JPH02163344A - Cold rolled steel sheet for deep drawing excellent in die galling resistance - Google Patents

Cold rolled steel sheet for deep drawing excellent in die galling resistance

Info

Publication number
JPH02163344A
JPH02163344A JP31515188A JP31515188A JPH02163344A JP H02163344 A JPH02163344 A JP H02163344A JP 31515188 A JP31515188 A JP 31515188A JP 31515188 A JP31515188 A JP 31515188A JP H02163344 A JPH02163344 A JP H02163344A
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolled steel
steel
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31515188A
Other languages
Japanese (ja)
Inventor
Susumu Masui
増井 進
Makoto Imanaka
誠 今中
Toshiyuki Kato
俊之 加藤
Hideo Abe
阿部 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31515188A priority Critical patent/JPH02163344A/en
Publication of JPH02163344A publication Critical patent/JPH02163344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To improve the die galling resistance of the steel sheet without deteriorating chemical conversion treating property by regulating the surface of a cold rolled steel sheet in which respective contents of C, Si, Mn, P, S, Al, N, and Ti are specified to a roughness in which the area ration of projecting parts and the average area of one projecting part are specified, respectively. CONSTITUTION:A cold rolled steel sheet having a composition consisting of, by weight, <=0.0040% C, <=0.04% Si, <=0.35% Mn, <=0.1% P, <=0.02% S, <=0.1% Al, <=0.0050% N, 0.01-0.07% Ti, and the balance essentially Fe is continuously annealed and subjected to skin pass rolling by using dull-worked rolls. By the above skin pass rolling, the steel-sheet surface can be regulated to a roughness satisfying the conditions of 25-60% SSr (area ratio of projecting parts) and 2X10<4>-10<5>(mum<2>) SGr (average area per projecting part). If necessary, 0.001-0.01.0% Nb and 0.0001-0.0030% B are incorporated to the above steel-sheet composition.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、耐型かじり性に優れた深絞り用冷延鋼板に
関し、と(に鋼板表面粗さを調整することによって、化
成処理性を損うことなしに耐型かじり性の有利な改善を
図ろうとするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a cold-rolled steel sheet for deep drawing that has excellent die galling resistance. The aim is to advantageously improve the mold galling resistance without deteriorating it.

(従来の技術) 加工性とくに深絞り性を改善した冷延鋼板の主たる用途
は自動車の内・外装板である。従って、従来は、自動車
用部品としてプレス成形される場合に、鋼板に要求され
る材料特性を満足する最適の製造条件を得ることを前提
として、主に研究が行われてきた。
(Prior Art) Cold-rolled steel sheets with improved workability, especially deep drawability, are mainly used as interior and exterior plates for automobiles. Therefore, in the past, research has mainly been conducted on the premise of obtaining optimal manufacturing conditions that satisfy the material properties required of steel plates when press-forming them as automobile parts.

特に、自動車用鋼板の場合、多種多様のデザインに適応
する必要上、深絞り性に対応するr値の改善、ならびに
形状凍結性の観点から低降伏応力化、高加工硬化重化な
どが重要視されてきた。
In particular, in the case of steel sheets for automobiles, it is necessary to adapt to a wide variety of designs, so it is important to improve the r value corresponding to deep drawability, as well as to lower yield stress and increase work hardening from the viewpoint of shape fixability. It has been.

このような観点から、開発されたものとして、たとえば
特開昭59−193221号公報や特開昭63−768
48号公報などに開示の極低炭素鋼があるが、最近では
かかる極低炭素鋼しかもその連続焼鈍材の、冷延鋼板の
生産量に占める割合が増大してきている。
From this point of view, for example, Japanese Patent Application Laid-Open Nos. 59-193221 and 63-768 have been developed.
There is an ultra-low carbon steel disclosed in Publication No. 48, etc., and recently, the proportion of such ultra-low carbon steel and continuously annealed steel in the production of cold-rolled steel sheets has been increasing.

このような潮流の中で、最近とくに自動車用鋼板のプレ
ス成形時における「型かじり」が問題となっているが、
この点に着目した技術はこれまでのところほとんど報告
されていない。
Amid this trend, "mold galling" has recently become a problem, especially during press forming of automotive steel sheets.
So far, very few technologies focusing on this point have been reported.

わずかに特公昭61−266001号公報において、所
定の有機高分子被膜を鋼板表面に形成し、鋼板表面の摺
動性を良好にすることでプレス加工性の向上を図る技術
が提案されているに止まる。
Japanese Patent Publication No. 61-266001 proposes a technique for improving press workability by forming a predetermined organic polymer film on the surface of a steel sheet to improve the slidability of the surface of the steel sheet. Stop.

しかしながら、自動車用鋼板は、プレス後、塗装前処理
として、通常りん酸塩処理が施されるが、上記のような
潤滑処理を施した冷延鋼板は、そのりん酸塩処理性が、
未処理の冷延鋼板に比べて著しく劣ることが問題として
上げられていた。また有機被膜の場合、経時変化で変質
してしまい、を書物になってしまうおそれもある。
However, after pressing, steel sheets for automobiles are usually subjected to phosphate treatment as a pre-painting treatment, but cold-rolled steel sheets that have been subjected to the above-mentioned lubrication treatment have a phosphate treatment property.
The problem was that it was significantly inferior to untreated cold-rolled steel sheets. In addition, in the case of organic coatings, there is a risk that they may deteriorate over time and turn into books.

