JPH0423596B2 - - Google Patents

Info

Publication number
JPH0423596B2
JPH0423596B2 JP3964588A JP3964588A JPH0423596B2 JP H0423596 B2 JPH0423596 B2 JP H0423596B2 JP 3964588 A JP3964588 A JP 3964588A JP 3964588 A JP3964588 A JP 3964588A JP H0423596 B2 JPH0423596 B2 JP H0423596B2
Authority
JP
Japan
Prior art keywords
water
wastewater
reaction tower
string
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3964588A
Other languages
Japanese (ja)
Other versions
JPH01215397A (en
Inventor
Kazuo Takeishi
Akio Arai
Minoru Kodama
Seiji Ootsuka
Koichi Yamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP63039645A priority Critical patent/JPH01215397A/en
Publication of JPH01215397A publication Critical patent/JPH01215397A/en
Publication of JPH0423596B2 publication Critical patent/JPH0423596B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は廃水処理用の嫌気性水処理装置に関
し、とくに担体における閉塞を防止すると共にそ
の閉塞の検出を容易にした嫌気性水処理装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an anaerobic water treatment device for wastewater treatment, and more particularly to an anaerobic water treatment device that prevents blockage in a carrier and facilitates detection of the blockage.

従来の技術 嫌気性微生物を利用して廃水処理をする嫌気性
処理は、処理に要するエネルギーの面で極めて経
済的である。即ち、好気性処理では1トンの有機
性汚濁物質CODcr(重クロム酸カリウム法による
値)を除去するのに曝気に1100kWhのエネルギ
ーを費やして400−600Kgの余剰汚泥を生成すると
いわれているのに対し、嫌気性処理では同じ有機
性汚濁物質処理において余剰汚泥を20−150Kg程
度にまで低減するだけでなく約1.1x107Btu(約
3200kWh)のメタンエネルギーの回収を可能に
する。
BACKGROUND ART Anaerobic treatment, which uses anaerobic microorganisms to treat wastewater, is extremely economical in terms of the energy required for treatment. In other words, it is said that in aerobic treatment, it takes 1,100 kWh of energy for aeration to remove 1 ton of organic pollutant CODcr (value determined by the potassium dichromate method) and produces 400-600 kg of surplus sludge. On the other hand, anaerobic treatment not only reduces excess sludge to about 20-150 kg in the same organic pollutant treatment, but also reduces excess sludge to about 1.1x10 7 Btu (approx.
3,200kWh) of methane energy can be recovered.

嫌気性処理には、有機性汚濁物質CODcr濃度
が3000mg/以下の中程度以下である場合に、メ
タン生成菌の増殖速度が遅く、菌体収率が低く、
しかも増殖菌体のウオツシユアウトが生ずる等の
問題があるため、その実用化が困難視されてき
た。
For anaerobic treatment, when the organic pollutant CODcr concentration is below 3000mg/middle, the growth rate of methanogens is slow and the bacterial yield is low.
In addition, there are problems such as washing out of the proliferating bacterial cells, which has made it difficult to put it into practical use.

水処理装置で使用される菌体は生体触媒とも呼
ばれ、水処理装置内における菌体の地位は通常の
化学反応器内における触媒のそれになぞらえられ
る。従つて、水処理装置内の菌体の高濃度化に成
功すれば、その反応速度即ち処理速度の向上が期
待できる。最近では、この観点から汚泥滞留時間
SRTを液滞留時間HRTとは独立に制御して菌体
を高濃度に保持することにより、嫌気性処理の長
所を生かした廃水処理方法がいくつか開発され、
嫌気性濾床法、嫌気性流動床法、嫌気性回転円板
法等と呼ばれ実用化され始めている。
Bacterial cells used in water treatment equipment are also called biocatalysts, and the position of bacterial cells in water treatment equipment can be compared to that of a catalyst in a normal chemical reactor. Therefore, if we succeed in increasing the concentration of bacterial cells in the water treatment equipment, we can expect an improvement in the reaction rate, that is, the treatment rate. Recently, from this point of view, sludge retention time has been
Several wastewater treatment methods have been developed that take advantage of the advantages of anaerobic treatment by controlling SRT independently of liquid residence time HRT and maintaining bacterial cells at a high concentration.
These methods are called anaerobic filter bed method, anaerobic fluidized bed method, anaerobic rotating disk method, etc., and are beginning to be put into practical use.

第12図は、廃水1を嫌気性処理するための基
本的な従来法における反応槽2を示す。反応槽2
内の濾床3における菌体を高濃度に維持するた
め、第13図に示される各種担体を用いて濾床3
を構成し、菌体をそれら担体の表面や担体間隙に
付着・補足その他の手段によつて保持させる。濾
床3で浄化された処理水4は槽外へ排出され、嫌
気性処理中に発生した処理ガス5が図示例では反
応槽2の頂部から排出される。
FIG. 12 shows a reaction tank 2 in a basic conventional method for anaerobically treating wastewater 1. Reaction tank 2
In order to maintain a high concentration of bacterial cells in the filter bed 3 inside the filter bed 3, various carriers shown in FIG.
The microbial cells are retained on the surface of the carrier or in the gaps between the carriers by adhering to, capturing, or other means. The treated water 4 purified by the filter bed 3 is discharged to the outside of the tank, and the treated gas 5 generated during the anaerobic treatment is discharged from the top of the reaction tank 2 in the illustrated example.

