JPH0424576A - Measuring system of azimuth - Google Patents

Measuring system of azimuth

Info

Publication number
JPH0424576A
JPH0424576A JP12829290A JP12829290A JPH0424576A JP H0424576 A JPH0424576 A JP H0424576A JP 12829290 A JP12829290 A JP 12829290A JP 12829290 A JP12829290 A JP 12829290A JP H0424576 A JPH0424576 A JP H0424576A
Authority
JP
Japan
Prior art keywords
signal
phase
antenna
period
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12829290A
Other languages
Japanese (ja)
Inventor
Hitoshi Nomi
仁 能美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP12829290A priority Critical patent/JPH0424576A/en
Publication of JPH0424576A publication Critical patent/JPH0424576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To obtain a necessary azimuth resolution and a precision superior to the measuring precision of VOR by determining an azimuth angle by transmitting signals from a plurality of transmission antennas on the transmission side in a prescribed sequence and at a prescribed time interval and by detecting a change in phase of each reception signal on the reception side. CONSTITUTION:An antenna switching circuit 2 supplies an output of a transmitter 3 to a transmission antenna group 1 comprising a plurality of transmission antennas, by switching them in a prescribed sequence and at a prescribed time interval. The transmitter 3 outputs a modulated high-frequency signal during the period of a specific transmission antenna (a reference signal period) and delivers an output of an oscillator, as it is, during the remaining period (a measuring period). A signal from a ground-side apparatus enters a reception circuit 21 from a reception antenna 20 and is outputted therefrom to a signal separating circuit 22. The signal separating circuit 22 outputs a signal in the reference signal period to a phase synchronous oscillator 23 and a signal in the measuring period to a phase detecting circuit 24. Using an output of the phase synchronous oscillator 23 as a reference signal, the phase detecting circuit 24 detects the phase of the output of the signal separating circuit 22 and outputs phase change information to an azimuth computing element 26. A resolution is improved in proportion to the number of the transmission antennas.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、天空を移動しまたは移動後静止することがあ
るような移動物体の方位位置を当該移動物体にて高精度
に測定する方位測定システムに係り、特に航空機の位置
測定システムとして適用可能な方位測定システムに関す
る。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to azimuth measurement in which the azimuth position of a moving object, which may move in the sky or may come to rest after moving, is measured with high precision using the moving object. The present invention relates to a direction measurement system, and particularly to a direction measurement system applicable as an aircraft position measurement system.

(従来の技術) 周知のように、航空機の位置測定システムとしては、従
来、ADF (自動方向探知機)やVOR(超短波全方
向式無線標識)等が知られている。
(Prior Art) As is well known, ADF (Automatic Direction Finder), VOR (Very High Frequency Omnidirectional Radio Beacon), and the like are conventionally known as aircraft positioning systems.

ADFは、枠型アンテナまたはアトコックアンテナなど
を機械的に回転して受信出力変化から電波の到来方向を
求め、送信アンテナからの位置を求めるシステムである
ADF is a system that mechanically rotates a frame antenna, an atcox antenna, or the like, determines the direction of arrival of radio waves from changes in received output, and determines the position from the transmitting antenna.

VORは、VHF帯の指向性電波を毎秒30回の速度で
回転し、この電波にのせて電波の回転に同期した3 0
 Hz基準位相の電波を送る。航空機上では指向性の回
転によって生ずる電界強度変化の30 Hz可変位相と
同じ<30Hzの基準位相電波の位相とを比較して送信
局の方位を決定する。
VOR rotates directional radio waves in the VHF band at a speed of 30 times per second, and synchronizes with the rotation of the radio waves by placing them on these radio waves.
Sends radio waves with Hz reference phase. On an aircraft, the azimuth of the transmitting station is determined by comparing the 30 Hz variable phase of the electric field intensity change caused by the rotation of the directivity with the phase of the same <30 Hz reference phase radio wave.

(発明が解決し、ようとする課題) しかし、ADFは、地上設備、機上設備共に簡単である
が測定誤差が大きいという問題がある。
(Problems to be Solved and Attempted by the Invention) However, although the ADF is simple for both ground equipment and onboard equipment, there is a problem in that the measurement error is large.

