JPH0424018A - Electronic endoscope - Google Patents

Electronic endoscope

Info

Publication number
JPH0424018A
JPH0424018A JP2129210A JP12921090A JPH0424018A JP H0424018 A JPH0424018 A JP H0424018A JP 2129210 A JP2129210 A JP 2129210A JP 12921090 A JP12921090 A JP 12921090A JP H0424018 A JPH0424018 A JP H0424018A
Authority
JP
Japan
Prior art keywords
image sensor
solid
substrate
state image
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2129210A
Other languages
Japanese (ja)
Inventor
Seiji Matsumoto
征二 松本
Kiyoshi Inoue
清 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Optical Co Ltd filed Critical Fuji Photo Optical Co Ltd
Priority to JP2129210A priority Critical patent/JPH0424018A/en
Publication of JPH0424018A publication Critical patent/JPH0424018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To enable reduction in diameter of an inserting section with a smaller size of a solid image sensor substrate built into the tip of the inserting section by arranging an emitter resistance of an emitter follower circuit at another part of an endoscope to connect the emitter resistance to a transistor electrically. CONSTITUTION:An observation window 2 is formed at the tip of an inserting section 1 and a lens 3 is mounted on the observation window 2. A solid image sensor 10 is disposed at an imaging position of the lens 3 and is carried on a substrate 11. Then, among circuit component parts comprising the emitter follower circuit 14., a transistor element 15 is arranged on the solid image sensor substrate 11 and an emitter resistance R is disposed on a relay substrate 16 to connect both the parts electrically with an output signal transmission line 18. Thus, an output from the solid image sensor 10 can be transmitted without being degraded. This also enables the miniaturization of the solid image sensor substrate 11 built into the inserting section 1.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は、挿入部の先端に観察対象部の撮像な行うため
の撮像装置を内蔵した電子内視鏡に関するものである。 【従来の技術] 電子内視鏡は、体腔等の内部に挿入される挿λ部の先端
に形成した観察窓に、対物レンズを配設して、該対物レ
ンズにおける結像位置にCCD等の固体撮像素子を配設
する構成となっている。 ここで、内視鏡の体腔等の内部への挿入操作を円滑に行
い、しかもこのときにおける患者の苦痛軽減を図る等の
要請から、可及的に細径化する必要がある。とりわけ、
気管支鏡のように極めて細い部位に挿入されるものにあ
っては、挿入部の細径化は特に必要であり、たとえ1m
m以下というように、極めて僅かてであってもその直径
を細くすることは有利である。このような要請から、挿
入部の細径化について様々な試みかなされ、近年におい
ては、はぼ限界に近い状態まて細径化されるようになっ
てきている。 [発明が解決しようとする課題1 ところて、挿入部における内蔵物を見ると、挿入部の先
端部分には固体撮像素子を搭載する基板が内蔵されてい
る。この固体撮像素子基板Cよ、−般に、固体撮像素子
だけでなく、この固体撮像素子を駆動したり、またその
出力信号を増幅したりするために必要な各種の電気的な
機能素子を搭載したハイブリッド基板となっている。そ
して、この基板にはケーブルが接続されており、このケ
ーブルを本体操作部にまで延在させるようになっている
。これに対して、挿入部内における他の内蔵物は、ライ
トガイドにしろ、処置具挿通チャンネルにしろ、また送
気送水路にしろ、その挿入部内における占有断面積は、
その先端部分から本体操作部への連設部分に至るまての
間はぼ均一となっている。従って、挿入部全体のうち、
基板装着部分の充填率が最も高いものとなる。 そこで、この固体撮像素子基板には必要最小限の部品の
みを搭載し、該基板に格別搭載しなくとも良いものにあ
っては、内視鏡が接続される制御装置や、または比較的
スペースの確保が容易な本体操作部等に中継基板を内蔵
させて、この中継基板に搭載したり、あるいは制御装置
に接続されるコネクタ内に配設したセットアツプボート
 (固体撮像素子と制御装置との間の信号のマツチング
を取るための調整回路を搭載した基板)付近に搭載する
ようにすれば、固体撮像素子基板を小型化した分だけ挿
入部の細径化が可能となる。 このために、挿入部の先端に設けられる基板には、固体
撮像素子を搭載するのは当然として、これ以外の搭載部
品として、これ以外には、固体撮像素子の出力信号を増
幅するためのエミッタフォロワ回路のみに限定して、他
の部材は内視鏡が接続される制御装置や、セットアツプ
ボード、または比較的スペースの確保が容易な本体操作
部等に基板を内蔵させて、この基板に搭載させるように
することによりこの基板を小型化し、もって挿入部の縮
径を図るようにしている。 ここで、エミッタフォロワ回路は、トランジスタとエミ
ッタ抵抗とからなり (また、必要に応じて電源ライン
にはバイパスコンデンサが設けられる場合もある)、こ
の回路自体を固体撮像素子から離れた位置に置くと、ノ
イズの発生が著しく大きくなり、信号か劣化して、映像
の画質が極めて悪くなる。従って、該エミッタフォロワ
回路はこの挿入部の先端部分に設けられる基板から取り
外すことばてきない。しかしながら、この回路のうち、
エミッタ抵抗及びバイパスコンデンサは必ずしも固体撮
像素子の直近位置に置く必要はなく、ある程度距離を離
したとしても信号劣化等を惹起せしめるおそれはない。 本発明は叙上の点に着目してなされたものであって、そ
の目的とするところは、挿入部の先端に内蔵される固体
撮像素子基板を小型化することによって、挿入部の縮径
を可能ならしめるようにした電子内視鏡を提供すること
にある。 [課題を解決するための手段] 前述した目的を達成するために1本発明は、挿入部にお
ける先端部に固体撮像素子基板を配設して、該基板には
、固体撮像素子と、この固体撮像素子からの撮像出力を
増幅するエミッタフォロワ回路におけるトランジスタと
を搭載し、該トランジスタにおけるエミッタ抵抗を内視
鏡における他の部位に配設し、このエミッタ抵抗とトラ
ンジスタとの間を電気的に接続する構成としたことをそ
の特徴とするものである。 [作用] このように、エミッタ抵抗を固体撮像素子基板から取り
除くことによって、その装着スペース分だけ基板の寸法
を小さくすることかてきるようになり、挿入部の細径化
か図られる。ここで、気管支鏡等にあっては、挿入部の
長さは比較的短いものてあり、従って、例えば本体操作
部に中継基板を設けて、この中継基板にエミッタ抵抗を
装着し、この抵抗と挿入部の先端部分に装着した基板に
搭載させたトランジスタとを電気的に接続すればよい。 [実施例1 以下、本発明の実施例を図面に基づいて詳細に説明する
。 まず、第1図に内視鏡の挿入部の先端部分の断面を示す
。 同図から明らかなように、挿入部1の先端部には、観察
窓2が形成されており、該観察窓2にはレンズ3が装着
されている。そして、このレンズ3の結像位置には、C
CD等の固体撮像素子10が配置されている。該固体撮
像素子10は、基板11に搭載されており、その表面に