嫌気性処理に使用される担体を示す第13図に
於て、aはビオレツト65(商品名)、bはリングレ
ース(商品名)、cは板状濾材のヒシパツキン
(商品名)及びクレオパツキン(商品名)、dはハ
ニカム状担体、eは自然礫、fはトリカルネツト
(商品名)、gはレユース(商品名)、hはヘチマ
ロン(商品名)である。
In Figure 13, which shows the carriers used in anaerobic treatment, a is Violet 65 (trade name), b is Ringlace (trade name), and c is plate-shaped filter media Hishipatsukin (trade name) and Cleopatzkin (trade name). (trade name), d is honeycomb-shaped carrier, e is natural gravel, f is Tricarnet (trade name), g is Reuse (trade name), and h is Hechimaron (trade name).

これらの担体は、各担体の材質・形状に応じて
反応槽2の中に、ランダム充填、流れと直角方向
充填、流れ方向充填、流れ方向斜め充填などの方
式によつて装填され、濾床3を形成する。嫌気性
処理技術の現段階では、担体の材料・形状の選択
や反応槽内充填方法の最適化について不明な点が
多く、研究開発の努力が続けられている。
These carriers are loaded into the reaction tank 2 according to the material and shape of each carrier by methods such as random packing, filling in a direction perpendicular to the flow, filling in the flow direction, and filling diagonally in the flow direction. form. At the current stage of anaerobic treatment technology, there are many unclear points regarding the selection of carrier materials and shapes and the optimization of the filling method in the reaction tank, and research and development efforts are continuing.

例えば、片岡正治等は濾床表面の荒さや空隙構
造の複雑さが嫌気性濾床のBOD処理効果及び汚
泥量に影響することを見出した。京才俊則等は汚
泥濃度向上のためには重力に抗して汚泥を保持で
きる担体構造が必要であること及び汚泥の堆積等
により目詰りが発生することを見出した。稲森悠
平等は嫌気性濾床処理に適する温度を実測して報
告した。松本順一郎等は主物膜汚泥が接触板の粗
度面に付着することなどを見出した。
For example, Masaharu Kataoka et al. found that the roughness of the filter bed surface and the complexity of the pore structure affected the BOD treatment effect and sludge volume of anaerobic filter beds. Toshinori Kyozai et al. discovered that in order to improve sludge concentration, a carrier structure that can hold sludge against gravity is necessary, and that clogging occurs due to accumulation of sludge. Yuhei Inamori measured and reported the temperature suitable for anaerobic filter bed treatment. Junichiro Matsumoto et al. discovered that the main membrane sludge adhered to the rough surface of the contact plate.

本発明者は、現在実用化され始めている各種形
状の担体を各種方法で充填して形成した嫌気性濾
床におて、濾床閉塞が重要な問題であることに注
目した。即ち、処理すべき廃水中に嫌気性微生物
によつては分解されないSS(懸濁性浮遊物質)が
含まれている場合が多く、これが担体に付着蓄積
し、さらに本来の嫌気性微生物の増殖による汚泥
量の増加とあいまつて、濾床閉塞を引起す。閉塞
にまで到らなくても、SSの付着蓄積と汚泥量の
増加がチヤンネリング(偏流)の原因となり、処
理性能の著しい低下を招くことがある。
The present inventor has noticed that filter bed clogging is an important problem in anaerobic filter beds formed by filling carriers of various shapes by various methods, which are currently being put into practical use. In other words, wastewater to be treated often contains SS (suspended solids) that cannot be decomposed by anaerobic microorganisms, and this accumulates on the carrier and is further degraded by the growth of the original anaerobic microorganisms. Combined with an increase in the amount of sludge, this causes filter bed clogging. Even if blockage does not occur, the accumulation of SS and an increase in the amount of sludge can cause channeling, which can lead to a significant drop in treatment performance.

このような現象は、反応槽内菌体濃度を高める
ために担体の充填を密にすればするほど発生し易
くなる。また、汚泥の沈降或いは浮上を妨げる方
向・状態に担体が充填された場合、即ち沈降・浮
上方向と直交する方向に担体が充填された場合に
上記現象が発生し易くなる。このため、高い菌体
濃度の維持と、濾床閉塞の防止とは二律排反的な
事項となつている。
Such a phenomenon becomes more likely to occur as the carriers are packed more densely in order to increase the concentration of microbial cells in the reaction tank. Further, the above phenomenon is likely to occur when the carrier is filled in a direction or state that prevents the settling or floating of sludge, that is, when the carrier is filled in a direction orthogonal to the direction of settling or floating. For this reason, maintaining a high bacterial cell concentration and preventing filter bed clogging are mutually exclusive matters.

