JPH04235741A - Catalyst for decomposing methane gas - Google Patents

Catalyst for decomposing methane gas

Info

Publication number
JPH04235741A
JPH04235741A JP3150802A JP15080291A JPH04235741A JP H04235741 A JPH04235741 A JP H04235741A JP 3150802 A JP3150802 A JP 3150802A JP 15080291 A JP15080291 A JP 15080291A JP H04235741 A JPH04235741 A JP H04235741A
Authority
JP
Japan
Prior art keywords
methane gas
catalyst
heat
reaction
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3150802A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kajima
一広 梶間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3150802A priority Critical patent/JPH04235741A/en
Publication of JPH04235741A publication Critical patent/JPH04235741A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a methane decomposing catalyst lowering the reaction temp. of methane decomposition reaction by coating a heat-resistant fiber such as silica wool, alumina wool or a carbon fiber with an iron catalyst. CONSTITUTION:A heat-resistant fiber such as silica wool, alumina wool or a carbon fiber is treated with a nitric acid solution under heating and subsequently filtered, washed and dried. Next, iron is dissolved by hydrochloric acid and hot water is added to the resulting solution and the heat-resistant fiber is immersed in the solution to be coated with an iron catalyst. The coated fiber is made weak alkaline, washed and dried. A reaction tube 2 is filled with the heat-resistant fiber coated with the iron catalyst thus obtained to be heated to about 1000 deg.C and, when temp. is stabilized, methane gas is allowed to flow in the reaction tube 2. By this method, the reaction temp. of methane decomposition reaction can be lowered and the constitutional material of a furnace can be reduced and power consumption can be also reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はメタンガス分解用触媒に
関し、特に閉鎖系空間(宇宙ステーション、核シェルタ
ー、潜水艦等)で使用される炭酸ガス還元・酸素回収シ
ステムのメタン分解反応に適用される触媒や地球環境制
御用メタンガス分解装置の反応炉に適用される触媒に有
利に適用される同触媒に関する。
[Industrial Application Field] The present invention relates to a catalyst for decomposing methane gas, and in particular a catalyst applied to methane decomposition reactions in carbon dioxide reduction and oxygen recovery systems used in closed spaces (space stations, nuclear shelters, submarines, etc.). The present invention relates to a catalyst that is advantageously applied to a reactor of a methane gas decomposition device for global environmental control.

【0002】0002

【従来の技術】従来のメタンガス分解法の一態様を図3
によって説明する。図3において、メタンガス分解炉1
にセットされた反応管2の内部に耐熱性繊維7が充填さ
れている。この反応管2にメタンガスが流入され熱分解
されることにより、耐熱性繊維7の表面上に固体炭素が
折出し、反応管2のの出口部より水素ガスが流出する。 この装置を用いて反応管2に流入されたメタンガスを1
000℃で熱分解した結果、分解率は約35%であった
[Prior Art] Figure 3 shows one aspect of the conventional methane gas decomposition method.
This is explained by In Figure 3, methane gas decomposition furnace 1
Heat-resistant fibers 7 are filled inside the reaction tube 2 set in the reactor tube 2 . When methane gas flows into the reaction tube 2 and is thermally decomposed, solid carbon is precipitated on the surface of the heat-resistant fiber 7, and hydrogen gas flows out from the outlet of the reaction tube 2. Using this device, methane gas flowing into the reaction tube 2 is
As a result of thermal decomposition at 000°C, the decomposition rate was about 35%.

【0003】上記従来法のメタンガス分解時の条件は次
の通りであった。 反応管寸法    :    内径30mm長さ100
0mm 反応温度      :    1000℃耐熱繊維 
     :    カーボン繊維(線径1〜10μm
) 耐熱繊維充填量及び充填体積  :  3.5g,10
0cm3   メタンガス流量  :  0.1411/min.
GHSV      :    60hr−1系内圧力
      :    0.5kg/cm2G
The conditions for decomposing methane gas in the conventional method were as follows. Reaction tube dimensions: inner diameter 30mm length 100mm
0mm Reaction temperature: 1000℃ heat resistant fiber
: Carbon fiber (wire diameter 1-10μm
) Heat-resistant fiber filling amount and filling volume: 3.5g, 10
0cm3 Methane gas flow rate: 0.1411/min.
GHSV: 60hr-1 System pressure: 0.5kg/cm2G

【000
4】
000
4]