(発明が解決しようとする課題) 加工性、特にプレス成形時の深絞り性あるいは形状凍結
性の観点からは、伸び(El)とランクフォード値(r
値)を改善し、併せてY、S、を低く(低Y、R,)す
るのが良いとされ、そのための製造技術が極低炭素化に
よって実現された。しかし一方で、このような鋼板は従
来鋼に比べて、プレス加工時における型かじりの発生が
大きいという新たな問題が生じた。
(Problem to be solved by the invention) From the viewpoint of workability, especially deep drawability or shape fixability during press forming, elongation (El) and Lankford value (r
It is thought that it is better to improve the Y and S values (lower Y and R values), and the manufacturing technology for this purpose has been realized by ultra-low carbonization. On the other hand, however, a new problem has arisen in such steel sheets: compared to conventional steels, mold galling occurs more frequently during press working.

この発明は、上記の問題を有利に解決するもので、鋼板
の表面粗さに工夫を加えることによって耐型かじり性を
向上させた深絞り用冷延綱板を提案することを目的とす
る。
The present invention aims to advantageously solve the above-mentioned problems, and to propose a cold-rolled steel sheet for deep drawing that has improved die galling resistance by improving the surface roughness of the steel sheet.

(課題を解決するための手段) まずこの発明の解明経緯について説明する。(Means for solving problems) First, the background to the elucidation of this invention will be explained.

加工性、すなわちr値やEfを改善するには、clの低
減が有効であり、その結果、鋼は軟質化する。しかしな
がら一方で極低炭素鋼とくにその連続焼鈍材は、プレス
金型との摺動抵抗が従来鋼に比べて大きいことが判明し
た。
In order to improve workability, that is, r value and Ef, it is effective to reduce cl, and as a result, the steel becomes softer. However, on the other hand, it has been found that ultra-low carbon steel, especially its continuously annealed material, has greater sliding resistance with the press die than conventional steel.

このように摺動抵抗が大きくなると、プレス金型のビー
ド部など摺動の厳しい個所ではひどい型かじりが発生し
、その結果鋼板の流入が悪くなり、この流入不足が原因
となって破断に至る場合があった。
When the sliding resistance increases in this way, severe mold galling occurs in areas where sliding is severe, such as the bead of the press die, resulting in poor inflow of the steel plate, and this insufficient inflow can lead to breakage. There was a case.

そこで発明者らは、上記の問題を解決すべく幾多の実験
および検討を重ねた結果、表面にダル加工好適にはレー
ザーダル加工を施したロールを用いてスキンバス圧延し
、鋼板の表面粗さを大きくし、しかも表面凸部の面積を
限定することによって、r値やEfの低下を引き起こす
原因となるy、s。
As a result of numerous experiments and studies to solve the above problem, the inventors conducted skin bath rolling using a roll whose surface had been subjected to dull processing, preferably laser dull processing, to improve the surface roughness of the steel sheet. By increasing y and s and limiting the area of the surface protrusions, y and s cause a decrease in r value and Ef.

の上昇を招(ことなしに耐型かじり性が有利に改善され
ることを見い出した。
It has been found that mold galling resistance can be advantageously improved without causing an increase in

すなわち、鋼板の表面粗度を太き(し、鋼板とプレス金
型との接触面積を小さくすれば、摺動抵抗を有利に低下
させ得ることが判明したのである。
In other words, it has been found that sliding resistance can be advantageously reduced by increasing the surface roughness of the steel plate and reducing the contact area between the steel plate and the press die.

この発明は、上記の知見に立春するものである。This invention is based on the above findings.

すなわちこの発明は、C: 0.0040 wtχ (
以下単に%で示す)以下、Si : 0.04%以下、
Mn二0.35%以下、P:0.1%以下、S : 0
.02%以下、At : 0.1%以下、N : 0.
0050%以下およびTi : 0.01〜0.07%
を、必要に応じてNb : 0.001〜0.010%
またはB : 0.0001〜0.0030%と共に含
有し、残部は実質的にFeの組成になる冷延鋼板であっ
て、その表面が、凸部面積率SSr : 25〜60%
でかつ凸部1個当りの平均面積SGr : 2 ×10
4〜105(μ層2)の条件を満足することからなる耐
型かじり性に優れた深絞り用冷延鋼板である。
That is, this invention has C: 0.0040 wtχ (
(hereinafter simply expressed in %), Si: 0.04% or less,
Mn2 0.35% or less, P: 0.1% or less, S: 0
.. 0.02% or less, At: 0.1% or less, N: 0.02% or less, At: 0.1% or less, N: 0.
0.050% or less and Ti: 0.01-0.07%
, Nb: 0.001-0.010% as necessary
Or a cold-rolled steel sheet containing B: 0.0001 to 0.0030%, with the remainder essentially having a composition of Fe, the surface of which has a convex area ratio SSr: 25 to 60%
Average area per large convex portion SGr: 2 × 10
This cold-rolled steel sheet for deep drawing has excellent die galling resistance and satisfies the conditions of 4 to 105 (μ layer 2).

以下この発明を具体的に説明する。This invention will be specifically explained below.

まずこの発明の基礎となった実験結果から説明する。First, the experimental results that formed the basis of this invention will be explained.

供試鋼とし・て表1に成分組成を示した低炭素鋼および
極低炭素鋼冷延鋼板を用いた。
Low carbon steel and ultra-low carbon steel cold-rolled steel sheets whose compositions are shown in Table 1 were used as test steels.

表  1 あ) これらの冷延鋼板に、レーザーにより表面にダル目を付
けたスキンバスロールを用いて、0.8%の圧下率でス
キンバス圧延を施した。この時、レーザーダル加工法を
種々変えることにより、スキンバス圧延後の鋼板表面の
粗度パターンを変化さセた。
Table 1 A) These cold-rolled steel sheets were subjected to skin bath rolling at a rolling reduction ratio of 0.8% using a skin bath roll whose surface was dulled by a laser. At this time, the roughness pattern of the steel sheet surface after skin bath rolling was changed by variously changing the laser dulling method.