即ち、ADFの持つ誤差は機器誤差、近接物体散乱誤差
、電波伝搬誤差に分類される。81器誤差はアンテナ系
における誤差とかシステムに特有の誤差である。近接物
体散乱誤差は受信アンテナ設置場所近傍の物体によって
到来電波が散乱を受ける事によって生ずる誤差で、アン
テナ付近の構造物体などあらゆるものが散乱の原因とな
り誤差を生ずる。電波伝搬誤差は使用波長によって異な
るが、海岸線効果などがある。ADFはこれらの誤差に
より測定精度が低下するだけでなく、測定精度そのもの
がアンテナの指向性に依存しているなめ高精度の方位測
定は望めないのである。
That is, the errors of the ADF are classified into instrument errors, proximate object scattering errors, and radio wave propagation errors. The 81-device error is an error in the antenna system or an error specific to the system. Near-object scattering error is an error that occurs when incoming radio waves are scattered by objects near the receiving antenna installation location, and anything such as structural objects near the antenna can cause scattering and cause errors. Radio wave propagation errors vary depending on the wavelength used, but include coastline effects. Not only does the measurement accuracy of the ADF decrease due to these errors, but the measurement accuracy itself depends on the directivity of the antenna, so highly accurate direction measurement cannot be expected.

また、VORは、ADFよりも高精度の測定が可能で、
約±2.5°の測定精度が得られるが、この精度は送信
アンテナの特性により決定されるので、これ以上の精度
を得るのは困難である。
In addition, VOR allows for more accurate measurements than ADF,
A measurement accuracy of approximately ±2.5° can be obtained, but since this accuracy is determined by the characteristics of the transmitting antenna, it is difficult to obtain greater accuracy.

本発明は、このような問題に鑑みなされたもので、その
目的は、航空機を含み天空を移動し饋たは移動後静止す
ることがあるような任意の移動物体の方位位置を当該移
動物体にてVORよりも高精度に測定し得る方位測定シ
ステムを提供することにある。
The present invention was made in view of these problems, and its purpose is to determine the azimuth position of any moving object, including aircraft, that moves in the sky and may come to rest after moving. An object of the present invention is to provide an azimuth measurement system that can measure with higher accuracy than VOR.

(課題を解決するための手段) 前記目的を達成するなめ、本発明の方位測定システムは
次の如き構成を有する。
(Means for Solving the Problems) In order to achieve the above object, the orientation measuring system of the present invention has the following configuration.

即ち、本発明の方位測定システムは、地上側装置と天空
を移動等する移動物体に搭載される移動体側装置とで構
成され; 地上側装置が、複数の送信アンテナを所定の
配!態様で設定してなる送信アンテナ群と; 送信機の
高周波信号出力を前記複数の送信アンテナのそれぞれに
所定の順序・時間間隔で切り換えて供給するアンテナ切
換回路と; 前記複数の送信アンテナのそれぞれと前記
アンテナ切換回路間を接続する線路であって両者間の電
気的距離が各送信アンテナごとに全て等しくなるように
調整された給電回路と; 前記アンテナ切換回路が、前
記複数の送信アンテナ中の特定の送信アンテナを選択し
ている基準信号期間ではその期間の先頭付近所定時間領
域にて被変調高周波信号を発生し残余の時間領域にて無
変調高周波信号を発生し、前記特定送信アンテナ以外の
各送信アンテナを選択している各測定期間では前記無変
調高周波信号と同一周波数の無変調高周波信号を連続的
に発生する前記送信機と; を備え、移動体側装置は、
受信アンテナと; 受信アンテナの出力を増幅し周波数
変換する受信回路と受信回路の出力を前記被変調信号に
基づき基準信号期間の信号と測定期間の信号とに分離す
る信号分離回路と; 前記基準信号期間の信号に位相を
合わせて発振しその基準信号期間の経過後も同一周波数
での発振を継続する位相同期発振器と二位相同期発振器
の出力に基づき前記各測定期間の信号を位相検波する位
相検波回路と−当該移動物体の速度を検出する速度計と
; 既知の情報である前記送信アンテナ群の位置と配置
及び送信タイミングの情報、位相同期検波回路からの位
相情報と速度計からの速度情報に基づき受信アンテナの
送信アンテナ群に対する方位を計算する方位演軍部と:
 を備えていることを特徴とするものである。
That is, the direction measuring system of the present invention is composed of a ground-side device and a mobile device mounted on a moving object that moves in the sky; a group of transmitting antennas configured in accordance with the present invention; an antenna switching circuit that switches and supplies a high-frequency signal output from a transmitter to each of the plurality of transmitting antennas in a predetermined order and at a predetermined time interval; and each of the plurality of transmitting antennas; a feeding circuit that is a line connecting the antenna switching circuits and is adjusted so that the electrical distance between them is equal for each transmitting antenna; In the reference signal period in which the transmitting antenna is selected, a modulated high frequency signal is generated in a predetermined time domain near the beginning of the period, an unmodulated high frequency signal is generated in the remaining time domain, and each transmitting antenna other than the specific transmitting antenna is a transmitter that continuously generates an unmodulated high frequency signal having the same frequency as the unmodulated high frequency signal during each measurement period in which a transmitting antenna is selected;
a receiving antenna; a receiving circuit that amplifies and frequency converts the output of the receiving antenna; and a signal separation circuit that separates the output of the receiving circuit into a reference signal period signal and a measurement period signal based on the modulated signal; the reference signal; Phase detection that detects the phase of the signal of each measurement period based on the output of a phase synchronized oscillator and a two-phase synchronized oscillator that oscillate in phase with the signal of the period and continue oscillating at the same frequency even after the reference signal period has elapsed. circuit - a speedometer that detects the speed of the moving object; information on the position and arrangement of the transmitting antenna group and transmission timing, which are known information, phase information from the phase synchronized detection circuit and speed information from the speedometer; and an azimuth performance unit that calculates the azimuth of the receiving antenna with respect to the transmitting antenna group based on:
It is characterized by having the following.

