-CAl-K steel and Capp.
Even in the case of ed steel, there is a quenching device such as intermediate water cooling or air/water cooling inside the CAL process, and pickling with inorganic acid is performed to remove scale generated on the surface during the cooling process. recognized. As a countermeasure for this problem, a method of precipitating a very small amount of metal such as Ni on the surface of the steel plate after pickling has been proposed, for example, in Japanese Patent Application Laid-Open No. 56-116883.
It is disclosed in Japanese Patent Application Laid-open No. 56-116887.

【0011】その効果の依るところは、Ni等を微量析
出させた場合、酸洗後の不活性な表面に燐酸塩被膜形成
反応のためのカソード形成が促進されるためと考えられ
る。また、類似の改善技術として析出Niの形態を規定
することにより、緻密且つ均一で一定範囲の大きさの燐
酸塩結晶被膜を安定的に得る方法が特開平2−1012
00号公報に開示されている。
This effect is thought to be due to the fact that when a small amount of Ni or the like is precipitated, the formation of a cathode for the reaction of forming a phosphate film is promoted on the inert surface after pickling. In addition, as a similar improvement technique, a method for stably obtaining a dense and uniform phosphate crystal coating with a certain size range by specifying the morphology of precipitated Ni was disclosed in Japanese Patent Application Laid-Open No. 2-1012.
It is disclosed in Publication No. 00.

【0012】本発明者らは鋭意研究の結果、ここに開示
される技術では、燐酸塩処理性とプレス成形性とを同時
に、しかも確実に改善するにはいずれも不十分であるこ
とを実験的に確認し、この発明を完成するに到った。す
なわち、この発明はこれらの技術をさらに改善し、優れ
た燐酸塩処理性を安定して付与すると同時に、プレス成
形時の問題をも同時に解決せんとするものである。
As a result of intensive research, the present inventors have experimentally determined that the technology disclosed herein is insufficient to simultaneously and reliably improve phosphating properties and press formability. This led to the completion of this invention. That is, the present invention aims to further improve these techniques, stably impart excellent phosphate treatment properties, and at the same time solve problems during press molding.

【0013】本発明者らの実験的研究の結果、先に開示
されている従来技術にはその構成する要素から次ぎの様
な問題があることがわかった。まず、特開昭56−11
6883 号公報、特開昭56−116887 号公報
に開示されている技術(以下、「従来技術1、2」とい
う)では、燐酸塩処理性を高めるためにNiを始めとす
る金属を鋼板の表面上に析出させる技術が開示されてい
るが、これらの方法では、付着量の範囲があまりにも広
すぎることが分かった。
As a result of experimental research by the present inventors, it has been found that the prior art disclosed above has the following problems due to its constituent elements. First, JP-A-56-11
In the techniques disclosed in JP-A-6883 and JP-A-56-116887 (hereinafter referred to as "prior art 1 and 2"), metals such as Ni are added to the surface of the steel sheet in order to improve the phosphating property. Although techniques have been disclosed for depositing on the substrate, these methods have been found to have a too wide range of coverage.

【0014】すなわち、燐酸塩処理性の改善においては
、析出サイトの数を一定の分布密度で得るのが殊に重要
であり、開示されている範囲にあっても、粒子状に一定
の密度で分布してなかったり、付着量が必要以上に多い
場合には、優れた塗装後の耐食性と塗料の密着性とを得
るために必要な、薄くて緻密な被膜を形成するのに適当
なサイズの結晶粒径を得ることができない。逆に、少な
すぎる場合には、燐酸塩の析出サイトの数が不足し、粗
くて厚い被膜になるとともに、十分な表面の摩擦係数の
低減効果が得られない。
[0014] In other words, in order to improve the phosphating property, it is particularly important to obtain the number of precipitation sites at a constant distribution density, and even within the disclosed range, it is especially important to obtain a constant distribution density of the precipitation sites. If it is not distributed or the amount of adhesion is larger than necessary, use an appropriate size coating to form the thin and dense film necessary to obtain excellent post-painting corrosion resistance and paint adhesion. Unable to obtain grain size. On the other hand, if the amount is too small, the number of phosphate precipitation sites will be insufficient, resulting in a rough and thick coating, and a sufficient effect of reducing the surface friction coefficient will not be obtained.

【0015】また、付着量が満足できる範囲にあったと
しても、析出金属の表層に酸化膜が存在しないか、また
は、存在したとしても極く薄いばあいは、極低C 鋼を
始めとする軟鋼をCAL で処理して深絞り鋼板を製造
した場合に問題となる、鋼板表面の摩擦係数の上昇に起
因するプレス成形性の低下を防止するには、前記従来技
術1、2の中に適正値として表示されている範囲の上限
近くの付着量が要求され、それによって、燐酸塩処理性
が阻害されることが分かった。
[0015] Even if the amount of deposit is within a satisfactory range, if there is no oxide film on the surface layer of the deposited metal, or if it is very thin, it may be necessary to use ultra-low C steel or other materials. In order to prevent a decrease in press formability due to an increase in the coefficient of friction on the surface of the steel plate, which is a problem when producing deep-drawn steel plates by processing mild steel with CAL, it is possible to It has been found that coverages near the upper end of the range indicated are required, thereby inhibiting phosphatability.

【0016】また、特開平2−101200号公報に開
示される技術においては、粒子の直径および分布密度、
表層の非金属被膜の存在など、金属の析出形態について
規定することによって、より安定した燐酸塩被膜を形成
することのできる冷延鋼板が製造できることが開示され
ている(以下、「従来技術3」という)。さらに、従来
技術3の実施例の中には、CAL プロセスの後、該技
術を適用してなる冷延鋼板の表面の摩擦係数は、従来の
CAL で得られるそれに比べて摩擦係数が低下するこ
とも開示されている。
[0016] Furthermore, in the technique disclosed in JP-A-2-101200, particle diameter and distribution density,
It is disclosed that by specifying the precipitation form of metal, such as the presence of a non-metallic coating on the surface layer, it is possible to produce a cold-rolled steel sheet in which a more stable phosphate coating can be formed (hereinafter referred to as "Prior Art 3"). ). Furthermore, in the embodiments of Prior Art 3, after the CAL process, the friction coefficient of the surface of the cold-rolled steel sheet obtained by applying this technology is lower than that obtained by conventional CAL. is also disclosed.

【0017】この発明は、基本的に該従来技術3と共通
点を有するものであるが、本発明者らがさらに詳細な実
験検討を加えた結果、下記の問題点が明らかとなり、こ
の発明に到らしめたものである。 (1) 従来技術3に開示される特徴である粒子状析出
金属の分布密度 (1 ×1012から5 ×1014
個/m2 ) は、良好な耐食性を確保するために最適
な燐酸塩結晶サイズを得るのに必要な要素であるが、そ
れは燐酸塩処理において必要な処理析出核数(1 ×1
010以上5 ×1011個/m2 ) を得るための
必要条件となっているためであり、これが金属の付着量
の影響を強く受ける。すなわち、これを満足する付着量
は、5mg/ m2 以上であり、1 〜4mg/ m
2 では下限分布密度である1 ×1012個/m2 
を満足できない。
[0017] This invention basically has features in common with the prior art 3, but as a result of more detailed experimental studies by the present inventors, the following problems were clarified, and the present invention has been improved. This is what we have achieved. (1) Distribution density of particulate precipitated metal (1 × 1012 to 5 × 1014
The number of precipitated nuclei (1 × 1
This is because it is a necessary condition to obtain 010 or more 5 × 1011 pieces/m2), and this is strongly influenced by the amount of metal deposited. That is, the adhesion amount that satisfies this is 5 mg/m2 or more, and 1 to 4 mg/m2.
2, the lower limit distribution density is 1 × 1012 pieces/m2
I can't be satisfied with that.

