JPH0423686B2 - - Google Patents

Info

Publication number
JPH0423686B2
JPH0423686B2 JP25152384A JP25152384A JPH0423686B2 JP H0423686 B2 JPH0423686 B2 JP H0423686B2 JP 25152384 A JP25152384 A JP 25152384A JP 25152384 A JP25152384 A JP 25152384A JP H0423686 B2 JPH0423686 B2 JP H0423686B2
Authority
JP
Japan
Prior art keywords
steel
cell
cells
base body
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25152384A
Other languages
Japanese (ja)
Other versions
JPS61130512A (en
Inventor
Akihisa Kato
Seiji Wakamatsu
Fukuhiro Nishihira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP25152384A priority Critical patent/JPS61130512A/en
Publication of JPS61130512A publication Critical patent/JPS61130512A/en
Publication of JPH0423686B2 publication Critical patent/JPH0423686B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Revetment (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋼セルを用いた埋め立て地等の護岸
建設工法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a construction method for revetment of reclaimed land, etc. using steel cells.

(従来の技術) 埋め立て地等の護岸の急速施工工法としては、
一般にセル工法あるいはケーソン工法等が知られ
ている。このセル工法は海底に順次並べて立設し
た円筒状の鋼セルの相互間をアークで連結し、各
鋼セルおよびアーク内に中詰土砂を充填してセル
護岸となすものである。ここで、この鋼セルには
1枚の鋼板をもつて円筒状に形成した鋼板セル、
あるいは多数の直線鋼矢板を互いに連結して円筒
上に組み立てた鋼矢板セル等が主として用いられ
ていた。
(Conventional technology) As a rapid construction method for revetment on reclaimed land, etc.
Generally, the cell method or caisson method is known. In this cell construction method, cylindrical steel cells are erected sequentially on the seabed and connected by arcs, and each steel cell and arc is filled with earth and sand to form a cell revetment. Here, this steel cell includes a steel plate cell formed into a cylindrical shape with one steel plate,
Alternatively, steel sheet pile cells, etc., which are made by connecting a large number of straight steel sheet piles together and assembling them into a cylinder, have been mainly used.

従来、この種の鋼セルを建設地点に立設する場
合、先ず、鋼セルを陸上にて建造し、これを台船
に載せるか大形のフローテイングクレーンで吊上
げて建設地点まで運搬し、打設するのが一般的で
あつた(例えば、特開昭58−86206号)、特開昭58
−86207号等)。
Conventionally, when erecting this type of steel cell at a construction site, the steel cell was first built on land, then placed on a barge or hoisted by a large floating crane, transported to the construction site, and then erected. (For example, JP-A-58-86206), JP-A-58-86206
−86207, etc.)

(発明が解決しようとする問題点) しかしながら、この種の工法においてはフロー
テイングクレーン等を使用するため、それにかか
る経費が高く、また、この経費を節減するために
鋼セルを海上に浮べて曳航する方法(例えば、特
開昭58−110724号等)も提案されてはいるが、い
ずれにしてもセル形式であるたわに設置可能な水
深に限界があつた。即ち、沖合人工島等の大水深
護岸に対応するためには、安定性を得るため鋼セ
ルの半径を大きくする必要があるが、半径が10m
を越すような大きな鋼セルはその形状が不安定な
ものとなり、単独では扱いにくく、さらにセル殻
に作用する力はその半径の増加と水深に比例して
増加するため、施工性と経済性の両面から限界が
あつた。
(Problems to be solved by the invention) However, since this type of construction method uses floating cranes, etc., the costs involved are high, and in order to reduce this cost, the steel cells are floated on the sea and towed. Although methods have been proposed (for example, Japanese Patent Application Laid-Open No. 110724/1983), there is a limit to the depth of water that can be installed in the cell type. In other words, in order to cope with deep-water seawalls such as offshore artificial islands, it is necessary to increase the radius of the steel cells in order to obtain stability, but the radius is 10 m.
A large steel cell that exceeds the radius is unstable in shape and difficult to handle alone, and the force acting on the cell shell increases in proportion to the radius and water depth, making it difficult to construct and economically. There were limits on both sides.

