JPH01215397A - Anaerobic bioreactor - Google Patents

Anaerobic bioreactor

Info

Publication number
JPH01215397A
JPH01215397A JP63039645A JP3964588A JPH01215397A JP H01215397 A JPH01215397 A JP H01215397A JP 63039645 A JP63039645 A JP 63039645A JP 3964588 A JP3964588 A JP 3964588A JP H01215397 A JPH01215397 A JP H01215397A
Authority
JP
Japan
Prior art keywords
carriers
water
cord
waste water
reaction tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63039645A
Other languages
Japanese (ja)
Other versions
JPH0423596B2 (en
Inventor
Kazuo Takeishi
竹石 和夫
Akio Arai
新井 昭雄
Minoru Kodama
小玉 実
Seiji Otsuka
誠治 大塚
Koichi Yamura
八村 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minister for Public Works for State of New South Wales
Kajima Corp
National Research and Development Agency Public Works Research Institute
Original Assignee
Minister for Public Works for State of New South Wales
Kajima Corp
Public Works Research Institute Ministry of Construction
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minister for Public Works for State of New South Wales, Kajima Corp, Public Works Research Institute Ministry of Construction filed Critical Minister for Public Works for State of New South Wales
Priority to JP63039645A priority Critical patent/JPH01215397A/en
Publication of JPH01215397A publication Critical patent/JPH01215397A/en
Publication of JPH0423596B2 publication Critical patent/JPH0423596B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To prevent clogging of cord-like carriers and the carrier units thereof by installing the carrier units consisting of plural arrays of the cord-like carriers which are hung in a vertical direction and in parallel to single or multiple stages into a reaction column. CONSTITUTION:The waste water poured from a waste water feed port 15 to a water pressure drop detecting pan 17 falls by gravity in a waste water feed pipe 20 and ascends by passing the spaces between the arrays of the cord-like carriers 12 hung in parallel in the vertical direction as shown in the figure a white arrow W after arriving at the bottom of the reaction column 10. The waste water 1 comes into contact with the bacteria held on the cord-like carriers 12 and is cleaned during the ascending. The cleaned and treated water 4 is passed through a water collecting pan 19 and a water sealing device 24 and a discharged to the outside of the reaction column 10. The carriers 12 formed to a cord shape and are hung in parallel in the vertical direction guide the waste water upward and since the cord-like carriers 12 are arranged along the flow of the waste water, the deposition of the suspensible floating solids and sludge on the surface thereof is extremely decreased and the clogging of the cord-like carriers 12 and the carrier units 11 thereof is prevented.

Description

【発明の詳細な説明】 it上五■ユ上1 本発明は廃水処理用の嫌気性バイオリアクターに関し、
とくに担体における閉塞を防止すると共にその閉塞の検
出を容易にした嫌気性バイオリアクターに関する。
[Detailed Description of the Invention] Part 5, Part 1 The present invention relates to an anaerobic bioreactor for wastewater treatment,
In particular, the present invention relates to an anaerobic bioreactor that prevents blockage in carriers and facilitates detection of blockage.

え1立且遣 嫌気性微生物を利用して廃水処理をする嫌気性処理は、
処理に要するエネルギーの面で極めて経済的である。即
ち、好気性処理では1トンの有機性汚濁物質C0Dc 
r C重クロム酸カリウム法による値)を除去するのに
曝気に11001Whのエネルギーを費やして400−
600 kgの余剰汚泥を生成するといわれているのに
対し、嫌気性処理では同じ有機性汚濁物質処理において
余剰汚泥を20−150 kg 8度にまで低減するだ
けでなく約1.1!10  Btu  (約3200 
kWh)のメタンエネルギーの回収を可能にする。
Anaerobic treatment uses anaerobic microorganisms to treat wastewater.
It is extremely economical in terms of the energy required for processing. That is, in aerobic treatment, 1 ton of organic pollutant C0Dc
11,001 Wh of energy was spent on aeration to remove 400 -
It is said that 600 kg of surplus sludge is produced, whereas anaerobic treatment not only reduces the surplus sludge to 20-150 kg 8 degrees in the same organic pollutant treatment, but also produces approximately 1.1!10 Btu ( Approximately 3200
(kWh) of methane energy can be recovered.

嫌気性処理には、有機性汚濁物質C0Dc r濃度が3
000 tag/Q以下の中程度以下である場合に、メ
タン生成菌の増殖速度が遅く、菌体収率が低く、しかも
増殖菌体のウォッシュアウトが生ずる等の問題があるた
め、その実用化が困難視されてきた。
For anaerobic treatment, the organic pollutant C0Dcr concentration is 3
If it is less than 000 tag/Q, there are problems such as slow growth rate of methanogenic bacteria, low bacterial cell yield, and washout of proliferating bacterial cells, which makes it difficult to put it into practical use. It has been viewed as difficult.

バイオリアクターで使用される菌体は生体触媒とも呼ば
れ、/ヘイオリアクター内における菌体の地位は通常の
化学反応器内における触媒のそれになぞらえられ゛る。
The bacterial cells used in the bioreactor are also called biocatalysts, and the position of the bacterial cells in the hay reactor can be compared to that of a catalyst in an ordinary chemical reactor.

従って、バイオリアクター内の菌体の高濃度化に成功す
れば その反応速度即ち処理速度の向上が期待できる。
Therefore, if we succeed in increasing the concentration of bacterial cells in the bioreactor, we can expect an increase in the reaction rate, that is, the processing rate.