は保護ガラス12か配設されている。さらに、基板11
には配線ケーブル13が接続されており、該配線ケーブ
ル13は本体操作部にまて延在せしめられている。なお
、4は鉗子等の処置具を挿通させるための処置具挿通チ
ャンネルである。 次に、第2図に固体撮像素子基板11の外観を示し、第
3図にその回路構成を示す。 同図から明らかなように、固体撮像素子基板11には、
固体撮像素子10と、該固体撮像素子10の出力信号を
増幅するためのエミッタフォロワ回路14を構成するト
ランジスタ素子15か装着されている。このトランジス
タ素子15はチップ部品で形成されて、可及的に小型化
されている。そして、このエミッタフォロワ回路14に
おけるエミッタ抵抗Rは挿入部1の先端部分以外の、例
えば本体操作部(図示せず)に装着した中継基板16に
配設するように構成している。そして、この中継基板1
6と固体撮像素子基板11との間には、電源供給線17
と、8力信号伝送線18.固体撮像素子10の駆動信号
線19及びアース線20か接続されている。 このように、エミッタフォロワ回路14を構成する回路
構成部品のうち、固体撮像素子10の出力信号の劣化を
防止するために、該固体撮像素子10に極めて近い位置
に配設する必要のあるトランジスタ素子15を固体撮像
素子基板11に配設し、このトランジスタ素子15から
多少離れた位置に置いても、実用上においては格別問題
とはならないエミッタ抵抗Rを中継基板16に配置して
、両者の間を出力信号伝送線18て電気的に接続するよ
うに構成することによって、固体撮像素子10からの出
力信号を劣化させずに伝送することができ、しかも挿入
部1の先端に内蔵される固体撮像素子基板11を小型化
することができるようになる。この結果、該挿入部1の
細径化が図られる。特に、気管支鏡等のように、比較的
挿入部の長さが短く、また細径化に対する要請が極めて
大きいものである場合には、該挿入部1か僅かても細径
化てきることは重要な意義かあり、しかもトランジスタ
素子15とエミッタ抵抗Rとの間の配線は短くてよいか
ら、特に有利である。 なお、第4図に示したように、中継基板16′には、エ
ミッタフォロワ回路14′に安定化電源21やバイパス
コンデンサC等を装着することもてきる。また、中継基
板15.15’は本体操作部以外でも、挿入部1におけ
る基端部分等に配設するようにしてもよい。 [発明の効果1 以上説明したように、本発明は、挿入部の先端部分に設
けられる固体撮像素子基板には、固体撮像素子と、エミ
ッタフォロワ回路を構成するトランジスタのみを配置し
、該エミッタフォロワ回路におけるエミッタ抵抗等の素
子を、当該挿入部の先端位置以外に配置した中継基板に
配設するように構成したので、固体撮像素子から出力さ
れる信号の劣化を生じさせることなく、固体撮像素子基
板を小型化することができ、この結果、挿入部の細径化
か可能となる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electronic endoscope having an imaging device built into the distal end of an insertion section for imaging an observation target. [Prior Art] An electronic endoscope has an objective lens disposed in an observation window formed at the tip of an insertion section to be inserted into a body cavity, etc., and a CCD or the like at the imaging position of the objective lens. It has a configuration in which a solid-state image sensor is provided. Here, it is necessary to make the diameter of the endoscope as small as possible in order to smoothly insert the endoscope into a body cavity or the like and to alleviate patient's pain during this process. Above all,
For instruments that are inserted into extremely narrow areas, such as bronchoscopes, it is especially necessary to reduce the diameter of the insertion part, even if the diameter is 1 m.
It is advantageous to reduce the diameter even by a very small amount, such as less than m. In response to these demands, various attempts have been made to reduce the diameter of the insertion portion, and in recent years, the diameter has been reduced to almost the limit. [Problem to be Solved by the Invention 1] However, when looking at the built-in components of the insertion section, a substrate on which a solid-state image sensor is mounted is built into the distal end of the insertion section. This solid-state image sensor substrate C is generally equipped with not only a solid-state image sensor but also various electrical functional elements necessary to drive this solid-state image sensor and amplify its output signal. It is a hybrid board. A cable is connected to this board, and this cable is extended to the main body operation section. On the other hand, the cross-sectional area occupied by other built-in objects within the insertion section, whether it is a light guide, a treatment instrument insertion channel, or an air supply channel, is
The length from the tip to the part connected to the main body operating section is almost uniform. Therefore, out of the entire insertion section,
The filling rate of the board mounting area is the highest. Therefore, only the minimum necessary components are mounted on this solid-state image sensor board, and if there is no need to specifically mount them on the board, it is recommended to install a control device to which the endoscope is connected, or a control device that requires relatively little space. A relay board can be built into the main unit's operation section, which is easy to secure, and mounted on this relay board, or a setup board can be installed in the connector connected to the control device (between the solid-state image sensor and the control device). If it is mounted near the substrate (which is equipped with an adjustment circuit for matching signals), the diameter of the insertion portion can