(作 用) 次に、前記の如く構成される本発明の方位測定システム
の作用を説明する。
(Function) Next, the function of the direction measuring system of the present invention configured as described above will be explained.

地上側装置の各送信アンテナからは同相で電波放射が行
われるが、受信点ではそれが十分に遠方であれば平面波
として受信され、近距離であれば球面波として受信され
る。そこで、各送信アンテナが水平面から同じ高さ位置
で直線状に等間隔で配列してあり、一方の端にある送信
アンテナを特定送信アンテナとすると、ある角度θ方向
の十分遠方な受信点で各送信アンテナからの受信位相は
、特定送信アンテナの位相を基準にこれから直線状に変
化する。前記角度θはこの位相変化直線とアンテナの配
列方向とのなす角であるので、この位相変化から角度θ
が求められる。受信点が近距離の場合は、受信位相は略
2次関数的に変化するが、これを直線状変化に補正すれ
ば良い。
Radio waves are radiated in the same phase from each transmitting antenna of the ground-side device, but at the receiving point, if they are far enough away, they are received as plane waves, and if they are close, they are received as spherical waves. Therefore, if each transmitting antenna is arranged at equal intervals in a straight line at the same height from the horizontal plane, and if the transmitting antenna at one end is a specific transmitting antenna, each transmitting antenna is The reception phase from the transmitting antenna changes linearly from the phase of the specific transmitting antenna. The angle θ is the angle between this phase change straight line and the antenna arrangement direction, so the angle θ can be calculated from this phase change.
is required. When the reception point is close, the reception phase changes approximately quadratically, but this can be corrected to a linear change.

要するに、送信アンテナ群の配置態様は地勢に応じ区々
としているが、受信側において送信アンテナ群の実際の
配置態様が既知であれば、上述した同一水平面内の直線
配置態様に補正換算することは十分に可能であるので、
送信アンテナ群の配WR様が如何様であっても上述した
手法によって方位測定が可能である。
In short, the arrangement of the transmitting antenna group varies depending on the terrain, but if the actual arrangement of the transmitting antenna group is known on the receiving side, it is possible to correct and convert it to the linear arrangement in the same horizontal plane as described above. Since it is quite possible,
No matter how the WR arrangement of the transmitting antenna group is, the direction can be measured by the above-described method.

ここに、測定方位はアンテナの配列方向を回転軸とした
場合の軸回り方向であり、その最大測定角は各送信アン
テナ間の間隔(等間隔)に反比例するが、方位分解能は
直線配置アンテナ列の両端間距離に比例する。従って、
各送信アンテナ間の間隔を一定とすると、送信アンテナ
の数に比例して分解能を向上させることができ、VOR
の測定精度以上の精度を容易に得ることができる。
Here, the measurement azimuth is the direction around the axis when the antenna arrangement direction is the rotation axis, and the maximum measurement angle is inversely proportional to the interval (equal interval) between each transmitting antenna, but the azimuth resolution is the direction when the antenna array is arranged in a straight line. is proportional to the distance between the two ends of Therefore,
If the spacing between each transmitting antenna is constant, the resolution can be improved in proportion to the number of transmitting antennas, and VOR
It is possible to easily obtain a measurement accuracy higher than that of .

(実 施 例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係る方位測定システムを示
し、この方位測定システムは地上側装置(第1図(a)
)と移動体側装置(第1図(b))とで構成される。
FIG. 1 shows an azimuth measurement system according to an embodiment of the present invention, and this azimuth measurement system includes a ground-side device (see FIG. 1(a)).
) and a moving body side device (Fig. 1(b)).