さらに、従来の嫌気性濾床では運転中における
濾床閉塞の進行状態の把握が困難であつた。対策
として、処理水が悪化した後にはじめて堆積除去
のための逆洗を行なうか、又は閉塞の有無と無関
係に定期的に逆洗を行なつていたが、極めて非能
率的であつた。
Furthermore, with conventional anaerobic filter beds, it has been difficult to grasp the progress of filter bed blockage during operation. As countermeasures, backwashing was performed to remove sediment only after the treated water deteriorated, or backwashing was performed periodically regardless of the presence or absence of blockage, but this was extremely inefficient.

発明が解決しようとする問題点 従つて、本発明が解決しようとする問題点は、
嫌気性濾床における閉塞の防止と運転継続中の閉
塞進行状態検出にある。
Problems to be solved by the invention Therefore, the problems to be solved by the invention are as follows:
The goal is to prevent blockages in anaerobic filter beds and detect the progress of blockages during continued operation.

問題点を解決するための手段 第1図を参照するに、本発明による嫌気性水処
理装置においては、反応塔10内に上下方向に吊
下げられた平行な紐状担体12の複数の列、前記
反応塔10の上部に形成された廃水投入口15の
直下に設けられた水圧損検出パン17、前記水圧
損検出パン17から前記反応塔10も底部まで延
在する廃水投入管20、及び前記廃水の流路にお
ける流体抵抗の変化に応動する前記水圧損検出パ
ン内の水位を検出する液面検出計22を設ける。
Means for Solving the Problems Referring to FIG. 1, in the anaerobic water treatment apparatus according to the present invention, a plurality of rows of parallel string-like carriers 12 suspended vertically within a reaction tower 10, A water pressure loss detection pan 17 provided directly below the wastewater inlet 15 formed at the top of the reaction tower 10, a wastewater injection pipe 20 extending from the water pressure loss detection pan 17 to the bottom of the reaction tower 10, and the A liquid level detector 22 is provided to detect the water level in the water pressure loss detection pan in response to changes in fluid resistance in the wastewater flow path.

作 用 第1図において、廃水投入口15から水圧損検
出パン17に注がれた廃水1は、廃水投入管20
内を自然落下して反応塔10の底部に達した後、
白矢印Wで示される様に、上下方向に平行に吊下
げられた紐状担体12の列の間を通つて上昇す
る。この上昇の間に廃水1は、紐状担体12に保
持された菌体と接触して浄化される。図示実施例
の場合、浄化された処理水4は集水パン19及び
水封装置24を介して反応塔10の外へ排出され
る。
Function In FIG. 1, the wastewater 1 poured from the wastewater inlet 15 into the water pressure loss detection pan 17 is
After reaching the bottom of the reaction tower 10 by falling naturally,
As shown by the white arrow W, it ascends through the rows of string-like carriers 12 suspended in parallel in the vertical direction. During this rise, the wastewater 1 comes into contact with the bacterial cells held on the string-like carrier 12 and is purified. In the illustrated embodiment, the purified treated water 4 is discharged to the outside of the reaction tower 10 via a water collection pan 19 and a water sealing device 24.

上記構造によれば、紐状に形成され且つ上下方
向に平行に吊下げられた担体12が廃水1の流れ
を上向きに導き、しかも紐状担体12が廃水1の
流れに沿つて配列されるので、その表面へのSS
(懸濁性浮遊物質)や汚泥の堆積を極めて少なく
し、従つて本発明の一目的である閉塞防止を達成
することができる。
According to the above structure, the carriers 12 formed in a string shape and suspended in parallel in the vertical direction guide the flow of the wastewater 1 upward, and the string-like carriers 12 are arranged along the flow of the wastewater 1. , SS to its surface
(Suspended floating solids) and sludge accumulation can be extremely reduced, and therefore one of the objects of the present invention, which is prevention of clogging, can be achieved.

長期間運転の結果第11図の沈澱汚泥33のよ
うな汚泥の堆積が生ずると、廃水投入管20の出
口断面積が沈澱汚泥33によつて狭められ流れ抵
抗が増大する。第9図を参照するに、SSや汚泥
の堆積がなく廃水1の流れに対する抵抗が小さい
場合の水圧損検出パン17における水位が実線位
置であつたとすると、SSや汚泥の堆積が生じて
廃水1の流れに対する抵抗が大きくなつた場合に
は水圧損が増大するので水圧損検出パン17にお
ける水位が例えば点線位置迄Δh(第9図)だけ上
昇する。
When sludge such as the settled sludge 33 in FIG. 11 is deposited as a result of long-term operation, the outlet cross-sectional area of the wastewater input pipe 20 is narrowed by the settled sludge 33, increasing flow resistance. Referring to FIG. 9, if the water level in the water pressure loss detection pan 17 is at the solid line position when there is no accumulation of SS or sludge and the resistance to the flow of wastewater 1 is small, then the accumulation of SS and sludge occurs and the resistance to the flow of wastewater 1 is small. When the resistance to the flow increases, the water pressure loss increases, so the water level in the water pressure loss detection pan 17 rises by Δh (FIG. 9), for example, to the dotted line position.