【0018】(2) Niおよびその表面に非金属Ni
の被膜を析出させることで燐酸塩処理性の改善および表
面の摩擦係数の低減に効果が認められるが、従来技術3
の実施例に開示されるように、非金属Niとは基本的に
金属酸化物であり、それがアルカリ浴中で、開示された
条件で陽極電解を行う方法によって形成され、且つその
厚さが0.005 μm 以上に達するような場合は、
露出した鋼板表面には、それ以上の平均厚さの酸化膜が
生成するため、プレス成形性は改善されるものの、燐酸
塩処理後の被膜はスケの多いものとなり、塗装後の耐食
性および塗料の密着性が低下する。
(2) Ni and nonmetallic Ni on its surface
Although it is recognized that depositing a film of
As disclosed in the Examples, nonmetallic Ni is basically a metal oxide, which is formed by a method of performing anodic electrolysis in an alkaline bath under the disclosed conditions, and whose thickness is If it reaches 0.005 μm or more,
An oxide film with an average thickness larger than that is formed on the exposed steel plate surface, which improves press formability, but the film after phosphate treatment has a lot of flakes, which impairs the corrosion resistance and paint resistance after painting. Adhesion deteriorates.

【0019】以上述べたように、軟鋼板を用いてCAL
 プロセスで深絞り用冷延鋼板を製造するにあたっては
、燐酸塩処理性の低下、および、プレス成形性の低下な
どの問題を抱えていた。この問題を解決するために、N
iなどの金属を、単体および/または合金として、CA
L した後、鋼板表面に微量析出させる方法が採られて
きたが、本発明者らが詳細に検討を重ねてきた結果、こ
れまでに提唱されている技術では、極軟質から高張力鋼
板にいたるまでの深絞り用冷延鋼板をCAL プロセス
で製造するにはいずれも不十分であることがわかった。
As mentioned above, CAL using mild steel plate
In producing cold-rolled steel sheets for deep drawing using the process, there have been problems such as a decrease in phosphate treatment properties and a decrease in press formability. To solve this problem, N
i, etc. as a single substance and/or an alloy, CA
A method has been adopted in which a small amount of precipitate is deposited on the surface of the steel sheet after the L is applied, but as a result of detailed studies by the present inventors, the technology proposed so far has been found to be suitable for materials ranging from extremely soft to high tensile strength steel sheets. It has been found that the CAL process is insufficient to produce cold-rolled steel sheets for deep drawing.

【0020】従って、この発明の目的は、連続焼鈍法に
よって製造される深絞り用冷延鋼板をプレス成形するに
際し、鋼板表面の摩擦係数を低下させてプレス成形時に
おいてプレス型と鋼板の滑りを改善することで、成形機
内への材料の流れ込みを良くし、プレス加工割れを防止
するとともに、塗装前の燐酸塩処理性を改善し、塗装後
の耐食性と塗料の密着性を向上することができる、プレ
ス成形性および燐酸塩処理性に優れた冷延鋼板およびそ
の製造方法を提供することにある。
[0020] Therefore, an object of the present invention is to reduce the coefficient of friction on the surface of the steel plate to prevent slippage between the press die and the steel plate during press forming when cold rolled steel plate for deep drawing is manufactured by continuous annealing. By improving this, it is possible to improve the flow of material into the molding machine, prevent press processing cracks, improve phosphate treatment before painting, and improve corrosion resistance and paint adhesion after painting. The object of the present invention is to provide a cold-rolled steel sheet with excellent press formability and phosphate treatment properties, and a method for producing the same.

【0021】[0021]

【課題を解決するための手段】上記目的を達成するため
に、この発明の冷延鋼板においては、C ≦0.06w
t%、Si≦0.5wt %、Mn≦2.50wt%、
P ≦0.100wt %、S ≦0.025wt %
、Sol.Al≦0.10wt%、N ≦0.0050
wt%、必要によりTiおよび/またはNb≦0.15
wt%を含み残部Feおよび不可避的不純物からなる化
学成分組成を有する冷延鋼板と、前記冷延鋼板の表面上
に形成された、5 〜60mg/m2 の付着量で、1
 ×1012個/ m2 以上の分布密度で粒子状に析
出されてなるNi被膜とからなり、前記Ni被膜の表面
上は、平均厚さ0.0005〜0.003 μm 、好
ましくは0.001 〜0.002 μm の酸化膜で
覆われていることに特徴を有するものである。
[Means for Solving the Problems] In order to achieve the above object, in the cold rolled steel sheet of the present invention, C≦0.06w
t%, Si≦0.5wt%, Mn≦2.50wt%,
P≦0.100wt%, S≦0.025wt%
, Sol. Al≦0.10wt%, N≦0.0050
wt%, if necessary Ti and/or Nb≦0.15
wt% with the balance consisting of Fe and unavoidable impurities, and a coating amount of 5 to 60 mg/m2 formed on the surface of the cold rolled steel sheet.
It consists of a Ni film precipitated in the form of particles with a distribution density of ×1012 pieces/m2 or more, and the average thickness on the surface of the Ni film is 0.0005 to 0.003 μm, preferably 0.001 to 0. It is characterized by being covered with an oxide film of 0.002 μm.

【0022】この発明の冷延鋼板の製造方法においては
、 C≦0.06wt%、Si≦0.5wt %、Mn
≦2.50wt%、P ≦0.100wt %、S ≦
0.025wt %、Sol.Al≦0.10wt%、
N ≦0.0050wt%、必要によりTiおよび/ま
たはNb≦0.15wt%を含み残部Feおよび不可避
的不純物からなる化学成分組成を有する鋼を調製し、前
記鋼を連続鋳造法によって鋼塊とし、前記鋼塊を通常の
熱延条件によって熱間圧延し、次いで、表面に付着した
スケールを化学的および/または機械的手段によって除
去し、次いで、60〜85%の圧下率による冷間圧延に
よって所定の板厚とし、次いで、連続焼鈍法によって再
結晶温度まで加熱し、次いで、冷却し、このようにして
得られた冷延鋼板に対し、酸性浴中で陰極電解を施して
前記冷延鋼板の表面上に、Niを、5 〜60mg/m
2 の付着量、1 ×1012個/ m2 以上の分布
密度で粒子状に析出させ、次いで、前記粒子状のNiが
その表面上に析出した冷延鋼板を中性またはアルカリ性
浴中に浸漬するか、または、前記浴中で陽極電解するこ
とによって、析出金属の表面に平均厚さ0.0002〜
0.005 μm 、好ましくは0.001 〜0.0
03 μm の酸化膜を形成してなることに特徴を有す
るものである。また、連続焼鈍によって加熱し、冷却し
た後、前記Niを析出させるに際し、事前に鋼帯表面を
酸洗法によって清浄化することが好ましい。
[0022] In the method for manufacturing a cold rolled steel sheet of the present invention, C≦0.06wt%, Si≦0.5wt%, Mn
≦2.50wt%, P≦0.100wt%, S≦
0.025wt%, Sol. Al≦0.10wt%,
Prepare a steel having a chemical composition of N≦0.0050wt%, optionally containing Ti and/or Nb≦0.15wt% and the balance consisting of Fe and unavoidable impurities, and forming the steel into a steel ingot by a continuous casting method, The steel ingot is hot-rolled under normal hot-rolling conditions, scale attached to the surface is removed by chemical and/or mechanical means, and then cold-rolled at a reduction rate of 60 to 85% to form the desired shape. The thickness of the cold rolled steel sheet is then heated to the recrystallization temperature by a continuous annealing method, and then cooled, and the cold rolled steel sheet thus obtained is subjected to cathodic electrolysis in an acid bath to obtain 5 to 60 mg/m of Ni on the surface
Ni particles are precipitated at a distribution density of 1 x 1012 pieces/m2 or more, and then the cold-rolled steel sheet on which the particulate Ni is precipitated is immersed in a neutral or alkaline bath. , or by anodic electrolysis in the bath, the surface of the deposited metal is coated with an average thickness of 0.0002~
0.005 μm, preferably 0.001 to 0.0
It is characterized by forming an oxide film with a thickness of 0.3 μm. Moreover, after heating by continuous annealing and cooling, when precipitating the Ni, it is preferable to clean the steel strip surface by a pickling method in advance.