地上側装置は、第1図(a)に示すように、送信機3と
、アンテナ切換回路2と、送信アンテナ群1と、それに
各送信アンテナとアンテナ切換回路2とを電気的に等距
離で結ぶ給電回路4とで基本的に構成される。
As shown in FIG. 1(a), the ground-side device connects a transmitter 3, an antenna switching circuit 2, a transmitting antenna group 1, and each transmitting antenna and antenna switching circuit 2 at electrically equal distances. It basically consists of a power supply circuit 4 that is connected to the power supply circuit 4.

送信アンテナ群1は、電気的特性が同じである複数の送
信アンテナを地勢に応じた所定の配置態様で設定したも
のである。即ち、配置態様は、理想的には、各送信アン
テナを水平面から同じ高さ位置で横一列に等間隔配置で
あることが望ましいが、実際には円弧状となったり、傾
斜していたり、また凹凸があったりする。この実際の配
置態様はその位置情報と共に受信側たる移動物体に既知
情報として提供され、移動物体側にて理想的な配置a様
に補正換算するようになっている。
The transmitting antenna group 1 includes a plurality of transmitting antennas having the same electrical characteristics and arranged in a predetermined manner depending on the terrain. In other words, it is ideal that the transmitting antennas be arranged at equal intervals in a horizontal line at the same height from the horizontal plane, but in reality, they may be arranged in an arc shape, inclined, or evenly spaced. There may be unevenness. This actual arrangement mode is provided as known information to the moving object on the receiving side together with its position information, and the moving object side corrects and converts it to the ideal arrangement a.

アンテナ切換回路2は、送信機3の出力を送信アンテナ
群1の各送信アンテナに所定の順序・時間間隔で切り換
えて供給する。
The antenna switching circuit 2 switches and supplies the output of the transmitter 3 to each transmitting antenna of the transmitting antenna group 1 in a predetermined order and at a predetermined time interval.

その結果、例えば第2図に示すように、各送信アンテナ
から時分割的に電波が放射される。第2図において、送
信アンテナ群はN+1個の送信アンテナを直線上に配列
してなり、一端から他端に向かい、0,1,2.・・・
・・・、Nと付番しであるとし、第0番目の送信アンテ
ナを特定送信アンテナとしてこれから番号順に所定の時
間間隔(To。
As a result, as shown in FIG. 2, for example, radio waves are radiated from each transmitting antenna in a time-division manner. In FIG. 2, the transmitting antenna group consists of N+1 transmitting antennas arranged in a straight line, 0, 1, 2, . . . from one end to the other end. ...
..., N, and the 0th transmitting antenna is designated as a specific transmitting antenna at predetermined time intervals (To) in numerical order.

TI、・・・・・、TN)で切り換えられ、これを繰り
返すとする。
TI, ..., TN), and this is repeated.

送信機3は、変調器と周波数安定度の優れた発振器とを
備え、特定送信アンテナ(第0番送信アンテナ)が選択
されるT。の期間(基準信号期1m)では、その期間の
先頭付近所定時間領域にて発振器の出力を基準信号にて
変調した被変調高周波信号を出力し残余の時間領域にて
発振器の出力(無変調高周波信号)をそのまま送出し、
残余の送信アンテナが順次選択されるT1〜TNの期間
(測定期間)では発振器の出力(無変調高周波信号)を
そのまま送出する。この送信タイミング情報は全て移動
物体側に既知情報として提供され、位相変化測定の際の
基準データとして用いられる。
The transmitter 3 includes a modulator and an oscillator with excellent frequency stability, and a specific transmitting antenna (transmitting antenna No. 0) is selected. In the period (reference signal period 1 m), a modulated high frequency signal obtained by modulating the output of the oscillator with the reference signal is output in a predetermined time domain near the beginning of the period, and the output of the oscillator (non-modulated high frequency signal) is output in the remaining time domain. signal) as is,
During the period T1 to TN (measurement period) in which the remaining transmitting antennas are sequentially selected, the output of the oscillator (unmodulated high frequency signal) is transmitted as is. All of this transmission timing information is provided to the moving object as known information and is used as reference data when measuring phase changes.

次に、移動体側装置は、第1図(b)cこ示すように、
受信アンテナ20と、受信回路21と、信号分離回路2
2と、位相同期発振器23と、位相検波回路24と、速
度計25と、方位演算部26とで基本的(こ構成される
Next, as shown in FIG. 1(b)c, the moving body side device
Receiving antenna 20, receiving circuit 21, and signal separation circuit 2
2, a phase synchronized oscillator 23, a phase detection circuit 24, a speedometer 25, and an azimuth calculating section 26.