本発明は、これらの点に着目してなされたもの
で、施工が容易で大水深護岸にも対応でき、経済
的にも有利なセル護岸の建設工法を提供せんとす
るものである。
The present invention has been made with attention to these points, and it is an object of the present invention to provide a construction method for a cell revetment that is easy to construct, can be applied to deep-water revetments, and is economically advantageous.

(問題点を解決するための手段) そのため、本発明では、鋼板を樋状に曲げてそ
の断面形状が、上面が平坦で底面が開口した半割
小判状の鋼殻を製作し、この鋼殻の底面、両端面
等の鋼板を用いていない部分を引張体で補強され
た高強度膜体で覆つて密閉してこの鋼殻内に気室
を形成してこれを基体とし、この基体の鋼殻上面
に複数の鋼セルを所定の間隔で立設固着するとと
もに各鋼セルの間を夫々対向配置された1対のア
ークで接続して構造体を建造し、この構造体を前
記基体の浮力を利用して護岸建設地点まで曳航し
て行き、護岸建設地点まで前記構造体の基体内に
水の注入等によるバラスト調整にを行つてこれを
沈設し、次いで前記基体内に硬化剤、添加剤等が
混合された中詰材を打設し、その後鋼セルおよび
アーク内に中詰土砂を充填してセル護岸の単位ブ
ロツクとしている。
(Means for Solving the Problem) Therefore, in the present invention, a steel shell is produced by bending a steel plate into a gutter shape and having a cross-sectional shape of a half oval shape with a flat top surface and an open bottom surface. The parts where steel plates are not used, such as the bottom and both end faces, are covered and sealed with a high-strength membrane reinforced with a tensile material to form an air chamber in this steel shell, which is used as a base, and the steel of this base is A structure is constructed by erecting and fixing a plurality of steel cells at predetermined intervals on the upper surface of the shell, and connecting each steel cell with a pair of arcs placed opposite each other. The structure is towed to the revetment construction site using a ballast, the ballast is adjusted by injecting water into the base of the structure, and the ballast is then deposited. After that, the steel cells and arcs are filled with filling material to form a unit block of cell revetment.

(作 用) このような本発明のセル護岸の建設工法では、
高強度膜体によつて気室の形成された基体の鋼殻
上面に複数の鋼セルを所定の間隔で立設固着する
とともに各鋼セルの相互間を夫々対向配置された
1対のアークで接続して構造体を建造しているた
め、夫々が互いに補強しあつて単独では比較的不
安定な鋼セル等も扱い易いしつかりしたものとな
り、また、高強度膜体で密閉形成された基体の気
室はフロートとして作用するため、大形のフロー
テイングクレーン等を用いることなく容易に護岸
建設地点まで曳航して行くことができ、ここで注
水等の基体内のバラスト調整を行つて構造体を沈
設してその基体内に中詰材を打設し、その後鋼セ
ルおよびアーク内に中詰土砂を充填することで、
大水深護岸への対応も容易で、施工性および経済
性にも優れた安定なセル護岸を構築するものであ
る。
(Function) In the cell revetment construction method of the present invention,
A plurality of steel cells are erected and fixed at predetermined intervals on the upper surface of the steel shell of the base body in which an air chamber is formed by a high-strength membrane, and a pair of arcs placed opposite each other is used to connect each steel cell to each other. Because the structure is constructed by connecting each other, each cell reinforces the other, making it easy to handle steel cells that are relatively unstable when used alone.In addition, the base is sealed with a high-strength membrane. Since the air chamber acts as a float, it can be easily towed to the seawall construction site without using a large floating crane, etc. Here, the ballast inside the base is adjusted by water injection, etc., and the structure is constructed. By sinking a steel cell, placing filling material inside the base, and then filling the steel cell and arc with filling earth,
The aim is to construct a stable cell revetment that is easily adaptable to deep-water revetments and has excellent construction and economical efficiency.