最近では、この観点から汚泥滞留時間(SRT)を液滞
留時間(HRT)とは独立に制御して菌体を高濃度に保
持することにより、嫌気性処理の長所を生かした廃水処
理方法がいくつか開発され、鎌気性濾床法、鎌気性流動
床法、嫌気性回転円板法等と呼ばれ実用化され始めてい
る。
Recently, from this point of view, several wastewater treatment methods have been developed that take advantage of the advantages of anaerobic treatment by controlling the sludge retention time (SRT) independently of the liquid retention time (HRT) to maintain a high concentration of bacterial cells. These methods have been developed and are beginning to be put into practical use under the names of the sickle filter bed method, sickle fluidized bed method, anaerobic rotating disk method, etc.

第12図は、廃水1を嫌気性処理するための基本的な従
来法における反応槽2を示す。反応槽2内の濾床3にお
ける菌体を高濃度に維持するため、第13図に示される
各種担体を用いて濾床3を構成し、菌体をそれら担体の
表面や担体間隙に付着Φ補足その他の手段によって保持
させる。i!!床3で浄化された処理水4は槽外へ排出
され、嫌気性処理中に発生した処理ガス5が図示例では
反応槽2の頂部から排出される。
FIG. 12 shows a reaction tank 2 in a basic conventional method for anaerobically treating wastewater 1. In order to maintain a high concentration of bacterial cells in the filter bed 3 in the reaction tank 2, the filter bed 3 is constructed using various carriers shown in FIG. Retained by supplementary or other means. i! ! The treated water 4 purified in the bed 3 is discharged to the outside of the tank, and the treated gas 5 generated during the anaerobic treatment is discharged from the top of the reaction tank 2 in the illustrated example.

嫌気性処理に使用される担体を示す第13図に於て、(
a)はビオレッド65(商品名) 、 (b)はリング
レー、ス、(商品名) 、 (C)は板状濾材のとシバ
In Figure 13, which shows the carrier used for anaerobic treatment, (
(a) is Biored 65 (trade name), (b) is Ringley, Su, (trade name), (C) is Toshiba plate filter medium.

キン(商品名)及びタレオパッキン(商品名)、(d)
はハニカム状担体、(e)は目然礫、(f)はトリカル
ネット(商品名) 、 (g)はレユース(商品名) 
、 (h)はへチマロン(商品名)である。
Kin (product name) and Taleo Packing (product name), (d)
is honeycomb-shaped carrier, (e) is grain gravel, (f) is Tricalnet (product name), (g) is Reuse (product name)
, (h) is Hechimaron (trade name).

これらの担体は11、各担体の材質φ形状に応じて反応
槽2の中に、ランダム充填、流れと直角方向充填、流れ
方向充填、流れ方向斜め充填などの方式によって装填さ
れ、濾床3を形成する。嫌気性処理技術の現段階では、
担体の材料・形状の選枳や反応槽内充填力ノツの最適化
について不明な点が多く、研究開発の努力が続けられて
いる。
These carriers 11 are loaded into the reaction tank 2 according to the material φ shape of each carrier by methods such as random packing, filling in a direction perpendicular to the flow, filling in the flow direction, and filling diagonally in the flow direction. Form. At the current stage of anaerobic treatment technology,
There are many unknown points regarding the selection of carrier materials and shapes and the optimization of the filling force in the reaction tank, and research and development efforts are continuing.

例えば、片岡正治等は濾床表面の荒さや空隙構造の複雑
さ、が嫌気性濾床のBOD処理効果及び汚泥量に影響す
ることを見出した。京才俊則等は汚泥濃度向上のために
は重力に抗して汚泥を保持できる担体構造が必要である
こと及び汚泥の堆積等により目詰りが発生することを見
出した。稲森悠平等は嫌気性濾床処理に適する温度を実
測して報告した。松木順一部等は生物膜汚泥が接触板の
粗度面に付着することなどを見出した。
For example, Masaharu Kataoka et al. found that the roughness of the filter bed surface and the complexity of the pore structure affected the BOD treatment effect and sludge amount of an anaerobic filter bed. Toshinori Kyozai et al. discovered that in order to improve sludge concentration, a carrier structure that can hold sludge against gravity is necessary, and that clogging occurs due to accumulation of sludge. Yuhei Inamori measured and reported the temperature suitable for anaerobic filter bed treatment. Junichi Matsuki et al. found that biofilm sludge adhered to the rough surface of the contact plate.

本発明者は、現在実用化され始めている各種形状の担体
を各種方法で充填して形成した嫌気性濾床におて、濾床
閉塞が重要な問題であることに注目した。即ち、処理す
べき廃水中に嫌気性微生物によっては分解されないSS
(懸濁性浮遊物質)が含まれている場合が多く、これが
担体に付着蓄積し、さらに本来の嫌気性微生物の増殖に
よる汚泥量の増加とあいまって、濾床閉塞を引起す、閉
塞にまで到らなくても、SSの付着蓄積と汚泥量の増加
がチャンネリング(偏流)の原因となり、処理性能の著
しい低下を招くことがある。
The present inventor has noticed that filter bed clogging is an important problem in anaerobic filter beds formed by filling carriers of various shapes by various methods, which are currently being put into practical use. That is, SS that is not decomposed by anaerobic microorganisms is present in the wastewater to be treated.
(suspended suspended solids) are often included, and this accumulates on the carrier, and when combined with an increase in the amount of sludge due to the growth of anaerobic microorganisms, this can cause filter bed clogging or even blockage. Even if this is not achieved, the adhesion and accumulation of SS and increase in the amount of sludge may cause channeling (unbalanced flow), resulting in a significant decrease in treatment performance.