地上側装置が送信した信号は受信アンテナ20番こて受
信されて受信回路21に入る。受信回路21gよ、増幅
回路と高安定な局部発振回路と周波数変換回路を備え、
入力された受信信号は増幅と適当な中間周波数への変換
の処理を受けて信号分離回路22へ出力される。
The signal transmitted by the ground-side device is received by the receiving antenna No. 20 and enters the receiving circuit 21. The receiving circuit 21g is equipped with an amplifier circuit, a highly stable local oscillation circuit, and a frequency conversion circuit.
The input received signal is amplified and converted to an appropriate intermediate frequency, and then output to the signal separation circuit 22.

信号分離回路22は、入力信号から被変調信号を検出し
、その被変調信号を含む期間TOの信号を位相同期発振
器23へ出力し、後続するT 1 = T Nの期間の
各信号を位相検波回路24へ出力する。
The signal separation circuit 22 detects the modulated signal from the input signal, outputs the signal of the period TO including the modulated signal to the phase synchronized oscillator 23, and performs phase detection on each signal of the subsequent period T 1 = TN. Output to circuit 24.

位相同期発振器23は、期間TOの信号に位相をロック
して発振動作をし、期間TO以降はその周波数で連続的
に発振動作をする。
The phase-locked oscillator 23 performs an oscillation operation with its phase locked to the signal in the period TO, and continuously oscillates at that frequency after the period TO.

位相検波回路24は、位相同期発振器23の出力を基準
信号として信号分離回路22の出力を位相検波し、位相
変化情報を複素信号の形式で方位演算部26へ出力する
。第3図に具体例を示しである。送信アンテナ群の配置
態様は当該移動物体におり)で既知であるから、これに
基づき送信アンテナ群が横一列等間隔配置であるとみな
せる程度に補正できる。従って、第3図では、送信アン
テナ群が横一列等間隔配置である場合の各受信信号の位
相変化を示しである。
The phase detection circuit 24 performs phase detection on the output of the signal separation circuit 22 using the output of the phase synchronized oscillator 23 as a reference signal, and outputs phase change information to the azimuth calculation section 26 in the form of a complex signal. A specific example is shown in FIG. Since the arrangement of the transmitting antenna group is known from the location of the moving object, it can be corrected based on this to the extent that the transmitting antenna group can be considered to be arranged in a horizontal row at equal intervals. Therefore, FIG. 3 shows the phase change of each received signal when the transmitting antenna groups are arranged in a horizontal row at equal intervals.

受信点が十分に遠方であるときは、受信アンテナ20は
平面波を受信するから、各送信アンテナからの受信位相
は、第3[N(a>に示すように、特定送信アンテナ(
第0番送信アンテナ)の位相を基準にこれから一定値宛
遅れたものとなり、各送信アンテナの配列方向から角度
θ(方位角θである)傾いた直線状となる。このときの
位相変化φNは、 φN=Jエニ11“−(1) λ となる、ここに、Lsは送信アンテナ群の両端送信アン
テナ間の距離、λは波長である。
When the reception point is sufficiently far away, the reception antenna 20 receives a plane wave, so the reception phase from each transmission antenna is determined by the specific transmission antenna (
It is delayed by a certain value based on the phase of the No. 0 transmitting antenna), and forms a straight line inclined at an angle θ (azimuth angle θ) from the arrangement direction of each transmitting antenna. The phase change φN at this time is φN=Jany11''−(1)λ, where Ls is the distance between the transmitting antennas at both ends of the transmitting antenna group, and λ is the wavelength.

一方、受信点が近距離であるときは、受信アンテナ20
は球面波を受信するから、各送信アンテナからの受信位
相は、第3図(b)に示すように、略2次関数的に変化
する。そして、距離が近いほど変化が激しい。
On the other hand, when the receiving point is close, the receiving antenna 20
Since the antenna receives a spherical wave, the reception phase from each transmitting antenna changes approximately quadratically as shown in FIG. 3(b). And the closer the distance, the more drastic the changes.

なお、次の式(2)が満たされるとき、受信点は十分に
遠方であると判断される。
Note that when the following equation (2) is satisfied, the receiving point is determined to be sufficiently far away.

R≧−2−LL(2) λ Rは送受両アンテナ間の距離である。R≧−2−LL(2) λ R is the distance between the transmitting and receiving antennas.

方位演算部26は、例えば第4図に示すように、距離検
出回路41と、速度補正値発生器42と、位相補正関数
発生器43と、位相乗算器44と、高速フーリエ変換器
45とを基本的に備える。
For example, as shown in FIG. 4, the azimuth calculation unit 26 includes a distance detection circuit 41, a speed correction value generator 42, a phase correction function generator 43, a phase multiplier 44, and a fast Fourier transformer 45. Basically prepare.