【0023】以上述べたように、燐酸塩処理性を高める
ためには表面に燐酸塩結晶であるHopeite(Zn
3 (PO 4 ) 2 ) やPhosphophy
llite(Zn2 Fe(PO 4 ) 2 ) が
析出するための析出サイトとなるカソードが一定の密度
で分布し、初期析出核を形成する必要がある。表面のカ
ソードの数は、表面に露出したり、濃化した不純物元素
や外来性元素によって生じる電位差で形成されるローカ
ルセルである。
As mentioned above, in order to improve the phosphate treatment properties, phosphate crystals such as Hopeite (Zn) are added to the surface.
3 (PO 4 ) 2 ) and Phosphophy
It is necessary that cathodes, which serve as precipitation sites for the precipitation of llite (Zn2Fe(PO4)2), be distributed at a certain density to form initial precipitation nuclei. A number of surface cathodes are local cells formed by potential differences caused by impurity elements or foreign elements exposed or concentrated on the surface.

【0024】不純物元素が少ない軟鋼板を用いて、且つ
、焼鈍時間が短く表面への元素濃化の生じにくいCAL
 では、外来性元素、すなわち異種金属のめっきに依存
するのが一般的手段となるが、初期核数の密度は析出金
属の粒子密度、ひいては、付着量に強く依存する。本発
明者らの検討によれば、塗装後の耐食性と塗料の密着性
とを十分なものとするための適正な結晶サイズ( 粒子
径) を得るためには、初期核数を1 ×1010から
5 ×1011個/m2 とする必要がある。また、そ
れを達成するためには、付着金属を粒子状とし、その粒
子分布密度を1 ×1012から5 ×1014個/m
2 とする必要がある。これによって得られる被膜結晶
の平均サイズは、BAF なみの1 〜3 μm であ
り、良好な塗装後の耐食性と塗料の密着性とを得ること
ができるが、これに必要な付着量は、最低でも5mg/
 m2 である。
[0024] CAL uses a mild steel plate with few impurity elements and the annealing time is short and element concentration on the surface is less likely to occur.
In this case, a common method is to rely on plating with an exogenous element, that is, a different metal, but the density of the initial number of nuclei strongly depends on the particle density of the precipitated metal and, by extension, on the amount of deposited metal. According to the studies conducted by the present inventors, in order to obtain an appropriate crystal size (particle size) to ensure sufficient corrosion resistance and paint adhesion after painting, the initial number of nuclei must be increased from 1 × 1010. It is necessary to set the number to 5×1011 pieces/m2. In addition, in order to achieve this, it is necessary to make the deposited metal into particles and increase the particle distribution density from 1 × 1012 to 5 × 1014 particles/m.
2. The average size of the coating crystals obtained by this method is 1 to 3 μm, which is the same as BAF, and good corrosion resistance and paint adhesion after painting can be obtained, but the amount of coating required for this is at least 5mg/
m2.

【0025】一方、表面の摩擦係数が高いのは、前述の
ように表面へ酸化物として濃化する元素が極めて少ない
ためであり、これも外来性元素、すなわち簡単な方法と
しては、特定金属の微量めっきで対応できる。めっきの
方法は、浸漬法による置換めっきでもよいが、必要な粒
子状の分布状態と分布密度を得るには、電解法が好まし
い。しかし、純金属を析出させた場合には、表面の硬度
が比較的低いため、例えば、Niなどをめっきするばあ
いには、析出量を多めにする必要があるが、その場合は
、前記粒子密度の適正範囲を維持するのが不可能となる
うえ、効果も十分でない。そこで、潤滑性を高めるため
には、析出金属の表層を薄い酸化膜で覆うのが簡単で、
且つ、効果的である。
On the other hand, the reason why the coefficient of friction on the surface is high is that, as mentioned above, there are extremely few elements that concentrate on the surface as oxides. Can be handled by micro-plating. The plating method may be displacement plating using a dipping method, but an electrolytic method is preferable in order to obtain the required particle distribution state and distribution density. However, when pure metal is precipitated, the surface hardness is relatively low, so when plating Ni etc., for example, it is necessary to increase the amount of precipitated metal. It becomes impossible to maintain the appropriate density range, and the effect is not sufficient. Therefore, in order to improve lubricity, it is easy to cover the surface layer of the deposited metal with a thin oxide film.
Moreover, it is effective.

【0026】しかしながら、酸化膜は絶縁体となるので
、あまり厚くなると燐酸塩を析出させるための電流の流
れを阻害するようになるし、アルカリ浴中での陽極電解
などの方法で、その酸化膜を意図的に付与する場合にお
いて、浴濃度が高すぎたり、電流が高すぎる場合には、
析出金属のみならず露出した鋼板表面にも厚い酸化膜が
生成され、燐酸塩結晶の析出核数が減少して粗大結晶と
なり緻密な被膜を形成することができず好ましくない。 そこで、燐酸塩処理性を阻害しない範囲で酸化膜の平均
厚さを正確にコントロールする必要が有り、その平均厚
さは0.0005〜0.003 μm 、好ましくは0
.001〜0.002 μm とする必要がある。この
ような範囲の酸化膜を安定して得るには、中性またはア
ルカリ性溶液 (例えば、10g/l のNa2 CO
3 水溶液など)中に浸漬するか、低電流で陽極電解す
る。
However, since the oxide film is an insulator, if it becomes too thick, it will obstruct the flow of current for depositing phosphate, and the oxide film can be removed by a method such as anodic electrolysis in an alkaline bath. When applying intentionally, if the bath concentration is too high or the current is too high,
A thick oxide film is formed not only on the precipitated metal but also on the exposed surface of the steel sheet, and the number of precipitated phosphate crystal nuclei decreases, resulting in coarse crystals, making it impossible to form a dense film, which is undesirable. Therefore, it is necessary to accurately control the average thickness of the oxide film within a range that does not impede phosphate treatment properties, and the average thickness is 0.0005 to 0.003 μm, preferably 0.
.. It is necessary to set it to 001-0.002 micrometer. To stably obtain an oxide film in this range, a neutral or alkaline solution (for example, 10 g/l Na2 CO
3) or by anodic electrolysis with low current.