このような現象は、反応槽内菌体濃度を高めるために担
体の充填を密にすればするほど発生し易くなる。また、
汚泥の沈降或いは浮上を妨げる方向・状態に担体が充填
された場合、即ち沈降・浮上方向と直交する方向に担体
が充填された場合に上記現象が発生し易くなる。このた
め、高い菌体濃度の維持と、濾床閉塞の防止とは二律排
反的な事項となっている。
Such a phenomenon becomes more likely to occur as the carriers are packed more densely in order to increase the concentration of microbial cells in the reaction tank. Also,
The above phenomenon is more likely to occur when the carriers are filled in a direction or in a state that prevents the sedimentation or flotation of sludge, that is, when the carriers are filled in a direction orthogonal to the direction of sedimentation or flotation. Therefore, maintaining a high bacterial cell concentration and preventing filter bed clogging are mutually exclusive matters.

さらに、従来の嫌気性濾床では運転中における濾床閉塞
の進行状態の把握が困難であった。対策として、処理水
が悪化した後にはじめて堆積除去のための逆洗を行なう
か、又は閉塞の有無と無関係に定期的に逆洗を行なって
いた、が、極めて非俺率的であった。
Furthermore, with conventional anaerobic filter beds, it has been difficult to grasp the progress of filter bed blockage during operation. As countermeasures, backwashing was carried out to remove sediment only after the treated water deteriorated, or backwashing was carried out periodically regardless of the presence or absence of blockage, but this was extremely inefficient.

が ・ しようと  、 へ 従って、本発明が解決しようとする問題点は、嫌気性濾
床における閉塞の防止と運転継続中の閉塞進行状態検出
にある。
Accordingly, the problem to be solved by the present invention lies in the prevention of blockage in an anaerobic filter bed and the detection of the progress of blockage during continued operation.

AQ市  コ るための 第1図を参照するに、本発明よる嫌気性バイオリアクタ
ーにおいては、反応塔10の中に紐状担体12の複数の
列を上下方向に平行に吊下げて担体ユニットllを形成
し、1段以上の担体ユニットliを反応塔10内に設置
する。
Referring to FIG. 1, in the anaerobic bioreactor according to the present invention, a plurality of rows of string-like carriers 12 are suspended in parallel in the vertical direction in the reaction tower 10 to form carrier units. is formed, and one or more stages of carrier units li are installed in the reaction tower 10.

反応塔10の上部に廃水投入口15を形成し、その廃水
投入口15の直下に水圧損検出パン17を設置する。こ
の水圧損検出パン17を廃水投入管2oにより反応塔l
Oの底部に連通ずる。水圧損検出パン17内の水位は、
反応塔10内の廃水lの流路における流体抵抗の変化に
応じて変化するので、この水位を検出する液面検出計2
2(第5図)を設ける。
A wastewater inlet 15 is formed in the upper part of the reaction tower 10, and a water pressure loss detection pan 17 is installed directly below the wastewater inlet 15. This water pressure loss detection pan 17 is connected to the reaction tower l through the waste water input pipe 2o.
It communicates with the bottom of O. The water level in the water pressure loss detection pan 17 is
The liquid level detector 2 detects the water level as it changes according to the change in fluid resistance in the flow path of the waste water l in the reaction tower 10.
2 (Figure 5).

炬月 ′  第1図において、廃水投入口1’5から水圧損検
出パン17に注がれた廃水1は、廃水投入管20内を自
然落下して反応塔10の底部に達した後、白矢印Wで示
される様に、上下方向に平行に吊下げられた紐状担体1
2の列の間を通って上昇する。この上昇の間に廃水1は
、紐状担体12に保持された菌体と接触して浄化される
。図示実施例の場合、浄化された処理水4は集水パン1
9及び水封装置24を介して反応塔lOの外へ排出され
る。
In Fig. 1, the wastewater 1 poured from the wastewater inlet 1'5 into the water pressure loss detection pan 17 naturally falls inside the wastewater inlet pipe 20 and reaches the bottom of the reaction tower 10, and then becomes white. As shown by the arrow W, a string-like carrier 1 is suspended in parallel in the vertical direction.
Go up between the two columns. During this rise, the wastewater 1 comes into contact with the bacterial cells held on the string-like carrier 12 and is purified. In the illustrated embodiment, the purified treated water 4 is supplied to the water collection pan 1
9 and water sealing device 24 to the outside of the reaction tower IO.

上記構造によれば、紐状に形成され且つ上下方向に平行
に吊下げられた担体12が廃水lの流れを上向きに導き
、しかも紐状担体12が廃水1の流れに沿って配列され
るので、その表面への5s(B温性浮遊物質)や汚泥の
堆積を極めて少なくし、従って本発明の一目的である閉
塞防止を達成することができる。
According to the above structure, the carriers 12 formed in a string shape and suspended in parallel in the vertical direction guide the flow of wastewater 1 upward, and the string-like carriers 12 are arranged along the flow of wastewater 1. , the accumulation of 5s (B-warm suspended solids) and sludge on the surface can be extremely reduced, thereby achieving the prevention of clogging, which is one of the objects of the present invention.