位相検波回路24の出力は距離検出回路41と位相乗算
器44とに供給される。また、速度計25の出力は速度
補正値発生器42に与えられる。
The output of the phase detection circuit 24 is supplied to a distance detection circuit 41 and a phase multiplier 44. Further, the output of the speedometer 25 is given to a speed correction value generator 42.

距離検出回路41は、入力された位相変化情報の変化状
態から当該移動物体が遠近いずれにあるかを判定する。
The distance detection circuit 41 determines whether the moving object is far or near from the change state of the input phase change information.

即ち、位相変化が直線的であれば遠方であると判定し、
出力信号の内容を無限大距離に設定する。一方、位相変
化が2次関数的であれば近距離と判定し、入力信号スペ
クトルの広がりから距離を求め、それを出力信号の内容
とする。
In other words, if the phase change is linear, it is determined that the object is far away,
Set the content of the output signal to infinite distance. On the other hand, if the phase change is quadratic, it is determined that the distance is short, the distance is determined from the spread of the input signal spectrum, and this is used as the content of the output signal.

位相補正関数発生器43は、距離検出回路41の出力た
る距離情報と速度補正値発生器42の出力たる速度補正
値とに基づき所定の位相補正関数を発生し、それを位相
乗算器44へ出力する0位相補正関数は、遠距離である
ときは速度補正を主としたものからなり、近距離である
ときは速度補正と距離補正の両者を加味した2次関数で
表されるものとなる。
The phase correction function generator 43 generates a predetermined phase correction function based on the distance information output from the distance detection circuit 41 and the speed correction value output from the speed correction value generator 42, and outputs it to the phase multiplier 44. The 0 phase correction function is mainly composed of velocity correction when the distance is long, and is expressed by a quadratic function that takes into account both speed correction and distance correction when the distance is short.

位相乗算器44では、遠距離であるときは位相検波回路
24の出力内容をそのまま出力し、近距離であるときは
直線変化とみなせるような位相補正をして出力する。
The phase multiplier 44 outputs the output contents of the phase detection circuit 24 as is when the distance is long, and outputs the output after correcting the phase so that it can be regarded as a linear change when the distance is short.

その結果、高速フーリエ変換器45では、式(1)で示
される位相変化を周波数スペクトルとして出力しく第5
図)、角度θに変換し表示等する。
As a result, the fast Fourier transformer 45 outputs the phase change shown by equation (1) as a frequency spectrum.
(Fig.), converted to angle θ and displayed.

ここに、当該システムの方位分解能はLN/λ、即ち、
直線配置アンテナ列の両端間の距離LNに比例する。ま
た、測定方位はアンテナ配列方向を回転軸とした場合の
軸回り方向であり、最大測定角は各送信アンテナ間の間
隔(等間隔)に反比例する。従って、各送信アンテナ間
の間隔を一定とすると、送信アンテナの数に比例して分
解能を向上させることができ、VORの測定精度以上の
精度を容易に得ることができる。
Here, the lateral resolution of the system is LN/λ, that is,
It is proportional to the distance LN between the ends of the linear antenna array. Further, the measurement direction is a direction around the axis when the antenna arrangement direction is the rotation axis, and the maximum measurement angle is inversely proportional to the interval (equal interval) between each transmitting antenna. Therefore, if the spacing between each transmitting antenna is constant, the resolution can be improved in proportion to the number of transmitting antennas, and it is possible to easily obtain accuracy higher than the measurement accuracy of VOR.