【0027】次に、この発明の限定理由について述べる
。鋼板の化学成分組成に上限を設けたのは、問題が深絞
り鋼板に限られ、またその原因が、焼鈍中に含有成分が
表面に濃化しにくいことによるためである。一般にCA
L で深絞り用冷延鋼板を製造するのに用いられる範囲
で上限を設けた。
Next, the reasons for the limitations of this invention will be described. The reason for setting an upper limit on the chemical composition of steel sheets is that the problem is limited to deep-drawn steel sheets, and the cause is that the contained components are difficult to concentrate on the surface during annealing. Generally CA
The upper limit was set within the range used to produce cold-rolled steel sheets for deep drawing.

【0028】Ni被膜の付着量の下限は、析出金属の粒
子分布密度の下限1 ×1012個/m2 を得るとと
もに、燐酸塩処理時に必要な初期析出核数を確保するた
め、および、Niめっきの場合は、表面の摩擦係数を低
下させるために5 mg/ m 2 とした。一方、付
着量が60mg/ m 2 を超えても効果は十分飽和
し、それ以上では不経済となり、さらに増加しても初期
析出数はむしろ減少傾向を示し、逆効果となるのでこの
値を上限とした。
The lower limit of the amount of Ni coating is determined in order to obtain the lower limit of the particle distribution density of the precipitated metal, 1 × 1012 particles/m2, and to ensure the initial number of precipitated nuclei required during phosphate treatment, and to In this case, it was set to 5 mg/m 2 in order to reduce the coefficient of friction of the surface. On the other hand, even if the amount of deposit exceeds 60 mg/m 2, the effect is sufficiently saturated, and if it exceeds it, it becomes uneconomical, and even if it increases further, the number of initial deposits will tend to decrease, which will have the opposite effect, so this value should be set as an upper limit. And so.

【0029】析出金属の表面に付着させる酸化膜は、薄
いと摩擦係数の低減に効果がなく、一方、厚ければ燐酸
塩処理性が損なわれるので、平均厚さの下限を0.00
05μm 好ましくは0.001 μm とし、上限を
0.003 μm 好ましくは0.002 とした。
If the oxide film attached to the surface of the deposited metal is thin, it will not be effective in reducing the coefficient of friction, while if it is thick, the phosphate treatment property will be impaired, so the lower limit of the average thickness is set at 0.00.
05 μm, preferably 0.001 μm, and the upper limit was set to 0.003 μm, preferably 0.002 μm.

【0030】次に、製造方法について述べる。製造方法
においては、十分な深絞り性を与えるために、冷間圧延
での圧下率を60〜85%とした。また、連続焼鈍法に
よって再結晶温度まで加熱後冷却する。連続焼鈍はプレ
ス成形に供する冷延鋼板に通常行われている方法で、再
結晶温度まで昇熱し、3 〜10分間保持した後、鋼種
により適宜5 ℃/sec以下で50℃程度まで徐冷す
るか、10℃/sec以上で450 ℃以下まで一旦急
冷した後、250 〜400 ℃で1 〜3 分間過時
効処理の後、50℃以下まで冷却する工程よりなる。連
続焼鈍を行うのは、製造時間の短縮な可能のなるほか、
大幅な材質の均一性、歩留まり、生産性の向上が期待で
きるためである。
Next, the manufacturing method will be described. In the manufacturing method, the rolling reduction during cold rolling was set at 60 to 85% in order to provide sufficient deep drawability. In addition, it is heated to the recrystallization temperature by a continuous annealing method and then cooled. Continuous annealing is a method commonly used for cold-rolled steel sheets to be subjected to press forming, in which the temperature is raised to the recrystallization temperature, held for 3 to 10 minutes, and then slowly cooled to approximately 50°C at a rate of 5°C/sec or less depending on the steel type. Alternatively, it consists of a step of once rapidly cooling to 450°C or lower at a rate of 10°C/sec or more, then overaging at 250 to 400°C for 1 to 3 minutes, and then cooling to 50°C or lower. Continuous annealing not only shortens manufacturing time, but also
This is because significant improvements in material uniformity, yield, and productivity can be expected.

【0031】また、金属を析出させるにあたっては、浸
漬による置換法でもよいが、粒子状に一定密度で安定的
に析出させるために、酸性浴中での陰極電解めっきとし
た。さらにその後、所定の平均厚さの酸化膜を得るため
に、中性またはアルカリ性浴中に浸漬するか、低電流で
陽極電解する方法を採用した。
[0031] Further, in order to deposit the metal, a substitution method using immersion may be used, but in order to stably deposit the metal at a constant density in the form of particles, cathode electrolytic plating in an acidic bath was used. Furthermore, in order to obtain an oxide film with a predetermined average thickness, a method of immersion in a neutral or alkaline bath or anodic electrolysis with a low current was adopted.

【0032】尚、連続焼鈍によって加熱し、冷却した後
、めっき前に、事前に鋼帯表面を酸洗法によって清浄化
する。酸洗法を適用するのは、CAL の場合、入側に
直火加熱炉、途中の急冷帯に水冷や気水冷却を用いる場
合が多いのと、加熱帯中の雰囲気ガスの露点が上昇する
ことによって、鋼板表面に厚い酸化膜が形成され、めっ
きされる金属が好ましい状態に析出しにくいことがある
ためである。
[0032] After heating and cooling by continuous annealing, the surface of the steel strip is cleaned by pickling before plating. The reason why the pickling method is applied is that in the case of CAL, a direct-fired heating furnace is used on the entry side, and water cooling or air-water cooling is often used in the quenching zone in the middle, and the dew point of the atmospheric gas in the heating zone increases. This is because a thick oxide film is formed on the surface of the steel plate, making it difficult for the metal to be plated to precipitate in a desirable state.

【0033】[0033]

【実施例】次に、この発明を実施例により説明する。表
2に示す化学成分組成を有する鋼を溶製し、次いで、連
続鋳造法によりスラブとし、それを一般的な方法で熱間
圧延を行い、所定の板厚を得た。この時の仕上げ温度は
各鋼種のAr3 変態点以上とし、巻取り温度について
は、BAF 材は560 ℃、CAL 材は730 ℃
とした。その熱延材を塩酸酸洗法によって脱スケールし
た後、表4、表5に示す圧下率で冷間圧延を施し、0.
8 〜1.0mm の厚さの冷延鋼板を得た。
[Example] Next, the present invention will be explained with reference to an example. Steel having the chemical composition shown in Table 2 was melted, then made into a slab by a continuous casting method, and hot rolled by a common method to obtain a predetermined plate thickness. The finishing temperature at this time is above the Ar3 transformation point of each steel type, and the winding temperature is 560 °C for BAF material and 730 °C for CAL material.
And so. The hot-rolled material was descaled by a hydrochloric acid pickling method, and then cold-rolled at the rolling reduction ratios shown in Tables 4 and 5.
A cold rolled steel plate having a thickness of 8 to 1.0 mm was obtained.