この水位の上昇Δhは、上記流れ抵抗の大きさ
及び上記堆積の量と一定の関係があるので、液面
検出計22によつてその上昇Δhを測定すれば閉
塞の進行状態を容易にしかも濾床の運転を継続し
たままで把握することができる。従つて本発明の
他の目的である運転継続中の閉塞進行状態検出を
達成することができる。
This rise in water level Δh has a certain relationship with the magnitude of the flow resistance and the amount of sediment, so measuring the rise Δh with the liquid level detector 22 will facilitate the progress of blockage and filter the water. It is possible to understand the floor while it continues to operate. Therefore, it is possible to achieve the other object of the present invention, which is to detect the progress of blockage during continued operation.

実施例 本発明による嫌気性水処理装置の一実施例を添
付図面により説明する。第1図に示される様に、
好ましくは嫌気性水処理装置の反応塔10を縦長
とし、その主要部を地下に設置し、その上部のみ
を地表Lの上に設置する。これにより設備の用地
を節減することができる。第2A図及び第2B図
に示される紐状担体12の多数を上下方向に平行
に配置してなる紐状担体ユニツト11の数組を反
応塔10内に配置する。
Embodiment An embodiment of the anaerobic water treatment apparatus according to the present invention will be described with reference to the accompanying drawings. As shown in Figure 1,
Preferably, the reaction tower 10 of the anaerobic water treatment device is vertically elongated, and its main part is installed underground, and only its upper part is installed above the ground surface L. This makes it possible to save land for equipment. Several sets of string-like carrier units 11, each consisting of a large number of string-like carriers 12 shown in FIGS. 2A and 2B arranged vertically in parallel, are arranged in the reaction column 10.

第3図及び第4図を参照するに、この実施例の
紐状担体ユニツト11は、多数の紐状担体12を
ピン13aで吊下げる保持部材13、及びこの保
持部材13を多数平行に支持する支持枠14から
なる。好ましくは、支持枠14を外側円筒部14
a及び半径方向腕14bによつて構成し、同心配
置の保持部材13をこれらの半径方向腕14bに
固定して保持する。こうして、紐状担体ユニツト
11の内部には、上下方向の紐状担体12からな
る多数の列が平行に形成される。各紐状担体ユニ
ツト11は、担体ユニツトブラケツト26又は担
体ユニツト受部材27(第1図)によつて反応塔
10の内部に取付けられる。
Referring to FIGS. 3 and 4, the string-like carrier unit 11 of this embodiment includes a holding member 13 that suspends a large number of string-like carriers 12 with pins 13a, and a holding member 13 that supports a large number of holding members 13 in parallel. It consists of a support frame 14. Preferably, the support frame 14 is connected to the outer cylindrical portion 14.
a and radial arms 14b, and a concentrically arranged holding member 13 is fixed and held on these radial arms 14b. In this way, inside the string-like carrier unit 11, a large number of parallel rows of string-like carriers 12 are formed in the vertical direction. Each string-like carrier unit 11 is attached inside the reaction column 10 by a carrier unit bracket 26 or a carrier unit receiving member 27 (FIG. 1).

紐状担体12の一例は、多数の合成樹脂製輪状
体からなり商品名リングレースで知られる紐状接
触材である。
An example of the string-like carrier 12 is a string-like contact material made up of a large number of synthetic resin rings and known under the trade name Ring Lace.

第5図から第8図までを参照するに、反応塔1
0の頂部には、廃水口15の取付けられた上蓋1
6が気密に固定される。反応塔10内部において
上記廃水投入口15に対向する部位に水圧損検出
パン17が配置される。集水パンブラケツト18
により、集水パン19が上記水圧損検出パン17
の下方位置に取付けられる。
Referring to FIG. 5 to FIG. 8, reaction column 1
At the top of 0, there is a top lid 1 with a waste water port 15 attached.
6 is airtightly fixed. A water pressure loss detection pan 17 is disposed inside the reaction tower 10 at a location facing the waste water inlet 15 . Water collection pan bracket 18
Therefore, the water collection pan 19 is connected to the water pressure loss detection pan 17.
installed in the lower position.