第1図に、後述する方法で行った摺動試験時における摩
擦係数と表面粗さ(SRa)との関係を示す。
FIG. 1 shows the relationship between the friction coefficient and surface roughness (SRa) during a sliding test conducted by the method described later.

このときの摺動試験は、試料厚さを0.7閣とし、押え
荷重: 100 kgfの条件で行った。なお表面粗度
SRaとは中心面平均粗さのことであり、粗さ曲面から
、その中心面上に面積S工の部分を抜き取り、この抜き
取り部分の中心面上に直交座標軸、X軸、Y軸をおき、
中心面に直交する軸をZ軸として、粗さ曲面をZ=f 
(X、Y)で表としたとき、次式で与えられる値 ただし LイL、 = SN のことである(単位μ耐。
The sliding test at this time was conducted under the conditions that the sample thickness was 0.7 mm and the presser load was 100 kgf. Note that the surface roughness SRa is the average roughness of the center surface, and a portion of area S is extracted from the roughness curved surface on the center surface, and orthogonal coordinate axes, X axis, Y axis, and Place the axis,
With the axis perpendicular to the center plane as the Z axis, the roughness curved surface is Z = f
When expressed as (X, Y), the value is given by the following formula, where L=SN (unit: μ resistance).

同図より明らかなように無塗油状態の鋼板の摩擦係数は
、SRaの増加によって低下し、SRa = 2.0 
ttmになると、極低炭素鋼における摩擦係数は、低炭
素鋼並みに低下している。
As is clear from the figure, the friction coefficient of the unoiled steel plate decreases as SRa increases, and SRa = 2.0.
When reaching ttm, the friction coefficient of ultra-low carbon steel has decreased to the same level as low carbon steel.

SRaの増加による、摩擦係数の低下の理由は次のとお
りと考えられる。すなわち表面粗さが大きくなるほど、
鋼板とプレス金型との接触面積は小さくなると共に実際
の接触部は細かく分割されるので、型かじりの発生が抑
制され、摩擦係数は低下する。さらにSRaの増加は、
プレス金型との接触面圧によって凸部がつふれることに
起因した接触面積の象、激な増加も防止している。
The reason for the decrease in the friction coefficient due to the increase in SRa is considered to be as follows. In other words, the larger the surface roughness, the
Since the contact area between the steel plate and the press mold becomes smaller and the actual contact area is divided into smaller pieces, the occurrence of mold galling is suppressed and the coefficient of friction is reduced. Furthermore, the increase in SRa is
This also prevents a drastic increase in the contact area caused by the convex portion being collapsed due to contact pressure with the press die.

このように冷延鋼板の耐型かじり性は、表面粗さSRa
に依存することを知見したが、発明者らはさらに安定し
た耐型かじり性の発現を実現すべく幾多の実験を行った
結果、鋼板表面の凸部面積率SSrと凸部1個当りの平
均面積率SGrとを所定の範囲に規定することによって
、優れた耐型かじり性が得られることを究明したのであ
る。
In this way, the die galling resistance of a cold rolled steel sheet is determined by the surface roughness SRa
However, the inventors conducted numerous experiments to realize more stable mold galling resistance, and found that the convex area ratio SSr on the steel sheet surface and the average per convexity It has been found that excellent mold galling resistance can be obtained by regulating the area ratio SGr within a predetermined range.

第2図に、第1図で用いた極低炭素鋼を用い、摺動試験
時の摩擦係数に及ぼす凸部の面積率(SSr)と凸部1
個当りの平均面積(SGr)との関係について調べた結
果を示す。
Figure 2 shows the effect of the area ratio (SSr) of the convex part on the friction coefficient during the sliding test using the ultra-low carbon steel used in Figure 1 and the convex part 1.
The results of an investigation regarding the relationship with the average area per unit (SGr) are shown.

なお試験片の板厚は0.8■、加圧力は100kgfで
摺動試験を行い、この時の潤滑条件は無塗油とした。ま
た、凸部の面積率(SSr)と凸部1個当りの平均面積
(SGr)は、3次元表面粗度計を用いて求めた。さら
に図中の数値は、各点における摺動時の摩擦係数である
The sliding test was conducted with the test piece having a thickness of 0.8 mm and a pressing force of 100 kgf, and the lubrication conditions at this time were no oil. Further, the area ratio of the convex portions (SSr) and the average area per convex portion (SGr) were determined using a three-dimensional surface roughness meter. Furthermore, the numerical values in the figure are the friction coefficients during sliding at each point.

同図より明らかなように、25%≦SSr≦60%でか
つ、2 ×104 pta”≦SGr≦105 ate
”の場合に、It!擦係数が0.3以下となって良好な
耐型かじり性が得られている。
As is clear from the figure, 25%≦SSr≦60% and 2 × 104 pta”≦SGr≦105 ate
”, the It! friction coefficient was 0.3 or less, and good mold galling resistance was obtained.

鋼板の表面凸部について、以上のような適正範囲が存在
する理由は次のように考えられる。
The reason why the above appropriate range exists for the surface convex portions of the steel plate is considered to be as follows.