(発明の効果) 以上説明したように、本発明の方位測定システムによれ
ば、送信側に所定配置FB様の複数の送信アンテナから
なる送信アンテナ群を配設して各送信アンテナから所定
の順序・時間間隔で信号を送信させ、受信側において各
受信信号の位相変化を検出し方位角を求めるようにした
ので、方位分解能は送信アンテナの個数に依存すること
となり、必要な方位分解能を自由に実現でき、またVO
Rの測定精度以上の精度を容易に得ることができる効果
がある。
(Effects of the Invention) As explained above, according to the direction measurement system of the present invention, a transmitting antenna group consisting of a plurality of transmitting antennas like a predetermined arranged FB is arranged on the transmitting side, and a predetermined order is set from each transmitting antenna.・Since signals are transmitted at time intervals and the azimuth angle is determined by detecting the phase change of each received signal on the receiving side, the azimuth resolution depends on the number of transmitting antennas, so the required azimuth resolution can be freely adjusted. It can be realized and also VO
This has the effect of easily obtaining accuracy higher than the measurement accuracy of R.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る方位測定システムの構
成を示し、同図(a)は地上側装置の構成ブロック図、
同図(b)は移動体側装置の構成ブロック図、第2図は
送信タイムチャート、第3図は位相変化測定原理説明図
、第4図は位相演算部の構成ブロック図、第5図は高速
フーリエ変換器の動作説明図である。 1・・・・・・アンテナ群、 2・・・・・・アンテナ
切換回路、3・・・・・・送信機、 4・・・・・・給
電回路、 20・・・・・・受信アンテナ、 21・・
・・・・受信回路、 22・・・・・・信号分離回路、
 23・・・・・・位相同期発振器、 24・・・・・
・位相検波回路、 25・・・・・・速度計、 26・
・・・・・方位演算部。 代理人 弁理士  八 幡  義 博 4多夕りを艮檀J斐3【 (b) 本発明ガか位渕史システムの講2へ例 慶 / 閃 TO−一一巻ず梢KM五月(靭−1碗U稠44と翔ζj
【う弓5灰18Δハど右゛う16)T1〜TN−渕克籾
IJI (然亥訓濃期関〕yし惜タイム手ヤード 第 図 入 受楼了しデナカマナ分遠可にあ凱場多ト(a) 棲l目受 受信アンテナ イむ柁 アンデテカ\脛〈1鵡る踵魯 (b) 杷測定激PL説刈図 竿 閃
FIG. 1 shows the configuration of an azimuth measurement system according to an embodiment of the present invention, and FIG. 1(a) is a configuration block diagram of the ground side device;
Figure (b) is a block diagram of the configuration of the mobile unit side device, Figure 2 is a transmission time chart, Figure 3 is a diagram explaining the phase change measurement principle, Figure 4 is a block diagram of the configuration of the phase calculation section, and Figure 5 is a high speed FIG. 3 is an explanatory diagram of the operation of a Fourier transformer. DESCRIPTION OF SYMBOLS 1...Antenna group, 2...Antenna switching circuit, 3...Transmitter, 4...Power supply circuit, 20...Receiving antenna , 21...
...Receiving circuit, 22... Signal separation circuit,
23... Phase synchronized oscillator, 24...
・Phase detection circuit, 25...speed meter, 26.
...Direction calculation section. Agent Yoshihiro Yahata Patent attorney -1 Bowl U 44 and Sho ζj
[Archive 5 gray 18Δ right side 16) T1 ~ TN - Fuchi Katsumi IJI (naturally high training period) y and finished the time hand yard diagram entrance reception tower and Denakamana minutes far away in Kaiba Tato (a) I'm looking at the reception antenna, Andeteka\Shin〈1〈1〈Heel Lu (b) Loquat measurement Geki PL theory cutting rod flash

Claims (1)

【特許請求の範囲】[Claims]  地上側装置と天空を移動等する移動物体に搭載される
移動体側装置とで構成され;地上側装置が、複数の送信
アンテナを所定の配置態様で設定してなる送信アンテナ
群と;送信機の高周波信号出力を前記複数の送信アンテ
ナのそれぞれに所定の順序・時間間隔で切り換えて供給
するアンテナ切換回路と;前記複数の送信アンテナのそ
れぞれと前記アンテナ切換回路間を接続する線路であっ
て両者間の電気的距離が各送信アンテナごとに全て等し
くなるように調整された給電回路と;前記アンテナ切換
回路が、前記複数の送信アンテナ中の特定の送信アンテ
ナを選択している基準信号期間ではその期間の先頭付近
所定時間領域にて被変調高周波信号を発生し残余の時間
領域にて無変調高周波信号を発生し、前記特定送信アン
テナ以外の各送信アンテナを選択している各測定期間で
は前記無変調高周波信号と同一周波数の無変調高周波信
号を連続的に発生する前記送信機と;を備え、移動体側
装置は、受信アンテナと;受信アンテナの出力を増幅し
周波数変換する受信回路と;受信回路の出力を前記被変
調信号に基づき基準信号期間の信号と測定期間の信号と
に分離する信号分離回路と;前記基準信号期間の信号に
位相を合わせて発振しその基準信号期間の経過後も同一
周波数での発振を継続する位相同期発振器と;位相同期
発振器の出力に基づき前記各測定期間の信号を位相検波
する位相検波回路と;当該移動物体の速度を検出する速
度計と;既知の情報である前記送信アンテナ群の位置と
配置及び送信タイミングの情報、位相同期検波回路から
の位相情報と速度計からの速度情報に基づき受信アンテ
ナの送信アンテナ群に対する方位を計算する方位演算部
と;を備えていることを特徴とする方位測定システム。
It consists of a ground-side device and a mobile device mounted on a moving object that moves in the sky; an antenna switching circuit that switches and supplies a high frequency signal output to each of the plurality of transmitting antennas in a predetermined order and time interval; a line connecting each of the plurality of transmitting antennas and the antenna switching circuit; a feeding circuit adjusted so that the electrical distances are all equal for each transmitting antenna; and a reference signal period in which the antenna switching circuit selects a specific transmitting antenna among the plurality of transmitting antennas; A modulated high frequency signal is generated in a predetermined time domain near the beginning of the signal, an unmodulated high frequency signal is generated in the remaining time domain, and the unmodulated signal is generated during each measurement period in which each transmitting antenna other than the specific transmitting antenna is selected. the transmitter that continuously generates an unmodulated high-frequency signal having the same frequency as the high-frequency signal; the mobile device includes: a receiving antenna; a receiving circuit that amplifies and frequency converts the output of the receiving antenna; a signal separation circuit that separates the output into a reference signal period signal and a measurement period signal based on the modulated signal; oscillates in phase with the reference signal period signal and maintains the same frequency even after the reference signal period has elapsed; a phase-locked oscillator that continues oscillation; a phase detection circuit that detects the phase of the signal of each measurement period based on the output of the phase-locked oscillator; a speedometer that detects the speed of the moving object; known information. an azimuth calculation unit that calculates the azimuth of the receiving antenna with respect to the transmitting antenna group based on information on the position and arrangement of the transmitting antenna group and transmission timing, phase information from the phase synchronized detection circuit, and speed information from the speedometer; A direction measurement system characterized by:
JP12829290A 1990-05-18 1990-05-18 Measuring system of azimuth Pending JPH0424576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12829290A JPH0424576A (en) 1990-05-18 1990-05-18 Measuring system of azimuth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12829290A JPH0424576A (en) 1990-05-18 1990-05-18 Measuring system of azimuth