水圧損検出パン17の底部には、上記集水パン
19を貫通して反応塔10の底部に達する廃水投
入管20が接続される。図示例の廃水投入管20
は、紐状担体ユニツト11の中央部を貫通する部
分と反応塔10の頂部における部分とからなり、
これらの部分がパイプ継手21により結合されて
いる。水圧損検出パン17には、その中における
水位を検出するための液面検出計22が設けられ
る。
A wastewater input pipe 20 is connected to the bottom of the water pressure loss detection pan 17, passing through the water collection pan 19 and reaching the bottom of the reaction tower 10. Illustrated example wastewater input pipe 20
consists of a part passing through the center of the string-like carrier unit 11 and a part at the top of the reaction column 10,
These parts are connected by a pipe joint 21. The water pressure loss detection pan 17 is provided with a liquid level detector 22 for detecting the water level therein.

集水パン19は、処理水排出管23を介して水
封装置24に連通される。水封装置24の底部に
は処理水排出口25が形成される。
The water collection pan 19 is communicated with a water sealing device 24 via a treated water discharge pipe 23. A treated water outlet 25 is formed at the bottom of the water sealing device 24 .

反応塔10の底部には担体ユニツトブラケツト
26によつて担体ユニツト11が保持される。さ
らに、反応塔10の周壁に適宜設けられた担体受
部材27により紐状担体ユニツト11が反応塔内
に多段に保持される。
A carrier unit 11 is held at the bottom of the reaction column 10 by a carrier unit bracket 26. Furthermore, the string-shaped carrier units 11 are held in multiple stages within the reaction tower by carrier receiving members 27 provided appropriately on the peripheral wall of the reaction tower 10.

反応塔10の頂部にはさらにガス排出口30が
形成され、これが気密ガス管等によりバキユーム
ブレーカ31に連通される。
A gas outlet 30 is further formed at the top of the reaction tower 10, and this is communicated with a vacuum breaker 31 through an airtight gas pipe or the like.

必要に応じて、反応塔10の周壁の集水パン1
9に対向する部位を貫通して逆洗用の廃水補給口
32を設けてもよい。
If necessary, a water collection pan 1 on the peripheral wall of the reaction tower 10
A wastewater replenishment port 32 for backwashing may be provided by penetrating a portion opposite to 9.

動作時には、廃水1が反応塔10の上蓋16に
取付けられた廃水投入口15から連続的に水圧損
検出パン17へ供給される。水圧損検出パン17
へ注入された廃水1は、廃水投入管20を介して
自然流下方式により反応塔10の底部に達する。
反応塔10の底部に供給された廃水1は、上下方
向に平行配列された紐状担体12の列の間を白矢
印Wで示される様に上昇する。この際に紐状担体
12の列が整流格子の機能を果し、廃水1は均一
な上昇流となつて反応塔10内を上昇する。この
上昇過程において、廃水1は紐状担体12に付着
している嫌気性微生物と接触し浄化されていく。
During operation, wastewater 1 is continuously supplied to the water pressure loss detection pan 17 from the wastewater inlet 15 attached to the upper lid 16 of the reaction tower 10 . Water pressure loss detection pan 17
The wastewater 1 injected into the reaction tower 10 reaches the bottom of the reaction tower 10 via a wastewater input pipe 20 in a gravity flow manner.
The waste water 1 supplied to the bottom of the reaction tower 10 rises as shown by the white arrow W between the rows of string-like carriers 12 arranged in parallel in the vertical direction. At this time, the rows of string-like carriers 12 function as a rectifying grid, and the waste water 1 rises in the reaction tower 10 as a uniform upward flow. During this rising process, the wastewater 1 comes into contact with the anaerobic microorganisms attached to the string-like carrier 12 and is purified.

浄化された処理水4は、水圧損検出パン17の
下方に取付けられた集水パン19により集水さ
れ、処理水排出管23及び水封装置24を介して
反応塔10の外へ排出される。
The purified treated water 4 is collected by a water collection pan 19 installed below the water pressure loss detection pan 17 and is discharged to the outside of the reaction tower 10 via a treated water discharge pipe 23 and a water sealing device 24. .

廃水1が浄化される過程で発生するメタンガス
等の消化ガス5は、黒点矢印Gで示される様に反
応塔10内を上昇しその上蓋16に取付けられた
ガス排出口30からバキユームブレーカ31を通
つて排出される。
Digestion gas 5 such as methane gas generated in the process of purifying the waste water 1 rises inside the reaction tower 10 as shown by the black dot arrow G and passes through the vacuum breaker 31 from the gas outlet 30 attached to the upper cover 16. It passes through and is discharged.

以上の様に、縦長の反応塔10の底部から上昇
流方式で消化ガス5の移動方向と同一方向に廃水
1を流し、且つ規則的に配置された紐状担体12
からなる整流格子に処理水1を流すことにより、
廃水1の流れを極めて理想的な押出し流れ(ピス
トンフロー)方式に近づけることが可能となり、
処理水4の水質の安定が確保できる。
As described above, the wastewater 1 flows from the bottom of the vertically long reaction tower 10 in an upward flow direction in the same direction as the movement direction of the digestion gas 5, and the string-like carriers 12 are regularly arranged.
By flowing treated water 1 through a rectifying grid consisting of
It becomes possible to bring the flow of wastewater 1 close to the ideal extrusion flow (piston flow) method,
Stability of the quality of the treated water 4 can be ensured.