be reduced by the size of the solid-state image sensor substrate. For this reason, it goes without saying that a solid-state image sensor is mounted on the board provided at the tip of the insertion section, but in addition to this, there are also emitters for amplifying the output signal of the solid-state image sensor. Limiting the follower circuit only, other components are built into the control device to which the endoscope is connected, the setup board, or the main body operation section where it is relatively easy to secure space, and the board is mounted on this board. By mounting the board, the size of the board can be reduced, thereby reducing the diameter of the insertion portion. Here, the emitter follower circuit consists of a transistor and an emitter resistor (in addition, a bypass capacitor may be provided on the power supply line if necessary), and if this circuit itself is located away from the solid-state image sensor, , the generation of noise increases significantly, the signal deteriorates, and the image quality of the video becomes extremely poor. Therefore, the emitter follower circuit cannot be removed from the substrate provided at the distal end of the insertion portion. However, in this circuit,
The emitter resistor and the bypass capacitor do not necessarily need to be placed in the immediate vicinity of the solid-state image sensor, and even if they are placed a certain distance apart, there is no risk of signal deterioration or the like. The present invention has been made with attention to the above points, and its purpose is to reduce the diameter of the insertion tube by downsizing the solid-state image sensor board built into the tip of the insertion tube. An object of the present invention is to provide an electronic endoscope that makes it possible. [Means for Solving the Problems] In order to achieve the above-mentioned objects, one aspect of the present invention is to provide a solid-state image sensor substrate at the distal end portion of the insertion section, and the solid-state image sensor and the solid-state image sensor are mounted on the substrate. It is equipped with a transistor in an emitter follower circuit that amplifies the imaging output from the image sensor, the emitter resistor of the transistor is arranged in another part of the endoscope, and the emitter resistor and the transistor are electrically connected. Its feature is that it has a structure that allows [Function] In this way, by removing the emitter resistor from the solid-state image pickup device substrate, it becomes possible to reduce the size of the substrate by the amount of space for mounting the emitter resistor, and the diameter of the insertion portion can be reduced. Here, in the case of a bronchoscope, etc., the length of the insertion part is relatively short, and therefore, for example, a relay board is provided in the main body operation part, an emitter resistor is attached to this relay board, and this resistor and What is necessary is to electrically connect the transistor mounted on the substrate attached to the tip of the insertion portion. [Embodiment 1] Hereinafter, embodiments of the present invention will be described in detail based on the drawings. First, FIG. 1 shows a cross section of the distal end portion of the insertion section of the endoscope. As is clear from the figure, an observation window 2 is formed at the distal end of the insertion section 1, and a lens 3 is attached to the observation window 2. At the imaging position of this lens 3, C
A solid-state image sensor 10 such as a CD is arranged. The solid-state image sensor 10 is mounted on a substrate 11, and a protective glass 12 is disposed on the surface thereof. Furthermore, the substrate 11
A wiring cable 13 is connected to the main unit, and the wiring cable 13 extends to the main body operation section. Note that 4 is a treatment instrument insertion channel through which a treatment instrument such as forceps is inserted. Next, FIG. 2 shows the appearance of the solid-state image sensor substrate 11, and FIG. 3 shows its circuit configuration. As is clear from the figure, the solid-state image sensor substrate 11 includes