すなわち凸部面積率が低いほど、接触面積が小さくなる
ので、摩擦係数は低下する。しかし、−方で、凸部面積
率が低いと、加圧力が大きくなった場合、凸部が完全に
つぶされてしまい、逆に接触面積が大きくなり、摩擦係
数が高くなってしまう。そこで、凸部の強度を補償する
ために、凸部面積率が低い分、凸部1個当りの平均面積
の最低ラインが存在しているものと考えられる。しかし
逆に1個当りの凸部面積が大きすぎても、摺動距離が長
くなりその間でかじりが発生するために摩擦係数が増加
すると考えられる。さらに、加工技術の精度上、凸部面
積率の最低ラインが存在するものと考えられる。
That is, the lower the convex area ratio, the smaller the contact area, and therefore the lower the friction coefficient. However, if the area ratio of the convex portions is low on the negative side, when the pressing force becomes large, the convex portions will be completely crushed, and the contact area will conversely become large and the coefficient of friction will become high. Therefore, in order to compensate for the strength of the protrusions, it is considered that a minimum line of the average area per protrusion exists because the protrusion area ratio is low. However, on the other hand, if the area of each convex part is too large, the sliding distance becomes longer and galling occurs between the protrusions, resulting in an increase in the coefficient of friction. Furthermore, due to the precision of the processing technology, it is thought that there is a minimum line of the area ratio of the convex portions.

またさらに鋼板表面に上記のような凹凸を付与すること
によって、化成処理性が向上することが判明した。
Furthermore, it has been found that chemical conversion treatment properties are improved by providing the above-described irregularities to the surface of the steel sheet.

第3図に、第1図で用いた極低炭素鋼を用い、化成処理
後のP比の値におよぼす、凸部の面積率(SSr) と
凸部1個当りの平均面積(SGr)との関係について調
べた結果を示す。
Figure 3 shows the area ratio of convex portions (SSr) and the average area per convex portion (SGr) that affect the P ratio value after chemical conversion treatment using the ultra-low carbon steel used in Figure 1. The results of an investigation into the relationship between

同図より明らかなように、25%≦SSr≦60%でか
つ2 ×104 tts”≦SGr≦l □、s u 
m tの場合に、P比が0.9以上となり、化成処理性
が向上している。
As is clear from the figure, 25%≦SSr≦60% and 2 × 104 tts”≦SGr≦l □, s u
In the case of m t, the P ratio is 0.9 or more, and the chemical conversion treatment properties are improved.

以上のような適正範囲が存在する理由は次のように考え
られる。
The reason why the above appropriate range exists is considered to be as follows.

すなわち、鋼板表面に凹凸を付与することによって、鋼
板表面の酸化被膜に不均一部(酸化被膜が薄い部分また
は、酸化被膜が破れた部分)が生じるが、この不均一部
が、化成処理反応において結晶の析出サイトとなるもの
と考えられる。
In other words, by imparting irregularities to the surface of a steel sheet, non-uniform areas (areas where the oxide film is thin or areas where the oxide film is broken) are created in the oxide film on the surface of the steel sheet, and these non-uniform areas are difficult to form during the chemical conversion reaction. This is considered to be a crystal precipitation site.

しかし、SSrおよびSGrがともに小さすぎると、酸
化被膜の不均一が粗になり、したがって析出サイトも粗
となり、化成処理性は劣化する。またSSrおよびSG
rがともに大きくなってしまうと、鋼板表面全体に占め
る、酸化被膜の不均一部、すなわち、鉄の溶出部が多く
なる。
However, if both SSr and SGr are too small, the non-uniformity of the oxide film will become coarse, and therefore the precipitation sites will also become coarse, resulting in poor chemical conversion treatment properties. Also SSr and SG
If both r becomes large, the number of non-uniform parts of the oxide film, that is, the parts where iron is eluted, occupies the entire surface of the steel sheet.

ここで、りん酸塩処理反応は、代表的なりん酸亜鉛処理
の場合を例にとれば、次のように説明される。
Here, the phosphate treatment reaction will be explained as follows, taking the typical case of zinc phosphate treatment as an example.

すなわちりん酸亜鉛処理用のρ■3.0程度の酸液中に
鋼板を浸漬すると、次の(1)式で示すように鋼板表面
のFeが溶解する。
That is, when a steel plate is immersed in an acid solution with a ρ of about 3.0 for zinc phosphate treatment, Fe on the surface of the steel plate is dissolved as shown by the following equation (1).

Fe + 2HsPO4→Fe(HzPOa)z + 
Hz ↑   ・(1)このFe溶解反応によって溶液
−鋼板界面におけるpHの上昇(H”イオンの減少)お
よびFe”濃度の増加が生じ、それによって次の(2)
式、(3)式で示されるりん酸塩析出反応が生じて、鋼
板表面にりん、酸塩被膜が形成される。
Fe + 2HsPO4→Fe(HzPOa)z +
Hz ↑ ・(1) This Fe dissolution reaction causes an increase in pH at the solution-steel plate interface (reduction in H" ions) and an increase in Fe" concentration, which leads to the following (2)
The phosphate precipitation reaction shown by the equation (3) occurs, and a phosphorus and salt film is formed on the surface of the steel sheet.