(実施例) 次に、本発明の実施の一例を図面を参照しなが
ら説明する。第1図は本発明に係るセル護岸の建
設工法に用いられる構造体の一例を示す斜視図で
ある。同図において、3は基体、5は鋼セル、7
はアーク、9は連結片であり、前記構造体1はこ
れらによつて構成されている。この基体3は、鋼
板を曲加工して、例えば高さ8m、幅30m、長さ
80m程度の断面形状が半割小判型の逆樋状に形成
された鋼板よりなり、底面が開口し、上面が平坦
部となつている鋼殻11と、この鋼殻11の鋼板
が用いられていない底面開口および両端面を覆つ
て密閉し、鋼殻11内に気室を形成する高強度膜
体13とで構成され、この高強度膜体13を補強
するために鋼殻11の底面開口には護岸の建設さ
れる護岸法線方向とこれと直角な方向に所定間隔
をおいて引張材15が張設されている。また、さ
らに鋼殻11の補強のために鋼殻11の内面には
多数のステイフナー17が設けられている。
(Example) Next, an example of implementation of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an example of a structure used in the cell revetment construction method according to the present invention. In the figure, 3 is a base, 5 is a steel cell, and 7
is an arc, and 9 is a connecting piece, and the structure 1 is constituted by these. This base body 3 is made by bending a steel plate and has a height of 8 m, a width of 30 m, and a length, for example.
The steel shell 11 is made of a steel plate with a cross-sectional shape of about 80 m in the shape of a half-split oval inverted gutter, and has an open bottom and a flat top surface, and the steel plate of this steel shell 11 is used. A high-strength membrane body 13 covers and seals both end faces and forms an air chamber within the steel shell 11.In order to reinforce this high-strength membrane body 13, a bottom opening of the steel shell 11 is Tensile members 15 are stretched at predetermined intervals in the normal direction of the seawall where the seawall is constructed and in the direction perpendicular to this. Further, a large number of stiffeners 17 are provided on the inner surface of the steel shell 11 to further strengthen the steel shell 11.

前記鋼セル5は、1枚の鋼板を巻いて接合部を
溶接し、例えば半径10m、高さ22m程度の円筒状
に形成したものであつて前記基体3の鋼殻11の
平坦な上面に所定の間隔で3本立設され、溶接に
よつて固着される。また、前記アーク7は前記鋼
セル5の相互間に、夫々の側辺が各鋼セル5に接
する如く1対ずつ対向して配置されていて、この
両側辺は夫々鋼セル5に溶接されるとともに、下
辺も基体3の鋼殻11上面に溶接される。さら
に、連結片9は例えば縦方向に半割された直線鋼
矢板よりなり、両端の鋼セル5に前記アーク7と
同様にその半割面が溶接されている。これら構造
体1の建造は例えば乾ドツク上で行われる。
The steel cell 5 is formed by winding a steel plate and welding the joints to form a cylindrical shape with a radius of, for example, 10 m and a height of about 22 m. Three of them are erected at intervals of , and are fixed by welding. Further, the arcs 7 are arranged in pairs between the steel cells 5 so that each side is in contact with each steel cell 5, and each pair of the arcs 7 is welded to the steel cell 5. At the same time, the lower side is also welded to the upper surface of the steel shell 11 of the base body 3. Furthermore, the connecting piece 9 is made of, for example, a straight steel sheet pile cut in half in the vertical direction, and the half-split surfaces are welded to the steel cells 5 at both ends in the same manner as the arc 7. The construction of these structures 1 takes place, for example, on a dry dock.

乾ドツク上で建造された構造体1は基体3を高
強度膜体13で密閉して気室を形成し、この基体
3をフロートとして海上に浮べられ、曳航で護岸
建設地点まで曳航されて行く。第2図はその時の
状態を示す構造体1の断面図であり、高強度膜体
13は水圧によつて内側に湾曲している。護岸建
設地点に到着した構造体1は基体3内のバラスト
調整によつて徐々に沈められてゆく。このバラス
ト調整は、例えばポンプ等によつて基体3内に水
を徐々に注入してゆくものであり、この水の注入
は、沈んでゆく構造体1の姿勢、位置等を制御調
整しながら慎重に行い、構造体1を護岸建設地点
に予め築造しておいたマウンド21の上に正確に
沈設する。
The structure 1 built on a dry dock has a base body 3 sealed with a high-strength membrane 13 to form an air chamber, is floated on the sea using this base body 3 as a float, and is towed to a seawall construction site. . FIG. 2 is a cross-sectional view of the structure 1 showing the state at that time, and the high-strength membrane 13 is curved inward by water pressure. The structure 1 that has arrived at the seawall construction site is gradually sunk by adjusting the ballast inside the base 3. This ballast adjustment involves gradually injecting water into the base 3 using, for example, a pump, and this water injection is done carefully while controlling and adjusting the attitude, position, etc. of the sinking structure 1. Then, the structure 1 is accurately deposited on the mound 21 built in advance at the seawall construction site.