長期間運転の結果第11図の沈澱汚泥33のような汚泥
の堆積が生ずると、廃水投入管20の出口断面積が沈澱
汚泥33によって狭められ流れ抵抗が増大する。第9図
を参照するに、SSや汚泥の堆積がなく廃水1の流れに
対する抵抗が小さい場合の水圧損検出パン17における
水位が実線位置であったとすると、SSや汚泥の堆積が
生じて廃水lの流れに対する抵抗が大きくなった場合に
は水圧損が増大するので水圧損検出パン17における水
位が例えば点線位置迄Δh(第9図)だけ上昇する。
When sludge such as the precipitated sludge 33 shown in FIG. 11 is deposited as a result of long-term operation, the cross-sectional area of the outlet of the wastewater input pipe 20 is narrowed by the precipitated sludge 33, increasing flow resistance. Referring to FIG. 9, if the water level in the water pressure loss detection pan 17 is at the solid line position when there is no accumulation of SS or sludge and the resistance to the flow of wastewater 1 is small, then accumulation of SS or sludge occurs and the wastewater 1 When the resistance to the flow increases, the water pressure loss increases, and the water level in the water pressure loss detection pan 17 rises by Δh (FIG. 9), for example, to the dotted line position.

この水位の上昇Δhは、上記流れ抵抗の大きさ及び上記
堆積の量と一定の関係があるので、液面検出計22によ
ってその上昇Δht−測定すれば閉塞の進行状態を容易
にしかも濾床の運転を継続したままで把握することがで
きる。従って本発明の他の目的である運転継続中の閉塞
進行状態検出を達成することができる。
Since this rise in water level Δh has a certain relationship with the magnitude of the flow resistance and the amount of sediment, measuring the rise Δht- with the liquid level detector 22 will facilitate the progress of blockage, and will also facilitate the flow of the filter bed. This can be grasped while driving. Therefore, another object of the present invention, which is to detect the progress of blockage during continued operation, can be achieved.

111例 本発明による嫌気性バイオリアクターの一実施例を添付
図により説明する。第1図に示される様ニ、好マしくは
嫌気性バイオリアクターの反応塔10を縦長とし、その
主要部を地下に設置し、その上部のみを地表りの上に設
置する。これにより設備の用地を節減することができる
。第2A図及び第2B図に示される紐状担体12の多数
を上下方向に平行に配置してなる紐状担体ユニット!1
の数組を反応塔lO内に配置する。
111 Example An example of the anaerobic bioreactor according to the present invention will be explained with reference to the attached drawings. As shown in FIG. 1, the reaction tower 10 of the anaerobic bioreactor is preferably elongated, the main part of which is installed underground, and only the upper part of the reaction tower is installed above the ground surface. This makes it possible to save land for equipment. A string-like carrier unit formed by arranging a large number of string-like carriers 12 shown in FIGS. 2A and 2B in parallel in the vertical direction! 1
Several sets of are placed in the reaction column lO.

第3図及び第4図を参照するに、この実施例の紐状担体
ユニット11は、多数の紐状担体12をピン13aで吊
下げる保持部材13、及びこの保持部材13を多数平行
に支持する支持枠14からなる。好ましくは、支持枠1
4を外側円筒部14a及び半径方向腕+4bによって構
成し、同心配置の保持部材13をこれらの半径方向腕1
4bに固定して保持する。こうして、紐状担体ユニット
11の内部には、上下方向の紐状担体12からなる多数
の列が平行に形成される。各組状担体ユニッ)11は、
担体ユニットブラケット26又は担体ユニット受部材2
7(第1図)によって反応塔10の内部に取付けられる
Referring to FIGS. 3 and 4, the string-like carrier unit 11 of this embodiment includes a holding member 13 that suspends a large number of string-like carriers 12 with pins 13a, and a holding member 13 that supports a large number of holding members 13 in parallel. It consists of a support frame 14. Preferably, the support frame 1
4 is constituted by an outer cylindrical portion 14a and a radial arm +4b, and a concentrically arranged holding member 13 is attached to these radial arms 1.
4b and hold it. In this way, inside the string-like carrier unit 11, a large number of parallel rows of string-like carriers 12 are formed in the vertical direction. Each assembled carrier unit) 11 is
Carrier unit bracket 26 or carrier unit receiving member 2
7 (FIG. 1) inside the reaction column 10.

紐状担体12の一例は、多数の合成樹脂製輪状体からな
り商品名リングレースで知られる紐状接触材である。
An example of the string-like carrier 12 is a string-like contact material made up of a large number of synthetic resin rings and known under the trade name Ring Lace.

第5図から第8図までを参照するに、反応塔10の頂部
には、廃水口15の取付けられまた上蓋1Bが気密に固
定される0反応塔lO内部において上記廃水投入口15
に対向する部位に水圧損検出パン17が配置される。集
水バンブラケッ118により、集水パン19が上記水圧
損検出パン17の下方位置に取付けられる。  。
Referring to FIGS. 5 to 8, a waste water inlet 15 is attached to the top of the reaction tower 10, and the waste water inlet 15 is installed inside the reaction tower 10 to which the upper lid 1B is airtightly fixed.
A water pressure loss detection pan 17 is arranged at a location facing the. A water collection pan 19 is attached to a position below the water pressure loss detection pan 17 by a water collection pan bracket 118 . .