【0034】さらに、表4、表5に示す条件でそれぞれ
焼鈍を行った後、表3に示す浴条件で酸洗とそれに引き
続きめっきを施し、さらに約1.0 %の伸長率で調質
圧延を行った。ここで、酸洗は塩酸に浸漬する方法を採
用したが、これは硫酸への浸漬法または希硫酸中で電解
法による酸洗を行ってもこの発明の本質を損なうもので
はない。そして、このように調製された供試体No1 
〜25に対して、下記に示す試験を行い、その結果を表
4、表5に示した。
Further, after annealing under the conditions shown in Tables 4 and 5, pickling and subsequent plating were performed under the bath conditions shown in Table 3, and then temper rolling at an elongation rate of approximately 1.0%. I did it. Here, a method of immersion in hydrochloric acid was used for pickling, but the essence of the present invention will not be impaired even if the pickling is carried out by immersion in sulfuric acid or by an electrolytic method in dilute sulfuric acid. Then, the specimen No. 1 prepared in this way
-25 were subjected to the following tests, and the results are shown in Tables 4 and 5.

【0035】表面の摩擦係数は、このようにして得られ
た供試体を30×200mm の試験片に加工した後、
ローラー上にセットし、さらにその上から表面の粗さを
大きさ約3 μm のダイヤモンドで摺動面の直角方向
に研磨仕上げされた、3 ×10mmの圧子で該試験片
表面に400kg ・f の圧力をかけた状態で速度1
000mpm で引き抜き、その時の引き抜き力(F:
kg ・f)を求め、摩擦係数μ=400/Fを求めた
[0035] The coefficient of friction of the surface was determined by processing the specimen thus obtained into a test piece of 30 x 200 mm.
The test piece was set on a roller, and then a 3 x 10 mm indenter polished to a roughness of about 3 μm in the direction perpendicular to the sliding surface was applied to the surface of the test piece with a force of 400 kg/f. Speed 1 with pressure applied
000mpm, and the pulling force at that time (F:
kg・f) was determined, and the coefficient of friction μ=400/F was determined.

【0036】LDR は同様の冷延鋼板を円盤状に打ち
抜き、直径50mmのポンチで絞り、割れが発生する限
界まで板の直径を拡大し、割れが発生しない最大の板直
径とポンチの直径との比をLDR 値として求めた。尚
、LDR 測定に際しては、市販の防錆油を潤滑材とし
て塗布した。冷延鋼板のr 値は、めっきを行う前に一
般的に用いられる方法によって求めた
[0036] LDR punches a similar cold-rolled steel plate into a disc shape, squeezes it with a punch of 50 mm in diameter, expands the diameter of the plate to the limit where cracking occurs, and then calculates the difference between the maximum plate diameter without cracking and the diameter of the punch. The ratio was determined as the LDR value. Incidentally, during the LDR measurement, a commercially available rust preventive oil was applied as a lubricant. The r value of the cold-rolled steel sheet was determined by a commonly used method before plating.

【0037】。  燐酸塩処理性(化成処理性)は、日
本パーカライジング社製のPB−3030 に15秒間
浸漬した後、水洗し乾燥させたものの表面を走査型電子
顕微鏡で観察し、燐酸塩処理の初期析出核数を求めた。 結晶粒子径および外観は、同様の処理液に120 秒間
浸漬して完全に被膜を形成させた後、走査型電子顕微鏡
による観察で測定した。被膜外観の評価は、◎:結晶粒
径が1.5 〜2.5 μm ・スケ無し、○:結晶粒
径が1.0 〜1.5 μm 未満および2.5 超え
〜3.0 μm ・スケ無し、△:結晶粒径が3.0 
超えμm ・スケ無し、×:結晶粒径が3.0 超えμ
m ・スケ有りとする。また、逆電解法によって被膜を
剥離し、前後の重量差からその付着量を求めた。
[0037]. Phosphate treatment property (chemical conversion treatment property) was determined by immersing the product in PB-3030 manufactured by Nippon Parkerizing Co., Ltd. for 15 seconds, washing with water, drying, and observing the surface with a scanning electron microscope. I asked for The crystal particle size and appearance were measured by observation using a scanning electron microscope after immersing the sample in the same treatment solution for 120 seconds to form a complete film. The evaluation of the film appearance is as follows: ◎: Crystal grain size is 1.5 to 2.5 μm, no scratches, ○: Crystal grain size is 1.0 to less than 1.5 μm and more than 2.5 to 3.0 μm. No scale, △: Crystal grain size is 3.0
Exceeding μm ・No scale, ×: Crystal grain size exceeds 3.0 μm
M ・There is a sketch. In addition, the coating was peeled off by reverse electrolysis, and the amount of adhesion was determined from the difference in weight before and after.

【0038】表面の酸化膜の平均厚さの測定は、オージ
ェ電子分光法によって、また、析出金属の粒子分布は、
抽出レプリカ法によって表面に付着した金属を抽出した
後、透過型電子顕微鏡によって測定した。表2は、しば
しば深絞り用冷延鋼板の製造に用いられる代表的な鋼種
で、この発明の実施に用いた鋼の化学成分組成を示す。 表3は、この発明の実施にあたって用いられる酸洗・め
っきおよび酸化処理の条件を示す。表4は、この発明に
使用した原板の鋼種、圧下率、加熱温度、r 値、およ
び、この発明を実施した場合の金属付着量、析出金属の
粒子分布密度、酸化膜平均厚さ、摩擦係数、燐酸塩結晶
の初期析出核数、燐酸塩結晶粒子径、付着量、燐酸塩処
理後の被膜外観を整理したものである。  表5は、比
較例に使用した原板の鋼種、圧下率、加熱温度、r 値
、および、比較例としてこの発明の限定範囲外での実施
を行った場合の、金属付着量、析出金属の粒子分布密度
、酸化膜平均厚さ、摩擦係数、燐酸塩結晶の初期析出核
数、燐酸塩結晶粒子径、付着量、燐酸塩処理後の被膜外
観を整理したものである。
The average thickness of the oxide film on the surface was measured by Auger electron spectroscopy, and the particle distribution of the deposited metal was
After extracting the metal attached to the surface by the extraction replica method, it was measured using a transmission electron microscope. Table 2 shows the chemical composition of the steel used in the practice of this invention, which is a typical steel type often used in the production of cold-rolled steel sheets for deep drawing. Table 3 shows the pickling/plating and oxidation treatment conditions used in the practice of this invention. Table 4 shows the steel type, reduction rate, heating temperature, r value of the original plate used in this invention, as well as the amount of metal deposited when this invention is implemented, the particle distribution density of the deposited metal, the average thickness of the oxide film, and the coefficient of friction. , the initial number of precipitated phosphate crystal nuclei, the phosphate crystal particle size, the amount of adhesion, and the appearance of the film after phosphate treatment. Table 5 shows the steel type, rolling reduction, heating temperature, r value of the original plate used in the comparative example, as well as the amount of metal deposited and the particles of precipitated metal when the comparative example was carried out outside the limited range of this invention. The distribution density, average oxide film thickness, friction coefficient, initial number of precipitated nuclei of phosphate crystals, phosphate crystal particle diameter, adhesion amount, and film appearance after phosphate treatment are summarized.