2Zn(HzPO4)z + Fe(HzPO4)z 
+ 48zO−Zn2Fe(Po4)z  ” 4Hz
O+ 4HzPO4”’(2)3Zn()IzPO4)
z + 4)1zO→Zn5(PO4)z  H4Hz
O+ 4)13PO4・”(3)以上のようなりん酸塩
処理反応において、鋼中におけるPの存在は、酸中にお
ける鋼の水素過電圧を低下せしめ、鋼の酸溶解性を促進
させる作用をもたらすことが知られており、鋼中P含有
量の増加によるりん酸塩処理性の改善効果はこのような
鋼の酸溶解性促進作用によるものである。すなわち、り
ん酸塩処理時において鋼中のPの寄与により(1)式の
Fe溶解反応が促進され、それに伴って鋼板−溶液界面
近傍でのpH上昇およびFe”濃度増加が促進されるの
である。また(2)式の反応によるりん酸塩被膜である
ZnzFe(PO4)t ・4HzOすなわちPhos
phophyllite被膜は、(3)式の反応による
りん酸塩被膜である Zn+(Po4)z  ・4)1
20すなわち■opeite被膜よりも被膜特性がすぐ
れていることが知られている。
2Zn(HzPO4)z + Fe(HzPO4)z
+48zO-Zn2Fe(Po4)z” 4Hz
O+ 4HzPO4”'(2)3Zn()IzPO4)
z + 4) 1zO→Zn5(PO4)z H4Hz
O+ 4) 13PO4・”(3) In the above phosphate treatment reaction, the presence of P in steel has the effect of lowering the hydrogen overpotential of steel in acid and promoting acid solubility of steel. It is known that the effect of improving phosphatability by increasing the P content in steel is due to the effect of promoting the acid solubility of steel. The contribution of P promotes the Fe dissolution reaction of equation (1), and accordingly increases the pH and Fe concentration near the steel plate-solution interface. In addition, ZnzFe(PO4)t 4HzO, which is a phosphate coating by the reaction of formula (2), that is, Phos
The phophyllite coating is a phosphate coating produced by the reaction of equation (3) Zn+(Po4)z ・4)1
It is known that the coating properties are superior to those of 20, that is, the opeite coating.

過剰の鉄の溶出がある場合、りん酸塩結晶析出に必要な
Zn(H1PO4)zの供給が間に合わず、りん酸塩処
理性が阻害される。
If there is excessive iron elution, Zn(H1PO4)z necessary for phosphate crystal precipitation cannot be supplied in time, and phosphate treatment performance is inhibited.

SSr又はSGrが大きくなると上記の現象が発生する
ため、化成処理性が劣化すると考えられる。
When SSr or SGr increases, the above phenomenon occurs, and it is thought that chemical conversion treatment properties deteriorate.

したがって、化成処理性には適正範囲が存在するものと
考えらる。
Therefore, it is considered that there is an appropriate range of chemical conversion treatability.

発明者らは、上記した基礎的データに基づき、研究を重
ねた結果、以下のように表面状態を規制することにより
、両型かじり性にすぐれた冷延鋼板が得られることを究
明したのである。
As a result of repeated research based on the above basic data, the inventors discovered that by regulating the surface condition as shown below, a cold-rolled steel sheet with excellent galling properties on both sides can be obtained. .

この発明によれば、25%≦SSr≦60%でかつ、1
05 am”≧SGr≧2X105 pm”であること
が必要である。SSr >60%、SSr <25%又
はSGr<2X105 pmz、 SGr >105 
pm”では優れた耐型かじり性および化成処理性を得る
ことができない。
According to this invention, 25%≦SSr≦60% and 1
05 am”≧SGr≧2×105 pm”. SSr >60%, SSr <25% or SGr<2X105 pmz, SGr >105
pm'', it is not possible to obtain excellent mold galling resistance and chemical conversion treatment properties.

なお、ダル加工手段としては、レーザーダル加工につい
て主に説明したが、その他プラズマ加工や放電加工が利
用できるのはいうまでもなく、要は表面粗さを前述した
適正範囲に収めることが重要である。
Although laser dulling has been mainly explained as a dulling method, it goes without saying that other methods such as plasma processing and electrical discharge machining can also be used, and it is important to keep the surface roughness within the appropriate range mentioned above. be.

(作 用) 次に、この発明において鋼成分を前記の範囲に限定した
理由について述べる。
(Function) Next, the reason why the steel composition is limited to the above range in this invention will be described.

C,N、これらの侵入型固溶元素は過剰に含有されると
、延性および絞り性の劣化を招く。Cの場合は0.00
40%、Nの場合は0.0050%を超えると延性、絞
り性の劣化が著しくなる。したがって、Cは0.004
0%以下、Nは0.0050%以下とした。
When these interstitial solid solution elements such as C and N are contained in excess, they cause deterioration of ductility and drawability. 0.00 for C
If it exceeds 40%, or 0.0050% in the case of N, the deterioration of ductility and drawability will be significant. Therefore, C is 0.004
0% or less, and N was 0.0050% or less.

Si、 Mn+  P ;これらの置換型固溶元素は、
C9Nに比べると、延性、絞り性への悪影響は小さいの
で、目的とする強度レベルに応じて含をさせることが可
能である。この発明の場合、Siは0.04%、Mnは
0.35%、Pは0.1%が材質上の上限である。
Si, Mn+P; These substitution type solid solution elements are
Compared to C9N, it has less adverse effect on ductility and drawability, so it can be added depending on the desired strength level. In the case of this invention, the upper limits of the material are 0.04% for Si, 0.35% for Mn, and 0.1% for P.

S;脱スケール性や化成処理性対策の面からはSlは多
いほどよいわけであるが、C4が0.02%を超えると
鋼板の耐食性が悪化する。また、多量のS量添加は材質
の劣化を引き起こすので、slの上限は0.02%とし
た。
S: From the standpoint of descaling properties and chemical conversion treatment properties, the more Sl the better, but if C4 exceeds 0.02%, the corrosion resistance of the steel sheet deteriorates. Furthermore, since addition of a large amount of S causes deterioration of the material, the upper limit of sl was set to 0.02%.

A1;鋼中脱酸に有効であるが、0.1%を超えると介
在物による表面性状の劣化および化成処理性の劣化を招
くので、0.1%を上限とした。
A1: It is effective in deoxidizing steel, but if it exceeds 0.1%, it causes deterioration of surface properties due to inclusions and deterioration of chemical conversion treatment properties, so 0.1% is set as the upper limit.