さらに、紐状担体12に付着した未分解のSS
及び微生物の増殖によつて過剰付着した汚泥が紐
状担体12から剥離脱落する際に、脱落SS及び
脱落汚泥の沈降或いは浮上を妨げることがなく、
極めて理想的な紐状担体12上の微生物の更新が
確実に期待される。第10図は、紐状担体ユニツ
ト11における蓄積汚泥33による閉塞状態を示
すが、本発明によれば、紐状担体12相互の間隙
におけるSS又は汚泥の蓄積が効果的に防止され
るので、この様な閉塞状態の生ずる危険性は非常
に少ない。
Furthermore, undecomposed SS attached to the string-like carrier 12
And when the sludge excessively adhered due to the growth of microorganisms is peeled off from the string-like carrier 12, the sedimentation or floating of the fallen SS and the fallen sludge is not hindered,
Renewal of microorganisms on the extremely ideal string-like carrier 12 is certainly expected. FIG. 10 shows a state in which the string-like carrier unit 11 is blocked by accumulated sludge 33. According to the present invention, accumulation of SS or sludge in the gaps between the string-like carriers 12 is effectively prevented. The risk of such a blockage occurring is very low.

紐状担体12から剥離脱落した汚泥の大部分は
沈降するが、浮上する場合も一部あつて、その場
合の浮上汚泥は集水パン19及び水封装置24を
介して反応塔10内の外へ排出される。
Most of the sludge that has peeled off and fallen from the string-like carrier 12 settles, but some of it may float, and in that case, the floating sludge flows into and out of the reaction tower 10 via the water collection pan 19 and the water sealing device 24. is discharged to.

水処理装置を長期間運転すると第11図に示さ
れる様に反応塔10の底部には、紐状担体12か
ら剥離脱落した汚泥が沈澱汚泥33としてたま
る。この沈澱汚泥33の量が廃水投入管20の下
端開口を狭める程に増大すると、流れ抵抗増大の
ために反応塔10内の水圧損検出パン17におけ
る水位が例えば第9図に示される様にΔhだけ上
昇する。この水位上昇Δhを液面検出計22によ
り連続的に検出することにより、水処理装置の閉
塞を予知し必要な対策を予め講じ信頼性を高める
ことができる。
When the water treatment apparatus is operated for a long period of time, the sludge that has peeled off from the string-like carrier 12 accumulates as precipitated sludge 33 at the bottom of the reaction tower 10, as shown in FIG. When the amount of this settled sludge 33 increases to the extent that it narrows the lower end opening of the wastewater input pipe 20, the water level in the water pressure loss detection pan 17 in the reaction tower 10 increases, for example, as shown in FIG. only rises. By continuously detecting this water level rise Δh using the liquid level detector 22, it is possible to predict blockage of the water treatment equipment and take necessary measures in advance to improve reliability.

反応塔10の底部に沈澱堆積した汚泥の引抜方
法を第11図により説明する。先ず反応塔10か
ら上蓋16を取外し、吸引管34の先端へゴムパ
ツキング35を取付けたものを水圧損検出パン1
7まで差込み、廃水投入管20にゴムパツキング
35を密着させた上で沈澱汚泥33をサクシヨン
ポンプ(図示せず)によつて引抜く。このとき反
応塔10内の水位が沈澱汚泥33の引抜きと共に
低下するので、廃水補給口32を介して廃水1の
補給を行なつてもよい。他の引抜き方法として、
長い吸引管(図示せず)を廃水投入管20の内部
から反応塔10の底部まで差込み沈澱汚泥33を
引抜くこともできる。
A method for removing sludge deposited at the bottom of the reaction tower 10 will be explained with reference to FIG. 11. First, remove the upper cover 16 from the reaction tower 10, and attach the rubber packing 35 to the tip of the suction pipe 34.
7, the rubber packing 35 is brought into close contact with the wastewater input pipe 20, and the precipitated sludge 33 is pulled out using a suction pump (not shown). At this time, since the water level in the reaction tower 10 decreases as the precipitated sludge 33 is drawn out, the wastewater 1 may be replenished via the wastewater replenishment port 32. Another extraction method is
It is also possible to insert a long suction pipe (not shown) from inside the wastewater input pipe 20 to the bottom of the reaction tower 10 and draw out the settled sludge 33.

発明の効果 以上説明した如く本発明による嫌気性水処理装
置は、反応塔内に上下方向に吊下げられた平行な
紐状担体の複数の列からなる担体ユニツトを1段
又は多段に設置してなる構成を使用するので次の
効果を奏する。
Effects of the Invention As explained above, the anaerobic water treatment apparatus according to the present invention includes a carrier unit consisting of a plurality of rows of parallel string-like carriers suspended vertically in a reaction tower, installed in one stage or in multiple stages. Since this configuration is used, the following effects are achieved.