【0039】また、金属付着量と、燐酸塩結晶の初期析
出核数、析出金属の粒子分布密度、摩擦係数および燐酸
塩結晶粒子径との関係を図2に、酸化膜平均厚さと燐酸
塩結晶粒子径および摩擦係数との関係を図4に、r 値
とLDR 値との関係を図3に、この発明の実施例を比
較例とともにプロットして図示した。
Figure 2 shows the relationship between the amount of metal deposited, the number of initially precipitated nuclei of phosphate crystals, the particle distribution density of the precipitated metal, the friction coefficient, and the phosphate crystal particle diameter. The relationship between the particle diameter and the coefficient of friction is shown in FIG. 4, and the relationship between the r value and the LDR value is shown in FIG. 3, where Examples of the present invention are plotted together with Comparative Examples.

【0040】以上の結果から、金属付着量、析出金属の
粒子分布密度および酸化膜平均厚さが、この発明の範囲
内である供試体No1 〜12はいずれの試験結果も良
好であり、プレス成形性(加工性)および燐酸塩処理性
(化成処理性)に優れることが分かる。図2から、金属
付着量がこの発明の範囲内の場合、燐酸塩結晶の初期析
出核数、析出金属の粒子分布密度、摩擦係数および燐酸
塩結晶粒子径がBAF 材同様の良好な結果となること
が分かる。また、図4から、金属付着量がこの発明の範
囲内でも、酸化膜平均厚さがこの発明の範囲より低いと
摩擦係数が高くなり、範囲を超えて高いと燐酸塩結晶粒
子径が粗大となり、燐酸塩処理性に劣ることが分かる。
From the above results, all of the test specimens No. 1 to 12 whose metal deposition amount, precipitated metal particle distribution density, and oxide film average thickness are within the range of this invention have good test results, and press forming is possible. It can be seen that it has excellent properties in terms of processability and phosphate treatment properties (chemical conversion treatment properties). From FIG. 2, when the metal deposition amount is within the range of this invention, the initial number of precipitated phosphate crystal nuclei, the particle distribution density of the precipitated metal, the coefficient of friction, and the phosphate crystal particle size have good results similar to those of the BAF material. I understand that. Furthermore, from FIG. 4, even if the metal deposition amount is within the range of this invention, if the average oxide film thickness is lower than the range of this invention, the friction coefficient will be high, and if it is higher than the range, the phosphate crystal particle size will become coarse. It can be seen that the phosphate treatment properties are poor.

【0041】これに対して、供試体No13は、金属付
着量がこの発明の範囲より少なくおよび析出金属の粒子
分布密度がこの発明の範囲より小さいため摩擦係数が高
く、結晶粒径が粗大となり、プレス成形性および燐酸塩
処理性に劣る。供試体No24、25は、金属付着量が
この発明の範囲を超えて高くおよび析出金属の粒子分布
密度がこの発明の範囲より小さいため、結晶粒径が粗大
となり、燐酸塩処理性に劣る。酸化膜平均厚さがこの発
明の範囲より小さい供試体No14〜17は、摩擦係数
が高く、LDR 不足で、プレス成形性に劣る。酸化膜
平均厚さがこの発明の範囲を超えて大きい供試体No1
8〜23は、結晶粒径が粗大となり、スケも認められ燐
酸塩処理性に劣る。
On the other hand, specimen No. 13 had a high friction coefficient and a coarse crystal grain size because the amount of metal deposited was lower than the range of the present invention and the particle distribution density of the precipitated metal was lower than the range of the present invention. Poor press formability and phosphate treatment properties. Specimen Nos. 24 and 25 had a higher metal deposition amount than the range of the present invention and a particle distribution density of the precipitated metal was smaller than the range of the present invention, so the crystal grain size was coarse and the phosphate treatment properties were poor. Specimens Nos. 14 to 17 whose average oxide film thickness is smaller than the range of the present invention have high friction coefficients, insufficient LDR, and poor press formability. Specimen No. 1 whose average oxide film thickness is larger than the range of this invention
Samples Nos. 8 to 23 have coarse crystal grains, have scratches, and are poor in phosphate treatment properties.

【0042】[0042]

【表2】[Table 2]

【0043】[0043]

【表3】[Table 3]

【0044】[0044]

【表4】[Table 4]

【0045】[0045]

【表5】[Table 5]

【0046】[0046]

【発明の効果】以上説明したように、この発明によれば
、冷延鋼板、特にCAL 材にプレス成形を行う場合に
おいて、摩擦係数が低くプレス成形性に優れ、、且つ、
燐酸塩処理性に優れた冷延鋼板を得ることができる産業
上有用な効果がもたらされる。
[Effects of the Invention] As explained above, according to the present invention, when press forming is performed on cold rolled steel sheets, especially CAL materials, the friction coefficient is low and the press formability is excellent, and
This brings about an industrially useful effect in that a cold-rolled steel sheet with excellent phosphate treatment properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】従来のめっき無しの状態のBAF 材およびC
AL 材のr 値とLDR 値との関係をプロットした
グラフ
[Figure 1] Conventional BAF material and C without plating
Graph plotting the relationship between r value and LDR value of AL material

【図2】この発明の実施例および比較例における
金属付着量と、燐酸塩結晶の初期析出核数、析出金属の
粒子分布密度、摩擦係数および燐酸塩結晶粒子径との関
係をプロットしたグラフ
[Figure 2] A graph plotting the relationship between the amount of metal deposited, the initial number of precipitated nuclei of phosphate crystals, the particle distribution density of precipitated metals, the coefficient of friction, and the diameter of phosphate crystal particles in Examples and Comparative Examples of the present invention.

【図3】この発明の実施例および比較例におけるr 値
とLDR 値との関係をプロットしたグラフ
[Fig. 3] A graph plotting the relationship between r value and LDR value in Examples and Comparative Examples of the present invention.

【図4】こ
の発明の実施例および比較例における酸化膜平均厚さと
、燐酸塩結晶粒子径および摩擦係数との関係をプロット
したグラフ
FIG. 4 is a graph plotting the relationship between the average oxide film thickness, phosphate crystal particle size, and friction coefficient in Examples and Comparative Examples of the present invention.

【図5】BAF 材における燐酸塩処理後の結晶被膜の
金属組織を示す2次電子像写真
[Figure 5] Secondary electron image photograph showing the metal structure of the crystalline coating after phosphate treatment in BAF material

【図6】CAL 材における燐酸塩処理後の結晶被膜の
金属組織を示す2次電子像写真
[Figure 6] Secondary electron image photograph showing the metal structure of the crystalline coating after phosphate treatment in CAL material

【図7】この発明の実施例における付着量が23mg/
 m 2 で酸化膜が17Åに達した場合の燐酸塩処理
後の結晶被膜の金属組織を示す2次電子像写真
FIG. 7: The amount of adhesion in the example of this invention is 23 mg/
Secondary electron image photograph showing the metal structure of the crystal coating after phosphate treatment when the oxide film reaches 17 Å in m 2

【図8】比較例における付着量が23mg/ m 2 
で酸化膜が75Åに達した場合の燐酸塩処理後の結晶被
膜の金属組織を示す2次電子像写真
[Figure 8] Adhesion amount in comparative example is 23 mg/m 2
Secondary electron image photograph showing the metal structure of the crystalline film after phosphate treatment when the oxide film reached 75 Å in thickness