Ti;C,N、S等の固溶成分の固定に有効に寄与する
だけでなく、C,N、S等との析出物形成による材質の
改善に多大の効果がある。
Ti: It not only effectively contributes to the fixation of solid solution components such as C, N, and S, but also has a great effect on improving the material quality by forming precipitates with C, N, S, and the like.

特に、その添加量としては、C,N、Sのそれぞれがす
べて限定範囲の上限の場合でも、それを完全に固定する
ためには下記(1)式を満足する量が望ましく、この式
よりTiの上限を0.07%とした。
In particular, even if each of C, N, and S is at the upper limit of the limited range, in order to completely fix it, it is desirable to add the amount that satisfies the following formula (1). The upper limit was set at 0.07%.

一方、含有量が0.01%に満たないとその添加効果に
乏しい。したがって、Ti添加量は0.01〜0.07
%の範囲に限定した。
On the other hand, if the content is less than 0.01%, the effect of its addition is poor. Therefore, the amount of Ti added is 0.01 to 0.07
% range.

次にこの発明の請求項2〜3に記載している添加元素N
b、  Bの限定理由について述べる。
Next, the additive element N described in claims 2 to 3 of this invention
b. We will discuss the reasons for limiting B.

Nb 、 NbはTiとの複合添加によって高E11高
r値を確保した上で、面内異方性を改善する効果がある
。しかしながら、含有量が0.001%に満たないとそ
の添加効果に乏しく、一方0.010%を超えると異方
性の改善効果は飽和し、逆にEffiの低下を招く。し
たがって、Nb量は0.001〜0゜010%で添加す
るものとした。
Nb is effective in improving in-plane anisotropy while ensuring a high E11 and high r value by adding Nb in combination with Ti. However, if the content is less than 0.001%, the effect of its addition will be poor, while if it exceeds 0.010%, the anisotropy improvement effect will be saturated, conversely causing a decrease in Effi. Therefore, the amount of Nb added was 0.001 to 0.010%.

B;微量添加によって、耐2次加工脆性を改善する有用
元素である。しかしながら0.0001%に満たないと
その添加効果に乏しく、一方0.0030%を超える多
量の添加は、材質の劣化を招くため、B量は0.000
1〜0.0030%の範囲で添加するものとした。
B: A useful element that improves secondary processing brittleness when added in a small amount. However, if the amount of B is less than 0.0001%, the addition effect will be poor, while if it is added in a large amount exceeding 0.0030%, it will cause deterioration of the material.
It was supposed to be added in a range of 1 to 0.0030%.

(実施例) 表2に示す化学組成になる鋼スラブを転炉一連続鋳造法
により製造し、ついで1250°Cに加熱−均熱後、粗
圧延−仕上げ圧延により3.2 mm厚の熱延鋼板とし
た。ついで酸洗後、冷間圧延により、0.8圓厚の冷延
鋼板とし、連続焼鈍(均熱温度750〜850°C)を
施した後、スキンパス圧延(圧下率0.8%)を行った
(Example) A steel slab having the chemical composition shown in Table 2 was manufactured by a converter continuous casting method, heated to 1250°C, soaked, and hot rolled to a thickness of 3.2 mm by rough rolling and finishing rolling. Made of steel plate. After pickling, the steel plate was cold-rolled to a thickness of 0.8 mm, subjected to continuous annealing (soaking temperature 750 to 850°C), and then skin-pass rolled (reduction ratio 0.8%). Ta.

ここで、スキンバスロールは、レーザー加工によってダ
ル目を付けたロール(レーザーダル加工したロール)を
用いた。
Here, the skin bath roll used was a roll with dull edges formed by laser processing (a roll subjected to laser dull processing).

鋼板表面粗さは圧延方向について測定し、平均表面粗さ
SRaを求めた。かくして得られた各冷延板から引張試
験用のJIS5号試験片を切り出し、機械的緒特性につ
いて調べた結果を表3に示す。ここにT値は15%引張
予歪を与えたのち、3点法により測定し、L(圧延)方
向、C(圧延方向に対して90゛)方向およびD(圧延
方向に対して45°)方向の平均値、 rt + rC+ 2rn で求めた。
The surface roughness of the steel plate was measured in the rolling direction, and the average surface roughness SRa was determined. JIS No. 5 test pieces for tensile testing were cut out from each cold-rolled sheet thus obtained, and the mechanical properties were examined. Table 3 shows the results. Here, the T value was measured by a three-point method after applying 15% tensile prestrain, and was measured in the L (rolling) direction, the C (90° to the rolling direction), and the D (45° to the rolling direction). The average value in the direction was calculated as rt + rC + 2rn.

ここで、摺動試験方法について示す。第4図aに示す摺
動性測定装置により、チャック4に挟持した試験片5を
引き抜く時の引き抜き荷重を引張試験機lにより測定し
た。シリンダー3によるポンチ2の押え荷重は100 
kgfとした。試験片5は無塗油のものについて、20
mmX300 mmX0.7 mmのものを用意した。
Here, the sliding test method will be described. Using the slidability measuring device shown in FIG. 4a, the pull-out load when pulling out the test piece 5 held between the chuck 4 was measured using a tensile tester 1. The presser load of punch 2 due to cylinder 3 is 100
kgf. Test piece 5 is for the unoiled one, 20
A piece measuring 300 mm x 0.7 mm was prepared.

また、試験片5を引き抜く速度は500 mm/1li
n、摺動距離は50mmとした。
In addition, the speed at which the test piece 5 is pulled out is 500 mm/1li.
n, the sliding distance was 50 mm.