水圧損検出パン17の底部には、上記集水パン19を貫
通して反応塔lOの底部に達する廃水投入管2Gが接続
される。図示例の廃水投入管20は、紐状担体ユニツ)
11の中央部を貫通する部分と反応Wi10゛の頂部に
おける部分とからなり、これらの部分がパイプ継手21
により結合されている。水圧損検出パン17には、その
中における水位を検出するための液面検出計22が設け
られる。
A wastewater input pipe 2G is connected to the bottom of the water pressure loss detection pan 17, passing through the water collection pan 19 and reaching the bottom of the reaction tower IO. The wastewater input pipe 20 in the illustrated example is a string-like carrier unit)
The pipe fitting 21 consists of a part penetrating the center of the pipe joint 21 and a part at the top of the reaction Wi10.
are connected by. The water pressure loss detection pan 17 is provided with a liquid level detector 22 for detecting the water level therein.

集水パンI9は、処理水排出管23を介して水M装置2
4に連通される。水封装置24の底部には処理水排出r
325が形成される。
The water collection pan I9 is connected to the water M device 2 via the treated water discharge pipe 23.
4. The bottom of the water sealing device 24 has a treated water discharge r.
325 is formed.

反応塔lOの底部には担体ユニットブラケット26によ
って担体ユニッ)11が保持される。さらに、反応塔1
0の周壁に適宜設けられた抗体受部材27により紐状担
体ユニットllが反応塔内に多段に保持される。
A carrier unit 11 is held at the bottom of the reaction column 10 by a carrier unit bracket 26. Furthermore, reaction tower 1
The string-like carrier units 11 are held in multiple stages within the reaction tower by antibody receiving members 27 that are appropriately provided on the peripheral wall of 0.

反応塔10の頂部にはさらにガス排出口3oが形成され
、これが気密ガス管等によりバキュームブレーカ31に
連通される。
A gas outlet 3o is further formed at the top of the reaction tower 10, and this is communicated with a vacuum breaker 31 through an airtight gas pipe or the like.

必要に応じ1反応塔lOの周壁′の集水パン19に対向
する部位を貫通して逆洗用の廃水補給口32を設けても
よい。
If necessary, a waste water replenishment port 32 for backwashing may be provided by penetrating a portion of the peripheral wall' of one reaction column 10 that faces the water collection pan 19.

動作時には、廃水1が反応塔10の上M1Bに取付けら
れた廃水投入口15から連続的に水圧相検出パン17へ
供給される。水圧相検出パン17へ注入された廃水1は
、廃水投入管20を介して自然流下方式により反応塔1
0の底部に達する。反応塔1oの底部に供給された廃水
1は、上下方向に平行配列された紐状担体12の列の間
を白矢印Wで示される様に上昇する。この際に紐状担体
12の列が整流格子の機能を果し、廃水lは均一な上昇
流となって反応塔10内を上昇する。この上昇過程にお
いて、廃水lは紐状担体12に付着している嫌気性微生
物と接触し浄化されていく。
During operation, wastewater 1 is continuously supplied to the hydraulic phase detection pan 17 from the wastewater inlet 15 attached to the upper M1B of the reaction column 10. The wastewater 1 injected into the hydraulic phase detection pan 17 is transferred to the reaction tower 1 via the wastewater input pipe 20 by gravity flow method.
Reach the bottom of 0. The waste water 1 supplied to the bottom of the reaction tower 1o rises as shown by the white arrow W between the rows of string-like carriers 12 arranged in parallel in the vertical direction. At this time, the rows of string-like carriers 12 function as a rectifying grid, and the waste water I rises in the reaction tower 10 as a uniform upward flow. During this rising process, the wastewater I comes into contact with the anaerobic microorganisms attached to the string-like carrier 12 and is purified.

浄化された処理水4は、水圧相検出パン17の下方に取
付けられた集水パン19により集水され、処理水排出管
23及び水封袋M24を介して反応塔1oの外へ排出さ
れる。
The purified treated water 4 is collected by a water collection pan 19 installed below the hydraulic phase detection pan 17, and is discharged to the outside of the reaction tower 1o via a treated water discharge pipe 23 and a water-sealed bag M24. .

廃水lが浄化される過程で発生するメタンガス等の消化
ガス5は、黒点矢印Gで示される様に反応塔10内を上
昇しその上MlBに取付けられたガス排出口30からバ
キュームブレーカ31を通って排出される。
Digestion gas 5 such as methane gas generated in the process of purifying the waste water 1 rises in the reaction tower 10 as shown by the black dot arrow G, and then passes through the vacuum breaker 31 from the gas outlet 30 attached to MlB. is discharged.

以上の様に、縦長の反応塔lOの底部から上昇流方式で
消化ガス5の移動方向と同一方向に廃水1を流し、且つ
規則的に配置された紐状担体12からなる整流格子に処
理水1を流すことにより、廃水lの流れを極めて理想的
な押出し流れ(ピストンフロー)方式に近づけることが
可能となり、処理水4の水質の安定が確保できる。
As described above, the wastewater 1 is allowed to flow from the bottom of the vertically elongated reaction tower lO in the same direction as the moving direction of the digestion gas 5 in an upward flow manner, and the treated water is passed through the rectifying grid made of regularly arranged string-like carriers 12. 1, it becomes possible to bring the flow of the waste water 1 close to an extremely ideal extrusion flow (piston flow) system, and the stability of the quality of the treated water 4 can be ensured.