(イ) 紐状担体はそのもの及びその組合せである紐
状担体ユニツトの閉塞を防止できる。
(b) The string-like carrier itself and the string-like carrier unit, which is a combination thereof, can be prevented from clogging.

(ロ) 前記紐状担体の下端と連通する廃水投入管に
接続され且つ液面検出計が備えられた水圧損検
出パンを容易に付設できるので、この水圧損検
出パン内の水位を監視することにより、水処理
装置の運転を継続したままで汚泥の堆積量及び
閉塞の進行状態を監視・検出することができ
る。
(b) Since a water pressure loss detection pan connected to the waste water input pipe communicating with the lower end of the string-like carrier and equipped with a liquid level detector can be easily attached, the water level in this water pressure loss detection pan can be monitored. This makes it possible to monitor and detect the amount of sludge deposited and the progress of blockage while the water treatment equipment continues to operate.

(ハ) 縦長の反応塔に適するので、廃水の均一な上
昇流を形成し、廃水の水質に対応して縦方向の
微生物相の役割分担を行ない、処理水の水質の
安定性を確保することができる。
(c) Since it is suitable for a vertically long reaction tower, it forms a uniform upward flow of wastewater, and the microbial flora distributes the roles in the vertical direction according to the quality of the wastewater, thereby ensuring the stability of the quality of the treated water. I can do it.

(ニ) 縦長の反応塔に適するので、設備の用地面積
を節減することができる。
(d) Since it is suitable for a vertically long reaction tower, the land area of the equipment can be saved.

(ホ) 縦長の反応塔を使用した場合には、堆積した
汚泥の水平的な広がりを少なくし、狭い面積内
に沈澱堆積した汚泥の全量を簡単に引抜くこと
ができる。
(e) When a vertically elongated reaction tower is used, the horizontal spread of the accumulated sludge is reduced, and the entire amount of sludge that has settled and accumulated within a narrow area can be easily pulled out.

(ヘ) リングレースその他の適当な紐状担体を用
い、必要にして十分な菌体濃度を水処理装置内
に維持することができる。
(f) A necessary and sufficient bacterial cell concentration can be maintained within the water treatment device by using ring lace or other suitable string-like carriers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による嫌気性水処理装置の一実
施例の図式的縦断図、第2A図及び第2B図は紐
状担体の説明図、第3図及び第4図は紐状担体ユ
ニツトの平面図及び斜視図、第5図から第8図ま
では反応塔の構造の説明図、第9図は閉塞進行状
態検出方法の説明図、第10図は紐状担体ユニツ
ト閉塞の説明図、第11図は沈澱汚泥引抜き方法
の説明図、第12図及び第13図は従来技術の説
明図である。 1……廃水、2……反応槽、3……濾床、4…
…処理水、5……消化ガス、10……反応塔、1
1……担体ユニツト、12……紐状担体、13…
…保持部材、14……支持枠、15……廃水投入
口、16……上蓋、17……水圧損検出パン、1
8……集水パンブラケツト、19……集水パン、
20……廃水投入管、21……パイプ継手、22
……液面検出計、23……処理水排出管、24…
…水封装置、25……処理水排出口、26……担
体ユニツトブラケツト、27……担体ユニツト受
部材、30……ガス排出口、31……バキユーム
ブレーカ、31……廃水補給口、33……沈澱汚
泥、34……吸引管、35……ゴムパツキング。
FIG. 1 is a schematic longitudinal sectional view of one embodiment of the anaerobic water treatment apparatus according to the present invention, FIGS. 2A and 2B are illustrations of a string-like carrier, and FIGS. 3 and 4 are illustrations of a string-like carrier unit. A plan view and a perspective view, FIGS. 5 to 8 are explanatory diagrams of the structure of the reaction tower, FIG. 9 is an explanatory diagram of the method for detecting the progress of blockage, FIG. 10 is an explanatory diagram of the blockage of the string-shaped carrier unit, FIG. 11 is an explanatory diagram of a method for drawing out settled sludge, and FIGS. 12 and 13 are explanatory diagrams of a conventional technique. 1...Wastewater, 2...Reaction tank, 3...Filter bed, 4...
... Treated water, 5 ... Digestion gas, 10 ... Reaction tower, 1
1...Carrier unit, 12...String-shaped carrier, 13...
...Holding member, 14...Support frame, 15...Wastewater inlet, 16...Top lid, 17...Water pressure loss detection pan, 1
8...Water collection pan bracket, 19...Water collection pan,
20...Wastewater input pipe, 21...Pipe fitting, 22
...Liquid level detection meter, 23...Treatment water discharge pipe, 24...
... Water sealing device, 25 ... Treated water outlet, 26 ... Carrier unit bracket, 27 ... Carrier unit receiving member, 30 ... Gas discharge port, 31 ... Vacuum breaker, 31 ... Waste water supply port, 33 ...Settled sludge, 34...Suction pipe, 35...Rubber packing.