なお、第4図すに示す形状でDが15値、hが1鵬のポ
ンチ2で、試験片5に垂直荷重Nをかけ、上方向へ引き
抜くときの荷重F(kgf)を測定し、F/2Nから、
摩擦係数を求めた。
In addition, a vertical load N was applied to the test piece 5 using a punch 2 having a shape shown in Fig. 4, D was 15, and h was 1, and the load F (kgf) when pulled upward was measured. From /2N,
The coefficient of friction was determined.

また化成処理は、下記により施した。Further, the chemical conversion treatment was performed as follows.

処理液二日本パーカーライジング社製パルボンドL30
20処理液 処理方法i FULL DIP方式 処理条件:42°Cで120秒間浸漬 評価方法二P比 ここでP比とは、Phosphophyllite (
ZnzFe(POn)z’ 4H20)の(100)面
とHopeite (Zni(POn)z I 4Hz
O)の(020)面のX線回折強度比であり、い程、良
好な被膜とされている。
Treatment liquid Nippon Parker Rising Co., Ltd. Palbond L30
20 Treatment liquid treatment method i FULL DIP method Treatment conditions: Immersion at 42°C for 120 seconds Evaluation method 2 P ratio Here, P ratio is Phosphophyllite (
(100) plane of ZnzFe(POn)z' 4H20) and Hopeite (Zni(POn)z I 4Hz
This is the X-ray diffraction intensity ratio of the (020) plane of O), and the better the coating is.

この値が高 表This value is high table

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、摺動時における鋼板の表面粗さSRaと摩擦
係数との関係を示したグラフ、 第2図は、摩擦係数に及ぼす凸部の面積率SSrと凸部
1個当りの平均面積SGrの影響を示したグラフ、 第3図は、P比に及ぼす凸部の面積率SSrと凸部1個
当りの平均面積SGrとの関係を示したグラフ、 第4図a、bはそれぞれ、摺動性測定装置の模式図およ
びそれに用いるポンチの説明図である。 表4より明らかなように、この発明に従う鋼板はいずれ
も、比較例に比べて優れた両型かじり性を示している。 (発明の効果) かくしてこの発明によれば、化成処理性を損うことなし
に、両型かじり性に優れた深絞り用冷延鋼板とくに極低
炭素鋼板を得ることができ、たとえば自動車用鋼板など
の用途に用いて好適である。 第2図 表6IJ炬さSRa(μ−) 2.0 56(−(xto’pm2) 第3図 O sq、(xyo4μ式つ 第4図 (a) (b)
Figure 1 is a graph showing the relationship between the surface roughness SRa of a steel plate and the coefficient of friction during sliding. Figure 2 is the effect of the area ratio SSr of convex parts on the coefficient of friction and the average area per convex part. Figure 3 is a graph showing the influence of SGr. Figure 3 is a graph showing the relationship between the area ratio SSr of convex parts and the average area SGr per convex part on the P ratio. Figures 4 a and b are, respectively, FIG. 1 is a schematic diagram of a sliding property measuring device and an explanatory diagram of a punch used therein. As is clear from Table 4, all the steel plates according to the present invention exhibit superior galling properties in both types compared to the comparative examples. (Effects of the Invention) Thus, according to the present invention, it is possible to obtain a cold-rolled steel sheet for deep drawing, particularly an ultra-low carbon steel sheet, which has excellent galling properties in both molds without impairing chemical conversion treatment properties, and can be used, for example, as a steel sheet for automobiles. It is suitable for use in applications such as Diagram 2 6IJ SRa (μ-) 2.0 56 (-(xto'pm2) Diagram 3 O sq, (xyo4μ expression) Diagram 4 (a) (b)

Claims (1)