次に、その基体3の内部に中詰材23が注入打
設される。この中詰材23は土砂等にセメント、
石灰、スラグ、特殊セメント等の硬化剤と、この
硬化剤との組合せで早強性を有し、併せて耐塩
性、流動性を持つ添加剤とを混合したものであ
る。ここで、基体3の底面はフレキシブルな高強
度膜体13となつているため、中詰材23の打設
によつて高強度膜体13がマウンド21の凹凸に
従つて屈曲し、構築されたセル護岸の滑動に対す
る抵抗が増すことになる。次に、鋼セル5内およ
び対向するアークで囲まれた空間内に中詰土砂2
5を充填し、セル護岸の単位ブロツクとする。第
3図はその時の状態を示す構造体1の断面図であ
る。
Next, the filling material 23 is injected into the inside of the base body 3. This filling material 23 is made of earth and sand, cement, etc.
It is a mixture of a hardening agent such as lime, slag, or special cement, and an additive that has early strength in combination with this hardening agent, and also has salt resistance and fluidity. Here, since the bottom surface of the base body 3 is a flexible high-strength membrane body 13, the high-strength membrane body 13 is bent according to the unevenness of the mound 21 by casting the filling material 23, and the construction is completed. The resistance to sliding of the cell revetment will increase. Next, fill the earth and sand 2 inside the steel cell 5 and the space surrounded by the opposing arc.
5 to form a unit block of cell revetment. FIG. 3 is a sectional view of the structure 1 showing the state at that time.

以下、これと同様な工程で第2の単位ブロツク
を第1の単位ブロツクに隣接させて沈設し、この
両者の連結片9を直線鋼矢板等を用いて連結し、
出来た空間内に中詰土砂25を充填する。以下、
順次前記工程により単位ブロツクを沈設連結して
ゆくことでセル護岸が構築される。
Thereafter, in a process similar to this, a second unit block is placed adjacent to the first unit block, and the connecting pieces 9 of both are connected using a straight steel sheet pile or the like.
The created space is filled with filler earth and sand 25. below,
A cell revetment is constructed by sequentially sinking and connecting unit blocks through the above steps.

以上図示の実施例に従つて詳細に説明したが本
発明はこれにのみ限定されるものではない。例え
ば、構造体1の大きさはセル護岸を構築する海域
の深さその他の環境条件に従つて適宜変更される
ものであり、基体3上に立設固着される鋼セル5
の本数も条件に合わせて決定すればよい。また、
比較的小規模なものであれば、鋼殻11の補強用
のステイフナー17を省略することも可能であ
り、この鋼殻11の開口部も両端部を鋼板で閉じ
て底面のみとしてもよい。さらに、海底の地質に
よつてはとくにマウンド21を築造せず、セル護
岸を海底に直接構築してもよい。また、基体3内
に充填する中詰材23としては、特に強度の要求
される場合には、鉄筋を入れたコンクリート等の
使用も考えられ、それほど強い強度が要求されな
い場合には、硬化剤、添加剤等の混合を省略して
土砂だけとしてもよい。
Although the present invention has been described in detail in accordance with the illustrated embodiments, the present invention is not limited thereto. For example, the size of the structure 1 is changed as appropriate depending on the depth of the sea area where the cell revetment is constructed and other environmental conditions.
The number of lines may also be determined according to the conditions. Also,
If it is a relatively small-scale device, the stiffener 17 for reinforcing the steel shell 11 can be omitted, and both ends of the opening of the steel shell 11 may be closed with steel plates and only the bottom surface may be closed. Furthermore, depending on the geology of the ocean floor, the cell revetment may be constructed directly on the ocean floor without constructing the mound 21. In addition, as the filling material 23 to be filled into the base body 3, if particularly strong strength is required, concrete with reinforcing bars may be used, and if so strong strength is not required, hardening agent, It is also possible to omit the mixing of additives and the like and use only earth and sand.