Publications (1)

Publication Number Publication Date
JPH0424576A true JPH0424576A (en) 1992-01-28

Family

ID=14981202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12829290A Pending JPH0424576A (en) 1990-05-18 1990-05-18 Measuring system of azimuth

Country Status (1)

Country Link
JP (1) JPH0424576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577273B2 (en) 2000-02-23 2003-06-10 Fujitsu Limited Radio transceiver and method of controlling direction of radio-wave emission

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577273B2 (en) 2000-02-23 2003-06-10 Fujitsu Limited Radio transceiver and method of controlling direction of radio-wave emission
US6864839B2 (en) 2000-02-23 2005-03-08 Fujitsu Limited Radio transceiver and method of controlling direction of radio-wave emission
US7026991B2 (en) 2000-02-23 2006-04-11 Fujitsu Limited Radio transceiver and method of controlling direction of radio-wave emission
US7391371B2 (en) 2000-02-23 2008-06-24 Fujitsu Limited Radio transceiver and method of controlling direction of radio-wave emission

Similar Documents

Publication Publication Date Title
AU617781B2 (en) Method and device in the antenna and receiving system of a radio theodolite
US5163004A (en) Position tracking system
CA1332458C (en) Distance and level measuring system
US4044353A (en) Microwave level gaging system
EP0138940B1 (en) Method and apparatus for measuring the distance to an object
FI83999C (en) FOERFARANDE OCH ANORDNING FOER MAETNING AV HASTIGHETEN AV ETT OBJEKT GENOM ATT UTNYTTJA DOPPLER -FOERSKJUTNINGEN AV ELEKTROMAGNETISK STRAOLNING.
US4599618A (en) Nearest return tracking in an FMCW system
FI73547C (en) Digital phase detector and phase detection method.
US4067014A (en) Correlation receiver for doppler microwave landing system
JP3532267B2 (en) Positioning system
US3852749A (en) Radiolocation system
US3365719A (en) System for simulating radar terrain returns
JPS6367868B2 (en)
Turhaner et al. Monopulse direction finding for linear frequency modulation based frequency diverse array
JPH0424576A (en) Measuring system of azimuth
JP4226462B2 (en) Angle detection device and tilt angle measurement device
US5107261A (en) Passive ranging system for radiosondes
US3800231A (en) Doppler tracker receiver
GB937491A (en) Improvements in or relating to a device for determining the direction of the ground speed of a moving body
JPH02304384A (en) Azimuth measuring system
US3688189A (en) Real-time initial atmospheric gradient measuring system
JP2919440B2 (en) Radar cross section measurement system
US3193827A (en) Doppler radar apparatus
JP2551301B2 (en) Phased array antenna monitoring equipment
RU2603971C1 (en) Method of measuring angles in phase multi-scale angular systems and device therefor