【発明が解決しようとする課題】メタンガス熱分解反応
において、従来の技術は次の欠点を有する。 (1)メタンガス分解率は1000℃で約35%であり
、分解率を約95%にするためには反応温度を1260
℃以上に設定しなければならない。 (2)高温の反応であるため、熱分解炉及び反応管の構
成材料が限定される。 (3)反応温度を一定に保つためには断熱材が多量に必
要であり、メタンガス分解炉の体積及び重量が大きくな
る。
Problems to be Solved by the Invention In the methane gas thermal decomposition reaction, the conventional techniques have the following drawbacks. (1) The methane gas decomposition rate is approximately 35% at 1000°C, and in order to achieve a decomposition rate of approximately 95%, the reaction temperature must be adjusted to 1260°C.
Must be set above ℃. (2) Since the reaction is at a high temperature, the constituent materials of the pyrolysis furnace and reaction tube are limited. (3) In order to keep the reaction temperature constant, a large amount of heat insulating material is required, which increases the volume and weight of the methane gas decomposition furnace.

【0005】本発明は以上のような問題点を解決するた
め、メタン分解反応の反応温度を低下させることができ
るメタン分解触媒を提供しようとするものである。
[0005] In order to solve the above-mentioned problems, the present invention aims to provide a methane decomposition catalyst that can lower the reaction temperature of the methane decomposition reaction.

【0006】[0006]

【課題を解決するための手段】本発明は耐熱性繊維に鉄
触媒を被覆してなることを特徴とするメタンガス分解用
触媒である。
[Means for Solving the Problems] The present invention is a catalyst for decomposing methane gas, which is characterized by comprising heat-resistant fibers coated with an iron catalyst.

【0007】本発明において使用される耐熱性繊維とし
てはシリカウール、アルミナウール、カーボン繊維など
があげられ、鉄触媒をこれらの繊維に被覆する手段とし
ては、めっき法、含浸法、溶融法または蒸着法などが採
用できる。
[0007] Examples of the heat-resistant fibers used in the present invention include silica wool, alumina wool, and carbon fibers, and methods for coating these fibers with the iron catalyst include plating, impregnation, melting, and vapor deposition. Laws etc. can be adopted.

【0008】[0008]

【作用】(1)鉄触媒がメタン分解反応に適用されるこ
とにより、反応温度の低温化が可能となる。 (2)反応温度の低下により、メタンガス分解炉及び反
応器構成材料の選択性が向上する。 (3)反応温度の低下により、断熱材使用量が少量とな
り、メタンガス分解炉の体積及び重量を低減できる。
[Function] (1) By applying an iron catalyst to the methane decomposition reaction, the reaction temperature can be lowered. (2) Decreasing the reaction temperature improves the selectivity of the methane gas decomposition furnace and reactor constituent materials. (3) By lowering the reaction temperature, the amount of heat insulating material used can be reduced, and the volume and weight of the methane gas decomposition furnace can be reduced.

【0009】[0009]

【実施例】以下、図1に示すフローに従って本発明触媒
の一実施例の効果を立証する。図1において、1はメタ
ンガス分解炉、2は反応管、3は鉄触媒を被覆した耐熱
性繊維(線径1〜10μm)、4はマスフロメータ、5
は背圧弁、6はガスクロマトグラフ分析装置である。
EXAMPLE The effect of an example of the catalyst of the present invention will be demonstrated below according to the flow shown in FIG. In FIG. 1, 1 is a methane gas decomposition furnace, 2 is a reaction tube, 3 is a heat-resistant fiber coated with an iron catalyst (wire diameter 1 to 10 μm), 4 is a mass flow meter, and 5
6 is a back pressure valve, and 6 is a gas chromatograph analyzer.

【0010】内径30mm、長さ1000mmの反応管
2の内部に表面を鉄触媒で被覆したカーボン繊維(線径
1〜10μm)3を約10g充填し、次に鉄触媒で被覆
したカーボン繊維3を1000℃に加熱し、温度が安定
した後、メタンガス重量をマスフロメータ4で0.41
/min(SV:60hr−1)に調整し、反応管2に
流入させた。次に、系内圧力を背圧弁5を使用して0.
5kg/cm2Gに設定する。系内圧力が安定した後、
反応管2出口部の水素ガス及びメタンガス濃度を求める
ため、ガスクロマトグラフ分析装置6で流出ガスを分折
した。その結果、メタンガス分解率は約95%であった
Approximately 10 g of carbon fiber (wire diameter 1 to 10 μm) 3 whose surface was coated with an iron catalyst was filled into a reaction tube 2 with an inner diameter of 30 mm and a length of 1000 mm, and then the carbon fiber 3 coated with an iron catalyst was filled. After heating to 1000℃ and stabilizing the temperature, measure the weight of methane gas with mass flowmeter 4 at 0.41.
/min (SV: 60 hr-1) and flowed into the reaction tube 2. Next, the pressure inside the system is reduced to 0 using the back pressure valve 5.
Set to 5kg/cm2G. After the system pressure stabilizes,
In order to determine the hydrogen gas and methane gas concentrations at the outlet of the reaction tube 2, the outflow gas was separated using a gas chromatograph analyzer 6. As a result, the methane gas decomposition rate was about 95%.