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  C ≦0.06wt%、Si≦0.5
wt %、Mn≦2.50wt%、P ≦0.100w
t %、S ≦0.025wt %、Sol.Al≦0
.10wt%、N ≦0.0050wt%、必要により
Tiおよび/またはNb≦0.15wt%を含み残部F
eおよび不可避的不純物からなる化学成分組成を有する
冷延鋼板と、前記冷延鋼板の表面上に形成された、5 
〜60mg/m2 の付着量で、1 ×1012個/ 
m2 以上の分布密度で粒子状に析出されてなるNi被
膜とからなり、前記Ni被膜の表面上は、平均厚さ0.
0005〜0.003 μm の酸化膜で覆われている
ことを特徴とするプレス成形性および燐酸塩処理性に優
れた冷延鋼板。
[Claim 1] C≦0.06wt%, Si≦0.5
wt%, Mn≦2.50wt%, P≦0.100w
t%, S≦0.025wt%, Sol. Al≦0
.. 10wt%, N≦0.0050wt%, including Ti and/or Nb≦0.15wt% if necessary, the balance F
a cold rolled steel sheet having a chemical composition consisting of e and unavoidable impurities;
~60mg/m2 adhesion amount, 1 x 1012 pieces/
m2 or more, and the surface of the Ni film has an average thickness of 0.2 m2 or more.
A cold rolled steel sheet having excellent press formability and phosphate treatment properties, characterized by being covered with an oxide film of 0.0005 to 0.003 μm.
【請求項2】  前記酸化膜の平均厚さが0.001 
〜0.002μm である請求項1記載のプレス成形性
および燐酸塩処理性に優れた冷延鋼板。
2. The average thickness of the oxide film is 0.001.
The cold rolled steel sheet having excellent press formability and phosphate treatment properties according to claim 1, wherein the thickness is 0.002 μm.
【請求項3】 C≦0.06wt%、Si≦0.5wt
 %、Mn≦2.50wt%、P ≦0.100wt 
%、S ≦0.025wt %、Sol.Al≦0.1
0wt%、N ≦0.0050wt%、必要によりTi
および/またはNb≦0.15wt%を含み残部Feお
よび不可避的不純物からなる化学成分組成を有する鋼を
調製し、前記鋼を連続鋳造法によって鋼塊とし、前記鋼
塊を通常の熱延条件によって熱間圧延し、次いで、表面
に付着したスケールを化学的および/または機械的手段
によって除去し、次いで、60〜85%の圧下率による
冷間圧延によって所定の板厚とし、次いで、連続焼鈍法
によって再結晶温度まで加熱し、次いで、冷却し、この
ようにして得られた冷延鋼板に対し、酸性浴中で陰極電
解を施して前記冷延鋼板の表面上に、Niを、5 〜6
0mg/m2 の付着量、1 ×1012個/ m2 
以上の分布密度で粒子状に析出させ、次いで、前記粒子
状のNiがその表面上に析出した冷延鋼板を中性または
アルカリ性浴中に浸漬するか、または、前記浴中で陽極
電解することによって、析出金属の表面に平均厚さが0
.0005〜0.003 μm の酸化膜を形成してな
ることを特徴とするプレス成形性および燐酸塩処理性に
優れた冷延鋼板の製造方法。
[Claim 3] C≦0.06wt%, Si≦0.5wt
%, Mn≦2.50wt%, P≦0.100wt
%, S≦0.025wt%, Sol. Al≦0.1
0wt%, N ≦0.0050wt%, Ti if necessary
and/or steel having a chemical composition containing Nb≦0.15wt% and the balance consisting of Fe and unavoidable impurities, the steel being made into a steel ingot by a continuous casting method, and the steel ingot being subjected to normal hot rolling conditions. Hot rolling, followed by removing scale attached to the surface by chemical and/or mechanical means, cold rolling at a rolling reduction of 60 to 85% to a desired thickness, and then continuous annealing. The cold-rolled steel sheet thus obtained is heated to the recrystallization temperature by , and then cooled, and the cold-rolled steel sheet thus obtained is subjected to cathodic electrolysis in an acid bath to add 5 to 6% Ni on the surface of the cold-rolled steel sheet.
Deposition amount of 0mg/m2, 1 x 1012 pieces/m2
Precipitate in particulate form with a distribution density above, and then immerse the cold-rolled steel sheet on which the particulate Ni has been precipitated in a neutral or alkaline bath, or perform anodic electrolysis in the bath. , the surface of the deposited metal has an average thickness of 0.
.. A method for producing a cold-rolled steel sheet having excellent press formability and phosphate treatment properties, characterized by forming an oxide film of 0.0005 to 0.003 μm.
【請求項4】  請求項3において、連続焼鈍によって
加熱し、冷却した後、前記Ni合金を析出させるに際し
、事前に鋼帯表面を酸洗法によって清浄化する請求項3
記載のプレス成形性および燐酸塩処理性に優れた冷延鋼
板の製造方法。
4. In claim 3, the surface of the steel strip is cleaned by pickling before precipitating the Ni alloy after heating and cooling by continuous annealing.
A method for producing a cold rolled steel sheet having excellent press formability and phosphate treatment properties.
【請求項5】  前記酸化膜の平均厚さが0.001 
〜0.002μm である請求項3または4記載のプレ
ス成形性および燐酸塩処理性に優れた冷延鋼板の製造方
法。
5. The average thickness of the oxide film is 0.001.
5. The method for producing a cold-rolled steel sheet with excellent press formability and phosphate treatment properties according to claim 3 or 4, wherein the thickness is 0.002 μm.
JP3025695A 1991-01-25 1991-01-25 Cold rolled steel sheet excellent in press formability and phosphating property and its manufacture Pending JPH04247849A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP3025695A JPH04247849A (en) 1991-01-25 1991-01-25 Cold rolled steel sheet excellent in press formability and phosphating property and its manufacture
CA002058678A CA2058678A1 (en) 1991-01-25 1992-01-02 Nickel electroplated cold-rolled steel sheet excellent in press-formability and phosphating-treatability and method for manufacturing same
AU10137/92A AU638371B2 (en) 1991-01-25 1992-01-09 Nickel alloy electroplated cold-rolled steel sheet excellent in press-formability and phosphating-treatability and method for manufacturing same
ZA92202A ZA92202B (en) 1991-01-25 1992-01-10 Nickel electroplated cold-rolled steel sheet excellent in press-formability and phosphating-treatability and method for manufacturing same
KR1019920000473A KR920014947A (en) 1991-01-25 1992-01-15 Nickel electroplating cold rolled steel sheet with excellent press formability and phosphate treatment and its manufacturing method
BR929200205A BR9200205A (en) 1991-01-25 1992-01-23 ELECTRODEPOSITED COLD LAMINATED STEEL SHEET WITH NICKEL AND PROCESS FOR ITS PRODUCTION
EP92101186A EP0496423A1 (en) 1991-01-25 1992-01-24 Nickel electroplated cold-rolled steel sheet excellent in press-formability and phosphating-treatability and method for manufacturing same
CN92100427A CN1065690A (en) 1991-01-25 1992-01-25 Nickel electroplated cold-rolled steel sheet and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3025695A JPH04247849A (en) 1991-01-25 1991-01-25 Cold rolled steel sheet excellent in press formability and phosphating property and its manufacture

Publications (1)

Publication Number Publication Date
JPH04247849A true JPH04247849A (en) 1992-09-03

Family

ID=12172930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3025695A Pending JPH04247849A (en) 1991-01-25 1991-01-25 Cold rolled steel sheet excellent in press formability and phosphating property and its manufacture

Country Status (8)