A solid-state image sensor 10 and a transistor element 15 forming an emitter follower circuit 14 for amplifying the output signal of the solid-state image sensor 10 are mounted. This transistor element 15 is formed of a chip component and is miniaturized as much as possible. The emitter resistor R in the emitter follower circuit 14 is arranged in a place other than the distal end of the insertion section 1, for example, on a relay board 16 attached to a main body operation section (not shown). And this relay board 1
6 and the solid-state image sensor substrate 11 is a power supply line 17.
and 8-power signal transmission line 18. A drive signal line 19 and a ground line 20 of the solid-state image sensor 10 are connected. In this way, among the circuit components constituting the emitter follower circuit 14, a transistor element that needs to be placed extremely close to the solid-state image sensor 10 in order to prevent the output signal of the solid-state image sensor 10 from deteriorating. 15 is disposed on the solid-state image sensor substrate 11, and an emitter resistor R, which does not pose a particular problem in practice even if placed at a position somewhat distant from the transistor element 15, is disposed on the relay substrate 16, and between the two. By configuring the output signal transmission line 18 to be electrically connected to the output signal transmission line 18, it is possible to transmit the output signal from the solid-state image sensor 10 without deteriorating it. The element substrate 11 can be downsized. As a result, the insertion portion 1 can be made smaller in diameter. In particular, when the length of the insertion section is relatively short, such as a bronchoscope, and there is an extremely strong demand for a smaller diameter, it is unlikely that the insertion section 1 will become smaller in diameter, even if only slightly. This is particularly advantageous because it has an important meaning and the wiring between the transistor element 15 and the emitter resistor R can be short. Incidentally, as shown in FIG. 4, a stabilized power supply 21, a bypass capacitor C, etc. can be attached to the emitter follower circuit 14' on the relay board 16'. Further, the relay board 15, 15' may be disposed at the proximal end portion of the insertion section 1, etc., other than the main body operation section. [Effects of the Invention 1] As explained above, the present invention provides a solid-state image sensor substrate provided at the distal end of the insertion portion, in which only a solid-state image sensor and a transistor constituting an emitter follower circuit are disposed, and the emitter follower Since the emitter resistor and other elements in the circuit are arranged on a relay board located other than the tip of the insertion section, the solid-state image sensor can be connected without deteriorating the signal output from the solid-state image sensor. The substrate can be made smaller, and as a result, the diameter of the insertion portion can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明の第1の実施例を示すもので
あって、第1図は電子内視鏡の挿入部における先端部分
の断面図、第2図は固体撮像素子基板の外観図、第3図
は撮像装置の回路構成図、第4図は本発明の第2の実施
例を示す撮像装置の回路構成図である。 1:挿入部、10:固体撮像素子、11:固体撮像素子
基板、13:配線ケーブル、14.14’  :エミッ
タフォロワ回路、15:トランジスタ素子、16,15
′:中継基板、17:電源供給線、18:出力信号伝送
線、19:駆動信号線、20:アース線、21:安定化
電源、R:抵抗、C:コンデンサ。 第 図 第 図
1 to 3 show a first embodiment of the present invention, in which FIG. 1 is a cross-sectional view of the distal end portion of the insertion section of an electronic endoscope, and FIG. 2 is a sectional view of a solid-state image sensor substrate. 3 is a circuit configuration diagram of an imaging device, and FIG. 4 is a circuit diagram of an imaging device showing a second embodiment of the present invention. 1: Insertion part, 10: Solid-state image sensor, 11: Solid-state image sensor board, 13: Wiring cable, 14.14': Emitter follower circuit, 15: Transistor element, 16, 15
': Relay board, 17: Power supply line, 18: Output signal transmission line, 19: Drive signal line, 20: Earth line, 21: Stabilizing power supply, R: Resistor, C: Capacitor. Figure Figure