【0011】なお、上記方法で使用した鉄触媒で被覆し
たカーボン繊維は下記のようにして製造したものである
。カーボン繊維を硝酸10%溶液中で2〜3時間加熱処
理後、濾過水洗し乾燥する。鉄を塩酸で溶解後、温水を
加えて液量を約80mlにし、カーボン繊維に浸漬する
。この溶液にホルマリン(37vo1%)を約8ml加
えた後、NaOH溶液(30wt%)をカーボン繊維が
浸漬されている溶液に加え、弱アルカリ性とする。その
後、カーボン繊維を溶液から取り出し、水洗した後、1
20〜150℃で乾燥する。以上の操作によりカーボン
繊維上に付着した鉄の重量はカーボン繊維1gに対し約
2gであった。
[0011] The carbon fiber coated with an iron catalyst used in the above method was produced in the following manner. After heat treating the carbon fibers in a 10% nitric acid solution for 2 to 3 hours, the carbon fibers are filtered, washed with water, and dried. After dissolving iron with hydrochloric acid, warm water is added to make the liquid volume about 80 ml, and the carbon fiber is immersed in the solution. Approximately 8 ml of formalin (37 vol%) is added to this solution, and then a NaOH solution (30 wt%) is added to the solution in which the carbon fibers are immersed to make it slightly alkaline. After that, the carbon fibers were taken out from the solution, washed with water, and then
Dry at 20-150°C. As a result of the above operations, the weight of iron deposited on the carbon fibers was approximately 2 g per 1 g of carbon fibers.

【0012】以上、本発明の一実施例によって、本発明
の効果を説明したが、メタンガス分解反応は、閉鎖生態
系用炭酸ガス還元・酸素回収システムの一部に用いるこ
とができる。この態様を図2に示す。図2に記載の炭酸
ガス還元・酸素回収システムにおいて、人間の呼吸によ
り排出された炭酸ガスを分離・濃縮〔G〕する。その後
、炭酸ガスを水素で還元〔H〕することにより、メタン
ガスと水が生成する。メタンガスは熱分解〔J〕される
ことにより、固体炭素及び水素が生成し、水素は炭酸ガ
ス還元用として再利用される。また炭酸ガスを還元する
ことにより得られた水は、酸素と水素とに電気分解〔1
〕され、酸素は人間の呼吸用として、水素は炭酸ガス還
元用として再利用することができる。本発明の触媒は上
記システム中のメタンガス熱分解反応〔J〕に使用する
ことができる。
The effects of the present invention have been explained above with reference to one embodiment of the present invention, but the methane gas decomposition reaction can be used as part of a carbon dioxide gas reduction/oxygen recovery system for closed ecosystems. This aspect is shown in FIG. In the carbon dioxide gas reduction/oxygen recovery system shown in FIG. 2, carbon dioxide gas exhausted by human breathing is separated and concentrated [G]. Thereafter, methane gas and water are generated by reducing carbon dioxide gas with hydrogen [H]. Methane gas is thermally decomposed [J] to produce solid carbon and hydrogen, and the hydrogen is reused for reducing carbon dioxide gas. In addition, water obtained by reducing carbon dioxide gas is electrolyzed into oxygen and hydrogen [1].
], the oxygen can be reused for human breathing, and the hydrogen can be reused for reducing carbon dioxide gas. The catalyst of the present invention can be used in the methane gas thermal decomposition reaction [J] in the above system.