Claims (1)

【特許請求の範囲】[Claims] 1 反応塔内に上下方向に吊下げられた平行な紐
状担体の複数の列、前記反応塔の上部に形成され
た廃水投入口の直下に設けられた水圧損検出パ
ン、前記水圧損検出パンから前記反応塔底部まで
延在する廃水投入管、及び前記廃水の流路におけ
る流体抵抗の変化に応動する前記水圧損検出パン
内の水位を検出する液面検出計を備えてなる嫌気
性水処理装置。
1. A plurality of rows of parallel string-like carriers suspended vertically within the reaction tower, a water pressure loss detection pan provided directly below the wastewater inlet formed at the top of the reaction tower, and the water pressure loss detection pan. Anaerobic water treatment comprising: a wastewater input pipe extending from the bottom of the reaction tower; and a liquid level detector that detects the water level in the water pressure loss detection pan in response to changes in fluid resistance in the wastewater flow path. Device.
JP63039645A 1988-02-24 1988-02-24 Anaerobic bioreactor Granted JPH01215397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63039645A JPH01215397A (en) 1988-02-24 1988-02-24 Anaerobic bioreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039645A JPH01215397A (en) 1988-02-24 1988-02-24 Anaerobic bioreactor

Publications (2)

Publication Number Publication Date
JPH01215397A JPH01215397A (en) 1989-08-29
JPH0423596B2 true JPH0423596B2 (en) 1992-04-22

Family

ID=12558820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039645A Granted JPH01215397A (en) 1988-02-24 1988-02-24 Anaerobic bioreactor

Country Status (1)

Country Link
JP (1) JPH01215397A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297274B2 (en) * 2001-10-24 2007-11-20 University Of Florida Research Foundation, Inc. Fixed-film anaerobic digestion of flushed waste
KR100770178B1 (en) * 2001-12-22 2007-10-25 주식회사 포스코 Multi-stage packed bed biofilm reactor
JP2004041929A (en) * 2002-07-11 2004-02-12 Fuji Electric Holdings Co Ltd Methane fermentation apparatus for organic waste
WO2007060791A1 (en) * 2005-11-22 2007-05-31 Sapporo Breweries Limited Hydrogen fermentor and method of producing hydrogen
JP2008029945A (en) * 2006-07-27 2008-02-14 Spring Field Kk Microbial carrier for waste water treatment, and waste water treatment apparatus
JP2008221033A (en) * 2007-03-08 2008-09-25 Kuraray Co Ltd Wastewater treatment method and apparatus
JP6280110B2 (en) * 2013-05-24 2018-02-14 佐竹化学機械工業株式会社 Digestive equipment
US11104596B2 (en) * 2018-07-06 2021-08-31 Clearwater BioLogic LLC Bioreactor, system, and method for reduction of sulfates from surface waters

Also Published As

Publication number Publication date
JPH01215397A (en) 1989-08-29

Similar Documents

Publication Publication Date Title
US20090065412A1 (en) Apparatus for waste water treatment
Agrawal et al. Treatment of dilute wastewater in a UASB reactor at a moderate temperature: performance aspects
Hutňan et al. Comparison of startup and anaerobic wastewater treatment in UASB, hybrid and baffled reactor
JPWO2016185533A1 (en) Water treatment system and water treatment method
JPH0423596B2 (en)
JP4428188B2 (en) Organic wastewater treatment method and treatment apparatus
KR20000034519A (en) Treatment method of wastewater using filtration and aerobic microorganism
KR101048673B1 (en) External circulating anaerobic digester
Deront et al. Biomass growth monitoring using pressure drop in a cocurrent biofilter
Oleszkiewicz et al. Performance of laboratory anaerobic hybrid reactors with varying depths of media
CN208429929U (en) A kind of porous plate coupled filtering net up-flow granular sludge reactor
Li et al. Treatment of municipal wastewater using a contact oxidation filtration separation integrated bioreactor
CN205856269U (en) Biological reaction tank for treating polluted water
KR100569704B1 (en) External circulation anaerobic digester using gas lifting
Meikap et al. Removal of Phenolic Compounds From Industrial Waste Water by SemifluidizedBed Bio-Reactor
CN210855728U (en) Rural sewage treatment plant
CN209065666U (en) Organic waste-water treating apparatus
Bowker New wastewater treatment for industrial applications
CN111925047A (en) Anti-blocking up-flow vertical subsurface flow constructed wetland system and water quality purification method
KR100330494B1 (en) A Fluidized Biofilm Bed Reactor
CN113800630B (en) Anaerobic expansion bed device for treating high-concentration organic wastewater
CN110078299A (en) A kind of artificial swamp sewage reutilization device and method
Cho et al. Effect of stepwise seeding on the performance of four anaerobic biofilters treating a synthetic stillage waste
CN218786553U (en) Biological filter device of anaerobism suspended bed
CN211004761U (en) Anaerobic reactor based on biological carbon carrier

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term