【特許請求の範囲】 1、C:0.0040wt%以下、 Si:0.04wt%以下、 Mn:0.35wt%以下、 P:0.1wt%以下、 S:0.02wt%以下、 Al:0.1wt%以下、 N:0.0050wt%以下および Ti:0.01〜0.07wt% を含有し、残部は実質的にFeの組成になる冷延鋼板で
あって、その表面が、凸部面積率SS_r:25〜60
%でかつ凸部1個当りの平均面積SG_r:2×10^
4〜10^5(μm^2)の条件を満足することを特徴
とする耐型かじり性に優れた深絞り用冷延鋼板。 2、C:0.0040wt%以下、 Si:0.04wt%以下、 Mn:0.35wt%以下、 P:0.1wt%以下、 S:0.02wt%以下、 Al:0.1wt%以下、 N:0.0050wt%以下および Ti:0.01〜0.07wt%を、 Nb:0.001〜0.010wt% と共に含有し、残部は実質的にFeの組成になる冷延鋼
板であって、その表面が、凸部面積率SS_r:25〜
60%でかつ凸部1個当りの平均面積SG_r:2×1
0^4〜10^5(μm^2)の条件を満足することを
特徴とする耐型かじり性に優れた深絞り用冷延鋼板。 3、C:0.0040wt%以下、 Si:0.04wt%以下、 Mn:0.35wt%以下、 P:0.1wt%以下、 S:0.0wt%以下、 Al:0.1wt%以下、 N:0.0050wt%以下および Ti:0.01〜0.07wt%を、 B:0.0001〜0.0030wt% と共に含有し、残部は実質的にFeの組成になる冷延鋼
板であって、その表面が、凸部面積率SS_r:25〜
60%でかつ凸部1個当りの平均面積SG_r:2×1
0^4〜10^5(μm^2)の条件を満足することを
特徴とする耐型かじり性に優れた深絞り用冷延鋼板。
[Claims] 1. C: 0.0040wt% or less, Si: 0.04wt% or less, Mn: 0.35wt% or less, P: 0.1wt% or less, S: 0.02wt% or less, Al: 0.1 wt% or less, N: 0.0050 wt% or less, and Ti: 0.01 to 0.07 wt%, with the remainder being substantially Fe, and the surface thereof is convex. Part area ratio SS_r: 25-60
% and average area per convex portion SG_r: 2×10^
A cold-rolled steel sheet for deep drawing with excellent die galling resistance, which satisfies the condition of 4 to 10^5 (μm^2). 2, C: 0.0040wt% or less, Si: 0.04wt% or less, Mn: 0.35wt% or less, P: 0.1wt% or less, S: 0.02wt% or less, Al: 0.1wt% or less, A cold-rolled steel sheet containing N: 0.0050 wt% or less and Ti: 0.01 to 0.07 wt% together with Nb: 0.001 to 0.010 wt%, with the remainder being substantially Fe. , whose surface has a convex area ratio SS_r: 25~
60% and average area per convex portion SG_r: 2×1
A cold-rolled steel sheet for deep drawing with excellent die galling resistance, characterized by satisfying the condition of 0^4 to 10^5 (μm^2). 3, C: 0.0040wt% or less, Si: 0.04wt% or less, Mn: 0.35wt% or less, P: 0.1wt% or less, S: 0.0wt% or less, Al: 0.1wt% or less, A cold-rolled steel sheet containing N: 0.0050 wt% or less and Ti: 0.01 to 0.07 wt%, together with B: 0.0001 to 0.0030 wt%, with the remainder being substantially Fe. , whose surface has a convex area ratio SS_r: 25~
60% and average area per convex portion SG_r: 2×1
A cold-rolled steel sheet for deep drawing with excellent die galling resistance, characterized by satisfying the condition of 0^4 to 10^5 (μm^2).
JP31515188A 1988-12-15 1988-12-15 Cold rolled steel sheet for deep drawing excellent in die galling resistance Pending JPH02163344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31515188A JPH02163344A (en) 1988-12-15 1988-12-15 Cold rolled steel sheet for deep drawing excellent in die galling resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31515188A JPH02163344A (en) 1988-12-15 1988-12-15 Cold rolled steel sheet for deep drawing excellent in die galling resistance

Publications (1)

Publication Number Publication Date
JPH02163344A true JPH02163344A (en) 1990-06-22

Family

ID=18062029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31515188A Pending JPH02163344A (en) 1988-12-15 1988-12-15 Cold rolled steel sheet for deep drawing excellent in die galling resistance

Country Status (1)

Country Link
JP (1) JPH02163344A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247850A (en) * 1991-01-25 1992-09-03 Nkk Corp Cold rolled steel sheet excellent in press formability and phosphating property and its manufacture
JPH04247849A (en) * 1991-01-25 1992-09-03 Nkk Corp Cold rolled steel sheet excellent in press formability and phosphating property and its manufacture
WO2008108044A1 (en) 2007-03-01 2008-09-12 Jfe Steel Corporation High tensile cold rolled steel plate and method for manufacturing the cold rolled steel plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247850A (en) * 1991-01-25 1992-09-03 Nkk Corp Cold rolled steel sheet excellent in press formability and phosphating property and its manufacture
JPH04247849A (en) * 1991-01-25 1992-09-03 Nkk Corp Cold rolled steel sheet excellent in press formability and phosphating property and its manufacture
WO2008108044A1 (en) 2007-03-01 2008-09-12 Jfe Steel Corporation High tensile cold rolled steel plate and method for manufacturing the cold rolled steel plate

Similar Documents

Publication Publication Date Title
KR101949627B1 (en) High-strength steel sheet and method for manufacturing same
KR101949628B1 (en) High-strength steel sheet and method for manufacturing same
EP3447160A1 (en) Steel plate, plated steel plate, and production method therefor
EP3214199A1 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
EP3875615B1 (en) Steel sheet, member, and methods for producing them
WO2007075006A1 (en) High manganese steel strips with excellent coatability and superior surface property, coated steel strips using steel strips and method for manufacturing the steel strips
EP3447159B1 (en) Steel plate, plated steel plate, and production method therefor
JP2810245B2 (en) Cold rolled steel sheet excellent in press formability and phosphatability and method for producing the same
EP3929321A1 (en) Hot-pressed member, cold-rolled steel sheet for hot press use, and methods respectively manufacturing these products
JP5130701B2 (en) High tensile steel plate with excellent chemical conversion
EP3875616B1 (en) Steel sheet, member, and methods for producing them
JP5020600B2 (en) High tensile steel plate with excellent chemical conversion
JPH02163344A (en) Cold rolled steel sheet for deep drawing excellent in die galling resistance
KR101461773B1 (en) Cold-rolled steel sheet and method for producing same
KR102485003B1 (en) High strength plated steel sheet having excellent formability and surface property, and manufacturing method for the same
JPH02163345A (en) Cold rolled steel sheet for deep drawing excellent in die galling resistance
JP3336079B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and chemical conversion property and method for producing the same
WO2022168167A1 (en) Thin steel sheet
JP3049147B2 (en) Method for producing high-tensile cold-rolled steel sheet with excellent chemical conversion property and deep drawability
US20240043955A1 (en) Steel sheet with excellent phosphatability and manufacturing method therefor
JP3477896B2 (en) Cold rolled steel sheet for processing with excellent corrosion resistance and method for producing the same
JP2661711B2 (en) Cold rolled steel sheet excellent in mold resistance and galling resistance and method for producing the same
JP3497201B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing with excellent surface properties
JP3874821B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet with excellent deep drawability
WO2023181485A1 (en) Steel sheet, member, method for producing said steel sheet and method for producing said member