さらに、紐状担体12に付着した未分解のSS及び微生
物の増殖によって過剰付着した汚泥が紐状担体12から
剥離脱落する際に、脱落SS及び脱落汚泥の沈降或いは
浮上を妨げることがなく、極めて理想的な紐状担体12
上の微生物の更新が確実に期待される。1g10図は、
紐状担体ユニツ)11における蓄積汚泥33による閉塞
状態を示すが、本発明によれば、紐状担体12相互の間
隙におけるSS又は汚泥の蓄積が効果的に防止されるの
で、この様な閉塞状態の生ずる危険性は非常に少ない。
Furthermore, when the undecomposed SS attached to the string-like carrier 12 and the sludge excessively attached due to the proliferation of microorganisms are peeled off from the string-like carrier 12, the sedimentation or flotation of the fallen SS and the fallen sludge are not hindered, and the sludge is extremely Ideal string-like carrier 12
Renewal of the above microorganisms is definitely expected. 1g10 diagram is
The figure shows a blockage state due to accumulated sludge 33 in the string-like carrier units 11, but according to the present invention, accumulation of SS or sludge in the gaps between the string-like carriers 12 is effectively prevented, so such a blockage state can be avoided. The risk of this occurring is very small.

紐状担体12から剥離脱落した汚泥の大部分は沈降する
が、浮上する場合も一部あって、その場合の浮上汚泥は
集水パン19及び水封装置24を介して反応塔lOの外
へ排出される。
Most of the sludge that has peeled off from the string-like carrier 12 settles, but some of it may float, and in that case, the floated sludge exits the reaction tower IO via the water collection pan 19 and water sealing device 24. It is discharged.

バイオリアクターを長期間運転すると第11図に示され
る様に反応塔10の底部には、紐状担体12から剥離脱
落した汚泥が沈澱汚泥33としてたまる。
When the bioreactor is operated for a long period of time, the sludge that has peeled off from the string-like carrier 12 accumulates as precipitated sludge 33 at the bottom of the reaction tower 10, as shown in FIG.

この沈澱汚泥33の量が廃水投入管20の下端開口を狭
める程に増大すると、流れ抵抗増大のために反応塔10
内の水圧相検出パン17における水位が例えば第9図に
示される様にΔhだけ上昇する。この水位上昇Δhを液
面検出計22により連続的に検出することにより、バイ
オリアクターの閉塞を予知し必要な対策を予め講じ信頼
性を高めることができる。
When the amount of this settled sludge 33 increases to the extent that it narrows the lower end opening of the waste water input pipe 20, the flow resistance increases and the reaction tower 10
The water level in the hydraulic phase detection pan 17 rises by Δh as shown in FIG. 9, for example. By continuously detecting this water level rise Δh using the liquid level detector 22, blockage of the bioreactor can be predicted and necessary countermeasures can be taken in advance to improve reliability.

反応塔lOの底部に沈澱堆積した汚泥の引抜方法を第1
1図により説明する。先ず反応塔!0から上蓋16を取
外し、吸引管34の先端へゴムバッキング35を取付け
たものを水圧相検出パン17まで差込み、廃水投入管2
0にゴムバッキング35を密着させた上で沈澱汚泥33
をサクションポンプ(図示せず)によって引抜く、この
とき反応塔lo内の水位が沈V汚泥33の引抜きと共に
低下するので、廃水?1?給口32を介して廃水lの補
給を行なってもよい。他の引抜き方法として、長い吸引
管(図示せず)を廃水投入管20の内部から反応塔10
の底部まで差込み沈S汚泥33を引抜くこともできる。
The first method for extracting the sludge deposited at the bottom of the reaction tower lO
This will be explained using Figure 1. First, the reaction tower! 0, remove the top cover 16 from 0, insert the rubber backing 35 attached to the tip of the suction pipe 34 up to the hydraulic phase detection pan 17, and connect the waste water input pipe 2.
The rubber backing 35 is brought into close contact with the precipitated sludge 33.
is drawn out by a suction pump (not shown). At this time, the water level in the reaction tower lo decreases as the settled V sludge 33 is drawn out, so that wastewater? 1? The waste water 1 may be replenished via the supply port 32. As another method, a long suction pipe (not shown) may be connected to the reaction tower 10 from inside the wastewater input pipe 20.
It is also possible to insert the S sludge 33 to the bottom and pull out the settled S sludge 33.

1更立力」 以上説明した如く本発明による嫌気性パイオリアクタ−
は、反応塔内に上下方向に吊下げられた平行な紐状担体
の複数の列からなる担体ユニットを1段又は多段に設置
してなる構成をイ史用するので次の効果を奏する。
As explained above, the anaerobic pyroreactor according to the present invention
Since this method uses a structure in which carrier units each consisting of a plurality of rows of parallel string-like carriers suspended vertically within a reaction tower are installed in one or multiple stages, the following effects are achieved.

(イ)紐状担体そのもの及びその組合せである紐状担体
ユニットの閉塞を防止できる。
(a) Blockage of the string-like carrier itself and the string-like carrier unit that is a combination thereof can be prevented.

(ロ)前記紐状担体の下端と連通ずる廃水投入管に接続
され且つ液面検出計が備えられた水圧損検出パンを容易
に付設できるので、この水圧損検出パン内の水位を監視
することにより、バイオリアクターの運転をa続したま
まで汚泥の堆積量及び閉塞の進行状態を監視・検出する
ことができる。
(b) A water pressure loss detection pan connected to the waste water input pipe communicating with the lower end of the string-like carrier and equipped with a liquid level detector can be easily attached, so that the water level in this water pressure loss detection pan can be monitored. This makes it possible to monitor and detect the amount of sludge deposited and the progress of clogging while the bioreactor continues to operate.