Country Link
EP (1) EP0496423A1 (en)
JP (1) JPH04247849A (en)
KR (1) KR920014947A (en)
CN (1) CN1065690A (en)
AU (1) AU638371B2 (en)
BR (1) BR9200205A (en)
CA (1) CA2058678A1 (en)
ZA (1) ZA92202B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080497A (en) * 1998-07-01 2000-03-21 Nippon Parkerizing Co Ltd Quick formation of phosphate film on steel wire rod and device
JP2009056505A (en) * 2007-09-03 2009-03-19 Sumitomo Metal Ind Ltd Dull-finished steel plate and its manufacturing method
CN103917684A (en) * 2012-04-19 2014-07-09 新日铁住金株式会社 Steel foil and method for producing same
US11180835B2 (en) 2015-09-25 2021-11-23 Nippon Steel Corporation Steel sheet

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2810245B2 (en) * 1991-01-25 1998-10-15 日本鋼管株式会社 Cold rolled steel sheet excellent in press formability and phosphatability and method for producing the same
CN100376707C (en) * 2003-04-01 2008-03-26 江苏江南铁合金有限公司 Ferrotitanium with low silicon and its preparation method
JP3918787B2 (en) * 2003-08-01 2007-05-23 住友金属工業株式会社 Low carbon free cutting steel
DE102006029817A1 (en) * 2006-06-28 2008-01-03 Siemens Ag Sheet metal and method for producing a metal sheet
DE102006035974A1 (en) * 2006-08-02 2008-02-07 Robert Bosch Gmbh Process for phosphating a metal layer
DE102013017798A1 (en) * 2013-10-25 2015-04-30 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Composite steel plate
KR102326687B1 (en) * 2019-12-17 2021-11-17 주식회사 포스코 High strength cold steel sheet with good phosphating property and method for manufacturing the same
KR102493773B1 (en) * 2020-12-21 2023-01-30 주식회사 포스코 Steel sheet having high phospatability and manufacturing method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176621A (en) * 1984-09-25 1986-04-19 Kawasaki Steel Corp Manufacture of ultralow carbon cold rolled steel sheet superior in phosphate treatability and formability
JPH02101200A (en) * 1988-10-07 1990-04-12 Nkk Corp Cold-rolled steel sheet having excellent corrosion resistance and property to be phosphated
JPH02163344A (en) * 1988-12-15 1990-06-22 Kawasaki Steel Corp Cold rolled steel sheet for deep drawing excellent in die galling resistance
JPH032329A (en) * 1989-05-30 1991-01-08 Nippon Steel Corp Manufacture of high strength cold rolled steel sheet for press working having managing properties and high baking hardenability of paint by continuous annealing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151635A (en) * 1975-06-23 1976-12-27 Nippon Steel Corp Process for producing chromateetreated steel sheet having nickel diffused underlayer
JP2810245B2 (en) * 1991-01-25 1998-10-15 日本鋼管株式会社 Cold rolled steel sheet excellent in press formability and phosphatability and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176621A (en) * 1984-09-25 1986-04-19 Kawasaki Steel Corp Manufacture of ultralow carbon cold rolled steel sheet superior in phosphate treatability and formability
JPH02101200A (en) * 1988-10-07 1990-04-12 Nkk Corp Cold-rolled steel sheet having excellent corrosion resistance and property to be phosphated
JPH02163344A (en) * 1988-12-15 1990-06-22 Kawasaki Steel Corp Cold rolled steel sheet for deep drawing excellent in die galling resistance
JPH032329A (en) * 1989-05-30 1991-01-08 Nippon Steel Corp Manufacture of high strength cold rolled steel sheet for press working having managing properties and high baking hardenability of paint by continuous annealing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080497A (en) * 1998-07-01 2000-03-21 Nippon Parkerizing Co Ltd Quick formation of phosphate film on steel wire rod and device
JP2009056505A (en) * 2007-09-03 2009-03-19 Sumitomo Metal Ind Ltd Dull-finished steel plate and its manufacturing method
CN103917684A (en) * 2012-04-19 2014-07-09 新日铁住金株式会社 Steel foil and method for producing same
JPWO2013157600A1 (en) * 2012-04-19 2015-12-21 新日鐵住金株式会社 Steel foil and manufacturing method thereof
CN103917684B (en) * 2012-04-19 2017-02-22 新日铁住金株式会社 Steel foil and method for producing same
US10201953B2 (en) 2012-04-19 2019-02-12 Nippon Steel & Sumitomo Metal Corporation Steel foil and method for manufacturing the same
US11180835B2 (en) 2015-09-25 2021-11-23 Nippon Steel Corporation Steel sheet

Also Published As

Publication number Publication date
ZA92202B (en) 1992-10-28
EP0496423A1 (en) 1992-07-29
AU1013792A (en) 1992-08-06
CA2058678A1 (en) 1992-07-26
CN1065690A (en) 1992-10-28
KR920014947A (en) 1992-08-26
BR9200205A (en) 1992-10-06
AU638371B2 (en) 1993-06-24

Similar Documents

Publication Publication Date Title
CA2360070C (en) Hot dip galvanized steel plate excellent in balance of strength and ductility and in adhesiveness between steel and plating layer
JP2810245B2 (en) Cold rolled steel sheet excellent in press formability and phosphatability and method for producing the same
EP0120976B1 (en) Process for manufacturing cold-rolled steel for deep drawing
WO2013047810A1 (en) Alloyed hot-dip galvanized steel sheet
EP0041354B2 (en) Method for producing cold rolled steel sheets having a noticeably excellent formability
US20090280350A1 (en) Steel sheet having high plane integration and method of production of same
WO2008093815A1 (en) High tensile cold-rolled steel sheet and process for production thereor
JPH04247849A (en) Cold rolled steel sheet excellent in press formability and phosphating property and its manufacture
US4676844A (en) Production of formable thin steel sheet excellent in ridging resistance
KR100295088B1 (en) Non-oriented electrical steel sheet having good punchability and process for producing same
US4861390A (en) Method of manufacturing formable as-rolled thin steel sheets
KR100267624B1 (en) Galvannealed steel sheet and manufacturing method thereof
JP4782057B2 (en) High-strength steel sheet with excellent scale adhesion during hot pressing and manufacturing method thereof
JPH08337842A (en) Steel sheet for electrogalvanizing excellent in grained flaw resistance, electrogalvanized steel sheet and their production
JP3309771B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
US11866828B2 (en) Plated steel sheet for hot stamping
JP7495009B2 (en) Steel plate for hot pressing, manufacturing method of steel plate for hot pressing, and manufacturing method of hot pressing member
JP3049147B2 (en) Method for producing high-tensile cold-rolled steel sheet with excellent chemical conversion property and deep drawability
JPH0585619B2 (en)
JPH062069A (en) High strength cold rolled steel sheet and galvanized steel sheet excellent in deep drawability
WO2023132349A1 (en) Steel sheet for hot stamping, method for manufacturing steel sheet for hot stamping, and hot stamp molded body
WO2023132350A1 (en) Steel sheet for hot stamping, method for producing steel sheet for hot stamping, and hot-stamped molded article
JPH05230542A (en) Production of high tensile strength hot dip plated steel sheet excellent in workability
JPH11140621A (en) Titanium-if steel sheet excellent in external surface appearance
JP3440079B2 (en) Surface-treated steel sheet for deep drawing with excellent perforation resistance