Claims (2)

【特許請求の範囲】[Claims] (1)挿入部における先端部に固体撮像素子基板を配設
して、該基板には、固体撮像素子と、この固体撮像素子
からの撮像出力を増幅するエミッタフォロワ回路におけ
るトランジスタとを搭載し、該トランジスタにおけるエ
ミッタ抵抗を内視鏡における他の部位に配設し、このエ
ミッタ抵抗とトランジスタとの間を電気的に接続する構
成としたことを特徴とする電子内視鏡。
(1) A solid-state imaging device substrate is disposed at the tip of the insertion portion, and the substrate is equipped with a solid-state imaging device and a transistor in an emitter follower circuit that amplifies the imaging output from the solid-state imaging device, An electronic endoscope characterized in that the emitter resistor of the transistor is disposed in another part of the endoscope, and the emitter resistor and the transistor are electrically connected.
(2)本体操作部に中継基板を設け、該中継基板に前記
エミッタ抵抗と、前記固体撮像素子の出力用電源回路と
を搭載するようにしたことを特徴とする電子内視鏡。
(2) An electronic endoscope characterized in that a relay board is provided in the main body operation section, and the emitter resistor and the output power circuit for the solid-state image sensor are mounted on the relay board.
JP2129210A 1990-05-21 1990-05-21 Electronic endoscope Pending JPH0424018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2129210A JPH0424018A (en) 1990-05-21 1990-05-21 Electronic endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2129210A JPH0424018A (en) 1990-05-21 1990-05-21 Electronic endoscope