(ハ)縦長の反応塔に適するので、廃水の均一な゛上昇
流を形成し、廃水の水質に対応して縦方向の微生物相の
役割分担を行ない、処理水の水質の安定性を確保するこ
とができる。
(c) Suitable for vertically elongated reaction towers, it forms a uniform upward flow of wastewater, and the role of microorganisms in the vertical direction is divided according to the quality of the wastewater, ensuring the stability of the quality of the treated water. be able to.

(ニ)w:長の反応塔に適するので、設備の用地面積を
節減することができる。
(d) Since it is suitable for a long reaction tower, the land area of the equipment can be saved.

(ホ)縦長の反応塔を使用した場合には、jff植した
f’j泥の水平的な広がりを少なくし、狭い面積内に沈
S堆Jlt l、た汚泥の全量を簡単に引抜〈ことがで
きる。
(e) When a vertically elongated reaction tower is used, it is possible to reduce the horizontal spread of the planted sludge and easily pull out the entire amount of sludge that has settled in a narrow area. Can be done.

(へ)リングレースその他の適当な紐状担体を用い、必
要にして十分な菌体濃度をバイオリアクター内に維持す
ることができる。
(f) A necessary and sufficient bacterial cell concentration can be maintained within the bioreactor by using a suitable string-like carrier such as ring lace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による嫌気性バイオリアクターの一実施
例の図式的縦断図、第2A図び第2B図は紐状担体の説
明図、第3図及び第4図は紐状担体ユニットの平面図及
び斜視図、第5図から第8図までは反応塔の構造の説明
図、第9図は閉塞進行状態検出方法の説明図、第10図
は紐状担体ユニット閉塞の説明図、第11図は沈澱汚泥
引抜S方法の説明図、第12図及び第13図は従来技術
の説明図である。 1・・・廃水、  2・・・反応槽、  3′・・・濾
床、  4・・・処理水、  5・・・消化ガス、10
・・・反応塔。 11・・・担体ユニシト、 12・・・紐状担体、 z
3・・・保持部材、  14・・・支持枠、 15・・
・廃水投入口。 16・・・上蓋、 17・・・水圧損検出パン、 18
・・・集水パンブラケット、 19・・・集水パン、 
20・・・廃水投入管、 21・・・パイプ継手、  
22・・・液面検出計、 23・・・処理水排出管、 
24・・・水封装置、25・・・処理水排出口、28・
・・担体ユニットブラケット、 27・・・担体ユニッ
ト受部材、 3o・・・ガス排出口、 31・・・バキ
ュームブレーカ、 32・・・廃水補給口、33・・・
沈澱汚泥、34・・・吸引管。 35・・・ゴムバッキング。 特許出願人   鹿島建設株式会社 特許出頭代理人  弁理士  市東禮次部第2A図 名2日図 第4図 第5図 第6図 第7図 第8図 第10図 第11図 (d) (f) 13図 (b)      (c ) (e) 1       (h)
FIG. 1 is a schematic longitudinal sectional view of one embodiment of the anaerobic bioreactor according to the present invention, FIGS. 2A and 2B are illustrations of a string-like carrier, and FIGS. 3 and 4 are plan views of a string-like carrier unit. Figures and perspective views, Figures 5 to 8 are explanatory diagrams of the structure of the reaction tower, Figure 9 is an explanatory diagram of the method for detecting the progress of blockage, Figure 10 is an explanatory diagram of the blockage of the string-shaped carrier unit, and Figure 11 is an explanatory diagram of the blockage progress state detection method. The figure is an explanatory diagram of the S method for drawing out settled sludge, and FIGS. 12 and 13 are explanatory diagrams of the prior art. 1... Wastewater, 2... Reaction tank, 3'... Filter bed, 4... Treated water, 5... Digestion gas, 10
...Reaction tower. 11... Carrier unit, 12... String-shaped carrier, z
3... Holding member, 14... Support frame, 15...
・Wastewater inlet. 16...Top lid, 17...Water pressure loss detection pan, 18
...Water collection pan bracket, 19...Water collection pan,
20...Wastewater input pipe, 21...Pipe joint,
22... Liquid level detector, 23... Treated water discharge pipe,
24... Water sealing device, 25... Treated water outlet, 28.
...Carrier unit bracket, 27...Carrier unit receiving member, 3o...Gas discharge port, 31...Vacuum breaker, 32...Wastewater supply port, 33...
Settled sludge, 34...suction pipe. 35...Rubber backing. Patent Applicant Kajima Corporation Patent Appearing Agent Patent Attorney Ichito Rei Tsugube Figure 2A Figure 2 Day Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 10 Figure 11 (d) (f) ) Figure 13 (b) (c) (e) 1 (h)

Claims (2)

【特許請求の範囲】[Claims] (1)反応塔内に上下方向に吊下げられた平行な紐状担
体の複数の列からなる担体ユニットを1段又は多段に設
置してなる嫌気性バイオリアクター。
(1) An anaerobic bioreactor comprising one or more stages of carrier units each consisting of a plurality of rows of parallel string-shaped carriers suspended vertically within a reaction tower.
(2)反応塔内に上下方向に吊下げられた平行な紐状担
体の複数の列、前記反応塔の上部に形成された廃水投入
口の直下に設けられた水圧損検出パン、前記水圧損検出
パンから前記反応塔底部まで延在する廃水投入管、及び
前記廃水の流路における流体抵抗の変化に応動する前記
水圧損検出パン内の水位を検出する液面検出計を備えて
なる嫌気性バイオリアクター。
(2) A plurality of rows of parallel string-like carriers suspended vertically within the reaction tower, a water pressure loss detection pan provided directly below the wastewater inlet formed at the top of the reaction tower, and the water pressure loss An anaerobic system comprising: a wastewater input pipe extending from a detection pan to the bottom of the reaction tower; and a liquid level detector that detects the water level in the water pressure loss detection pan in response to changes in fluid resistance in the wastewater flow path. bioreactor.
JP63039645A 1988-02-24 1988-02-24 Anaerobic bioreactor Granted JPH01215397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63039645A JPH01215397A (en) 1988-02-24 1988-02-24 Anaerobic bioreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039645A JPH01215397A (en) 1988-02-24 1988-02-24 Anaerobic bioreactor