【0013】[0013]

【発明の効果】本発明は次に示す効果を有する。 (1)メタンガスを90%以上炭素と水素に分解するた
めの反応温度は、従来法では約1260℃でったのに対
し、本発明では1000℃に低下することが可能である
。 (2)メタンガス分解反応温度の低下により、メタンガ
ス分解炉の構成材料の選択性が向上する。 (3)またメタンガス分解反応温度の低下により、メタ
ンガス分解炉の断熱材使用量を低減することができ、分
解炉の体積及び重量を約1/2にすることができる。 (4)メタンガス分解炉の消費電力を節減することがで
きる。
[Effects of the Invention] The present invention has the following effects. (1) The reaction temperature for decomposing methane gas into 90% or more of carbon and hydrogen was about 1260°C in the conventional method, but it can be lowered to 1000°C in the present invention. (2) By lowering the methane gas decomposition reaction temperature, the selectivity of constituent materials of the methane gas decomposition furnace is improved. (3) Furthermore, by lowering the methane gas decomposition reaction temperature, the amount of insulation material used in the methane gas decomposition furnace can be reduced, and the volume and weight of the decomposition furnace can be reduced to about 1/2. (4) The power consumption of the methane gas decomposition furnace can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の触媒の効果を立証する一実施例の説明
図。
FIG. 1 is an explanatory diagram of an example that proves the effect of the catalyst of the present invention.

【図2】本発明の触媒を閉鎖生態系用炭酸ガス還元・酸
素回収システムに応用したフロー図。
FIG. 2 is a flow diagram in which the catalyst of the present invention is applied to a carbon dioxide reduction/oxygen recovery system for closed ecosystems.

【図3】従来のメタンガス分解法の説明図。FIG. 3 is an explanatory diagram of a conventional methane gas decomposition method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  耐熱性繊維に鉄触媒を被覆してなるこ
とを特徴とするメタンガス分解用触媒。
1. A catalyst for decomposing methane gas, comprising a heat-resistant fiber coated with an iron catalyst.
JP3150802A 1991-01-18 1991-01-18 Catalyst for decomposing methane gas Withdrawn JPH04235741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3150802A JPH04235741A (en) 1991-01-18 1991-01-18 Catalyst for decomposing methane gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3150802A JPH04235741A (en) 1991-01-18 1991-01-18 Catalyst for decomposing methane gas

Publications (1)

Publication Number Publication Date
JPH04235741A true JPH04235741A (en) 1992-08-24

Family

ID=15504751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3150802A Withdrawn JPH04235741A (en) 1991-01-18 1991-01-18 Catalyst for decomposing methane gas

Country Status (1)

Country Link
JP (1) JPH04235741A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690997A (en) * 1993-10-04 1997-11-25 Sioux Manufacturing Corporation Catalytic carbon--carbon deposition process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690997A (en) * 1993-10-04 1997-11-25 Sioux Manufacturing Corporation Catalytic carbon--carbon deposition process

Similar Documents

Publication Publication Date Title
Ali et al. Deactivation and regeneration of Pd Ag membranes for dehydrogenation reactions
RU2197472C2 (en) Vinyl acetate production process
CN103348104B (en) Urea water reformer and employ the waste gas cleaning plant of urea water reformer
Zhang et al. High-purity COx-free H2 generation from NH3 via the ultra permeable and highly selective Pd membranes
KR19990007143A (en) Process for decomposition of fluorine-containing compound, catalyst and decomposition treatment apparatus
US4687644A (en) Process and arrangement for the incremental enrichment of deuterium and/or tritium in a material suitable for the isotope exchange of deuterium and/or tritium with hydrogen
RU2007148476A (en) DEVICE FOR THE INTRODUCTION OF REACTIVE GASES TO THE REACTION CHAMBER AND EPITAXIAL REACTOR IN WHICH THE INDICATED DEVICE IS USED
GB829581A (en) Improvements in or relating to the disposal of noxious gases containing nitrogen oxide fumes
CN109879259A (en) A kind of ultra-pure xenon, krypton purification system and purification process
CN105976884A (en) Treatment device and treatment method for tritium-containing wastewater
JPH04235741A (en) Catalyst for decomposing methane gas
US4836898A (en) Methane conversion reactor
CN112915929B (en) Preparation device of electronic-grade fluoromethane and preheating activation method thereof
CN104129758B (en) A kind of hydrogen isotopic exchange film reaction assembly
Wikstrom et al. Catalytic dissociation of nitrogen dioxide
Willms et al. Recent palladium membrane reactor development at the tritium systems test assembly
US5213770A (en) Methane conversion reactor
CN105967150A (en) Equipment and method for preparing SO3 gas through platinum catalyst
Mochizuki et al. Study of isotope exchange reactions on ceramic breeder materials deposited with noble metal
JPH0471643A (en) Catalyst for decomposing methane gas
JPH0559933A (en) Reducing agent reforming reactor and exhaust gas purifying device
US3025224A (en) Process for isolating isotopes of alkali metals
JP6780847B2 (en) Hydrogen iodide decomposition catalyst and hydrogen production method
JPH04235738A (en) Catalyst for reducing carbon dioxide
JPS59102403A (en) Production of porous diaphragm

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514