(発明の効果) 本発明のセル護岸の建設工法によれば、基体の
鋼殻上面に複数の鋼セルを所定の間隔で立設固着
するとともに各鋼セルの相互間を夫々対向配置さ
れた1対のアークで接続して構造体を建造してい
るため、夫々が互いに補強しあつて単独では比較
的不安定な鋼セル等もしつかりしたものとなり、
単独ではその形状が不安定なものとなつて扱いに
くい半径が10mを越すような大きな鋼セルでも容
易に沈設することが可能となるため、大水深護岸
の施工にも容易に対応できるようになる。さら
に、本発明では、鋼板を樋状に曲げて断面形状が
上面が平坦で底面が開口した半割小判状の鋼殻を
製作し、この鋼殻の底面、両端面等の鋼板を用い
ていない部分を高強度膜体で覆つて密閉してこの
鋼殻内に気室を形成してこれを基体としているた
め、この基体がフロートとして利用でき、大形の
フローテイングクレーン等を用いることなく容易
に護岸建設地点まで曳航して行くことができ、従
つて、施工が容易で大水深護岸にも対応でき、経
済的にも有利なセル護岸の建設工法が容易に実現
できるばかりか、セル護岸構築時には基体内に中
詰材が充填されるため、中詰土砂が充填されて極
めて重くなつた大型の鋼セル、アーク等であつて
も、容易にその重量を支えることができる等の効
果が得られる。
(Effects of the Invention) According to the construction method of the cell revetment of the present invention, a plurality of steel cells are erected and fixed at predetermined intervals on the upper surface of the steel shell of the base, and the steel cells are arranged oppositely to each other. Since the structure is constructed by connecting with a pair of arcs, each of them reinforces each other, and even steel cells, which are relatively unstable when used alone, become strong.
Even large steel cells with a radius exceeding 10 m, which would be difficult to handle if used alone, can be easily sunk, making it easier to construct deep-water seawalls. . Furthermore, in the present invention, a steel shell is made by bending a steel plate into a gutter shape and has a cross-sectional shape of a half oval shape with a flat top and an open bottom, and no steel plates are used for the bottom or both end faces of the steel shell. Since the steel shell is covered with a high-strength membrane and sealed to form an air chamber, which serves as the base, this base can be used as a float, without using a large floating crane, etc. The cell revetment can be towed to the revetment construction site at any time, and therefore, the cell revetment construction method is easy to construct and can be applied to deep water revetments, and is economically advantageous. Sometimes the base is filled with filler material, so even if it is a large steel cell, arc, etc. that is filled with filler earth and sand and becomes extremely heavy, it can easily support the weight. It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るセル護岸の建設工法に用
いられる構造体の一例を示す斜視図であり、第2
図は構造体の曳航時の状態を示す断面図、第3図
は単位ブロツクとして沈設された構造体の状態を
示す断面図である。 1……構造体、3……基体、5……鋼セル、7
……アーク、9……連結片、11……鋼殻、13
……高強度膜体、15……引張材。
FIG. 1 is a perspective view showing an example of a structure used in the cell revetment construction method according to the present invention;
The figure is a sectional view showing the state of the structure when it is towed, and FIG. 3 is a sectional view showing the state of the structure sunk as a unit block. 1...Structure, 3...Base, 5...Steel cell, 7
... Arc, 9 ... Connection piece, 11 ... Steel shell, 13
... High strength membrane body, 15 ... Tensile material.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼板が樋状に曲げられて断面形状が上面が平
坦で底面が開口した半割小判状を呈する鋼殻と、
この鋼殻の鋼板を用いていない面を覆つて密閉
し、鋼殻内に気室を形成する高強度膜体と、前記
鋼殻の底面開口に所定間隔をおいて張設され、前
記高強度膜体を補強する引張材によつて構成され
る基体の前記鋼殻上面に、複数の鋼セルを所定の
間隔で立設固着するとともに各鋼セルの間を夫々
対向配置された1対のアークで接続して構造体を
建造し、前記基体の浮力を利用してこの構造体を
護岸建設地点まで曳航して行き、前記基体内のバ
ラスト調整を行つて護岸建設地点に前記構造体を
沈設し、次いで前記基体内に中詰材を打設してそ
の後鋼セル内およびアークと鋼セルで囲まれる空
間内に中詰土砂を充填することを特徴とするセル
護岸の建設工法。
1. A steel shell formed by bending a steel plate into a gutter shape and having a cross-sectional shape in the form of a half oval with a flat top and an open bottom;
A high-strength membrane body that covers and seals the surface of the steel shell where the steel plate is not used and forms an air chamber within the steel shell, and A plurality of steel cells are erected and fixed at predetermined intervals on the upper surface of the steel shell of the base body made of a tensile material reinforcing the membrane, and a pair of arcs are arranged facing each other between each steel cell. The structure is constructed by connecting the base body with a buoyant force, and this structure is towed to a seawall construction site using the buoyancy of the base body, and the ballast inside the base body is adjusted and the structure is sunk at the seawall construction site. 2. A construction method for a cell revetment, characterized in that a filling material is then cast into the base, and then filling earth is filled into the steel cells and the space surrounded by the arc and the steel cells.
JP25152384A 1984-11-30 1984-11-30 Construction work of cell revetment Granted JPS61130512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25152384A JPS61130512A (en) 1984-11-30 1984-11-30 Construction work of cell revetment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25152384A JPS61130512A (en) 1984-11-30 1984-11-30 Construction work of cell revetment