Publications (2)

Publication Number Publication Date
JPH01215397A true JPH01215397A (en) 1989-08-29
JPH0423596B2 JPH0423596B2 (en) 1992-04-22

Family

ID=12558820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039645A Granted JPH01215397A (en) 1988-02-24 1988-02-24 Anaerobic bioreactor

Country Status (1)

Country Link
JP (1) JPH01215397A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004041929A (en) * 2002-07-11 2004-02-12 Fuji Electric Holdings Co Ltd Methane fermentation apparatus for organic waste
KR100770178B1 (en) * 2001-12-22 2007-10-25 주식회사 포스코 Multi-stage packed bed biofilm reactor
US7297274B2 (en) * 2001-10-24 2007-11-20 University Of Florida Research Foundation, Inc. Fixed-film anaerobic digestion of flushed waste
JP2008029945A (en) * 2006-07-27 2008-02-14 Spring Field Kk Microbial carrier for waste water treatment, and waste water treatment apparatus
JP2008221033A (en) * 2007-03-08 2008-09-25 Kuraray Co Ltd Wastewater treatment method and apparatus
JP5374044B2 (en) * 2005-11-22 2013-12-25 サッポロビール株式会社 Hydrogen fermentation apparatus and method for producing hydrogen
WO2014188776A1 (en) * 2013-05-24 2014-11-27 佐竹化学機械工業株式会社 Digester
US11104596B2 (en) * 2018-07-06 2021-08-31 Clearwater BioLogic LLC Bioreactor, system, and method for reduction of sulfates from surface waters

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297274B2 (en) * 2001-10-24 2007-11-20 University Of Florida Research Foundation, Inc. Fixed-film anaerobic digestion of flushed waste
KR100770178B1 (en) * 2001-12-22 2007-10-25 주식회사 포스코 Multi-stage packed bed biofilm reactor
JP2004041929A (en) * 2002-07-11 2004-02-12 Fuji Electric Holdings Co Ltd Methane fermentation apparatus for organic waste
JP5374044B2 (en) * 2005-11-22 2013-12-25 サッポロビール株式会社 Hydrogen fermentation apparatus and method for producing hydrogen
JP2008029945A (en) * 2006-07-27 2008-02-14 Spring Field Kk Microbial carrier for waste water treatment, and waste water treatment apparatus
JP2008221033A (en) * 2007-03-08 2008-09-25 Kuraray Co Ltd Wastewater treatment method and apparatus
WO2014188776A1 (en) * 2013-05-24 2014-11-27 佐竹化学機械工業株式会社 Digester
JPWO2014188776A1 (en) * 2013-05-24 2017-02-23 佐竹化学機械工業株式会社 Digestive equipment
US11104596B2 (en) * 2018-07-06 2021-08-31 Clearwater BioLogic LLC Bioreactor, system, and method for reduction of sulfates from surface waters

Also Published As

Publication number Publication date
JPH0423596B2 (en) 1992-04-22

Similar Documents

Publication Publication Date Title
EP0213691B1 (en) A bioconversion reactor
Shieh et al. Fluidized bed biofilm reactor for wastewater treatment
US4322296A (en) Method for wastewater treatment in fluidized bed biological reactors
CN1099384C (en) Process for aerobic treatment of waste water
US5091315A (en) Bioconversion reactor
CN102448894B (en) Method and reactor for biological purification of waste water
Perez et al. Comparative performance of high rate anaerobic thermophilic technologies treating industrial wastewater
US4413058A (en) Continuous production of ethanol by use of flocculent zymomonas mobilis
CN101823793A (en) Double-path circulation full-mixing type anaerobic reactor
Hutňan et al. Comparison of startup and anaerobic wastewater treatment in UASB, hybrid and baffled reactor
JPH01215397A (en) Anaerobic bioreactor
CN110526395A (en) Eddy flow anaerobic reactor for waste water treatment system
JP2006110424A (en) Method and apparatus for treating organic waste water
KR101048673B1 (en) External circulating anaerobic digester
CN208429929U (en) A kind of porous plate coupled filtering net up-flow granular sludge reactor
CN207002512U (en) A kind of New-type refuse vehicle percolation liquid treating system
Ng et al. Treatment of piggery wastewater by expanded-bed anaerobic filters
CN205856269U (en) Biological reaction tank for treating polluted water
Li et al. Treatment of municipal wastewater using a contact oxidation filtration separation integrated bioreactor
Meikap et al. Removal of Phenolic Compounds From Industrial Waste Water by SemifluidizedBed Bio-Reactor
JPS61271090A (en) Treating device for waste water using immobilized microorganism
CN111410299A (en) Flexible filler sequencing batch biofilm reactor
KR19980054441A (en) High efficiency combined purification tank
JPH01164493A (en) Microorganism immobilizing bed type bioreactor
CN109928501A (en) A kind of high-performance bio fluidized-bed reactor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term