Publications (1)

Publication Number Publication Date
JPH0424018A true JPH0424018A (en) 1992-01-28

Family

ID=15003859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2129210A Pending JPH0424018A (en) 1990-05-21 1990-05-21 Electronic endoscope

Country Status (1)

Country Link
JP (1) JPH0424018A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7568834B2 (en) 2006-10-31 2009-08-04 Nagano Keiki Co., Ltd. Detector
WO2012169511A1 (en) * 2011-06-06 2012-12-13 株式会社フジクラ Electronic endoscope
JP2019037789A (en) * 2018-10-02 2019-03-14 パナソニックIpマネジメント株式会社 Endoscope
US10555664B2 (en) 2014-10-14 2020-02-11 Panasonic I-Pro Sensing Solutions Co., Ltd. Endoscope

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147132A (en) * 1986-12-10 1988-06-20 Toshiba Corp Endoscope
JPS63286130A (en) * 1987-05-19 1988-11-22 Olympus Optical Co Ltd Image pickup apparatus of endoscope
JPH01136627A (en) * 1987-11-25 1989-05-29 Olympus Optical Co Ltd Endoscopic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147132A (en) * 1986-12-10 1988-06-20 Toshiba Corp Endoscope
JPS63286130A (en) * 1987-05-19 1988-11-22 Olympus Optical Co Ltd Image pickup apparatus of endoscope
JPH01136627A (en) * 1987-11-25 1989-05-29 Olympus Optical Co Ltd Endoscopic apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7568834B2 (en) 2006-10-31 2009-08-04 Nagano Keiki Co., Ltd. Detector
WO2012169511A1 (en) * 2011-06-06 2012-12-13 株式会社フジクラ Electronic endoscope
JPWO2012169511A1 (en) * 2011-06-06 2015-02-23 株式会社フジクラ Electronic endoscope
US10555664B2 (en) 2014-10-14 2020-02-11 Panasonic I-Pro Sensing Solutions Co., Ltd. Endoscope
JP2019037789A (en) * 2018-10-02 2019-03-14 パナソニックIpマネジメント株式会社 Endoscope

Similar Documents

Publication Publication Date Title
US5454366A (en) Endoscope distal end with folded circuit board
US4989586A (en) Endoscope having a solid-state image pickup device
US20050259487A1 (en) In vivo imaging device with a small cross sectional area
KR20090121243A (en) Electronic endoscope apparatus
JPH0424018A (en) Electronic endoscope
JPH02257926A (en) Endoscope
JP2005160925A (en) Electronic endoscope apparatus
JPH09173287A (en) Electronic endoscope
JP2684613B2 (en) Mounting structure for solid-state image sensor for electronic endoscope
JPS6192080A (en) Endoscope of electronic image pickup type
JP2000201884A (en) Endoscope
JP2716917B2 (en) Electronic endoscope device
JPS61126517A (en) Endoscope
JPS63222732A (en) Electronic endoscope
JP2660130B2 (en) Electronic endoscope
JP3230801B2 (en) Endoscope
JP5340854B2 (en) Endoscope, endoscope device
JP3510277B2 (en) Imaging unit
JPH05269081A (en) Photographing unit for endoscope and assembling method for endoscope
JP2816237B2 (en) Solid-state imaging device
JPH02299629A (en) Imaging apparatus
JP3380140B2 (en) Endoscope objective drive mechanism
JP4197796B2 (en) Electronic endoscope
WO2021156949A1 (en) Endoscopic device
JP2565903B2 (en) Endoscopic imaging device