Publications (2)

Publication Number Publication Date
JPS61130512A JPS61130512A (en) 1986-06-18
JPH0423686B2 true JPH0423686B2 (en) 1992-04-23

Family

ID=17224075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25152384A Granted JPS61130512A (en) 1984-11-30 1984-11-30 Construction work of cell revetment

Country Status (1)

Country Link
JP (1) JPS61130512A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2252741B1 (en) * 2008-02-05 2016-12-14 Shoreform Limited Sediment accretion method
JP7083656B2 (en) * 2018-02-08 2022-06-13 日立造船株式会社 Installation method of steel plate cell and steel plate cell

Also Published As

Publication number Publication date
JPS61130512A (en) 1986-06-18

Similar Documents

Publication Publication Date Title
CN100535264C (en) Steel boxed cofferdam and recovery method thereof
US3613382A (en) Sea wall construction
JPH09268562A (en) Dry working method and working case employed therefor
JPH0423686B2 (en)
JP2000265450A (en) Artificial ground consisting of porous housing and construction method therefor
JPH02120418A (en) Foundation construction method for marine construction
CA1205642A (en) Marine structure constructing method
CN214657199U (en) Super hectometer deep water is striden sea bridge caisson foundation structure
KR100386973B1 (en) The sea floor base concrete construction and method of building the same
JP2676779B2 (en) Cylindrical caisson
JPH067045Y2 (en) Structure of dam
JP2556380B2 (en) Construction method of revetment structure
JPH05311627A (en) Foundation structure for large-scale artificial island
JPH04297619A (en) Construction of underwater foundation
JPH0415782Y2 (en)
JPS58160420A (en) Levee body using king post
Dismuke Retaining structures and excavations
JP2655322B2 (en) Construction method of revetment structure
JPH06264424A (en) Column-shaped or column row-shaped water area structure and construction method thereof
JPH0577330U (en) Cylindrical caisson joint
JP2519299B2 (en) Underwater civil engineering structure and its construction method
JPH06257163A (en) Droughty pontoon for constructing shallow foundation
JPH0345179B2 (en)
CN112878357A (en) Super-hectometer deepwater sea-crossing bridge caisson foundation structure and construction method
Tsinker Gravity-Type Quay Walls

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees