JPH04229556A - Plate for lead-acid battery - Google Patents

Plate for lead-acid battery

Info

Publication number
JPH04229556A
JPH04229556A JP2407874A JP40787490A JPH04229556A JP H04229556 A JPH04229556 A JP H04229556A JP 2407874 A JP2407874 A JP 2407874A JP 40787490 A JP40787490 A JP 40787490A JP H04229556 A JPH04229556 A JP H04229556A
Authority
JP
Japan
Prior art keywords
particles
active material
lead
paste
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2407874A
Other languages
Japanese (ja)
Other versions
JP3186071B2 (en
Inventor
Tadashi Yoneda
米田 忠司
Tsunemi Aiba
恒美 相羽
Hiroyuki Sato
浩之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP40787490A priority Critical patent/JP3186071B2/en
Publication of JPH04229556A publication Critical patent/JPH04229556A/en
Application granted granted Critical
Publication of JP3186071B2 publication Critical patent/JP3186071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve active material porosity without shortening a plate life. CONSTITUTION:Porous flocculable particles, manufactured by flocculating fine particles 2 of a lead compound such as PbO2 and fine fibers 3 such as an acryl fiber having acid resistance and oxidation resistance, are added in an active material 5. Relatively large vacancies 4 exist in the flocculable particles, and a part of the fine fibers 3 is protruded from the flocculable particles. Porosity in an active material is improved by the vacancies 4 in the flocculable particles, and fine particle fission is prevented by the fine fibers 3. A part of the fine fibers 3, protruded from the flocculable particles, is entangled with paste forming the active material in the circumference to be integrated with the active material, increasing plate strength.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は鉛蓄電池用極板の改良に
関するもので、極板の活物質利用率の向上と寿命性能の
改善を目的とするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the improvement of electrode plates for lead-acid batteries, and its purpose is to improve the utilization rate of the active material of the electrode plates and their life performance.

【0002】0002

【従来の技術】従来から極板の活物質利用率を向上させ
るために、陽極板において活物質の多孔度を増加させる
ことが行われている。活物質の多孔度を増加させる具体
的な方法としては、活物質形成用のペーストを調整する
ときに体積の大きい硫酸鉛の含有率を上げ、この硫酸鉛
が化成後に体積の小さな活物質である二酸化鉛になるの
を利用して活物質層内に細孔を発生させる方法や、ペー
スト中の水分量を増加して水分の占有体積を利用して高
多孔度化を図る方法が提案された。これらの方法は活物
質層の密度を低くして、疎な活物質層を形成する方法で
あり、電池使用初期は活物質利用率が高いものの、その
後の活物質利用率の低下が著しく、極板寿命が短くて実
用的ではなかった。
2. Description of the Related Art Conventionally, in order to improve the utilization rate of active material in an electrode plate, it has been practiced to increase the porosity of the active material in the anode plate. A specific method for increasing the porosity of the active material is to increase the content of lead sulfate, which has a large volume, when preparing the paste for forming the active material, and to convert this lead sulfate into an active material with a small volume after formation. A method was proposed in which pores were generated in the active material layer by utilizing lead dioxide, and a method was proposed in which the amount of water in the paste was increased and the volume occupied by the water was used to increase the porosity. . These methods lower the density of the active material layer to form a sparse active material layer, and although the active material utilization rate is high at the beginning of battery use, the active material utilization rate decreases significantly after that and becomes extremely The lifespan of the board was short and it was not practical.

【0003】そこでペースト中の水分量を少なくして活
物質層の密度を高くし、ペーストに多孔質な物質を添加
する方法と、硫酸と層間化合物を作る黒鉛をペ―ストに
添加し層間が拡がることにより活物質層内に亀裂を発生
させて活物質層内に空間を確保する方法も提案されてい
る。
[0003]Therefore, two methods have been proposed: reducing the amount of water in the paste to increase the density of the active material layer, and adding a porous material to the paste, and adding graphite, which forms an interlayer compound with sulfuric acid, to the paste to increase the density of the active material layer. A method has also been proposed in which cracks are generated within the active material layer by spreading to ensure space within the active material layer.

【0004】0004

【発明が解決しようとする課題】前者の例としては、多
孔質な物質として多孔性のシリカや中空繊維を添加する
ものがある。しかしながらこれらの物質は、陽極板で見
ると二酸化鉛との結合性が無いかまたは結合性が弱いこ
とがある。そのため電池使用の初期段階では活物質利用
率の向上が認められるが、中期から活物質の崩壊が生じ
やすく、利用率の低下が生じて電池寿命が短くなる。後
者の例の問題点としては、黒鉛の拡がりによる圧力が生
じ、この圧力が活物質を破壊する破壊力となるため、極
板,極板群及び電池作製時にこの破壊力を吸収する工夫
が必要である。さらに、黒鉛は徐々に微細化して極板か
ら離脱していくため、電池が使用されていくと活物質層
内に大きな孔が発生して極板寿命が低下する。これら二
種類の方法で極板寿命が低下する原因は、添加物質と二
酸化鉛との間の結合率が極めて弱いか、ほとんどないこ
とである。
[Problems to be Solved by the Invention] Examples of the former include those in which porous silica or hollow fibers are added as porous substances. However, these substances may have no or weak bonding ability with lead dioxide when viewed on the anode plate. Therefore, an improvement in the active material utilization rate is observed in the early stages of battery use, but the active material tends to collapse from the middle stage, resulting in a decrease in the utilization rate and shortening the battery life. The problem with the latter example is that pressure is generated due to the spread of graphite, and this pressure becomes a destructive force that destroys the active material, so it is necessary to devise ways to absorb this destructive force when producing electrode plates, electrode plate groups, and batteries. It is. Furthermore, since graphite gradually becomes finer and separates from the electrode plate, as the battery is used, large pores are generated in the active material layer, shortening the life of the electrode plate. The reason why the plate life is reduced in these two methods is that the bonding rate between the additive and lead dioxide is extremely weak or almost nonexistent.

【0005】また、鉛酸化物を造粒して顆粒として厚み
の厚い極板の活物質に添加する方法も提案されている。 この方法では顆粒により形成された孔により活物質の利
用率を向上させ、極板の寿命は厚さで確保する方法であ
るが当然のことながら薄い極板には使用できない欠点が
あり、この方法を使用できる極板は5mm以上の厚みが
必要であるとされている。以上は陽極板について記した
が陰極板においても添加物質と金属鉛との間の結合力が
弱く大きな空孔を生じ、活物質層の集電力を低下させる
欠点がある。
A method has also been proposed in which lead oxide is granulated and added as granules to the active material of a thick electrode plate. In this method, the utilization rate of the active material is improved by the pores formed by the granules, and the lifespan of the electrode plate is ensured by the thickness, but of course there is a drawback that it cannot be used for thin electrode plates, and this method It is said that a plate that can be used must have a thickness of 5 mm or more. The above has been described with respect to the anode plate, but the negative electrode plate also has the disadvantage that the bonding force between the additive material and the metal lead is weak and large pores are formed, which reduces the power collection of the active material layer.

【0006】本発明の目的は、活物質の高多孔度を確保
したとき、極板としての寿命が損なわれることを解決す
るものである。
[0006] An object of the present invention is to solve the problem that when high porosity of the active material is ensured, the life of the electrode plate is impaired.

【0007】[0007]

【課題を解決するための手段】請求項1の発明では、鉛
化合物の微細粒子と耐酸性および耐酸化性を有する細繊
維とを凝集してなる多孔質の凝集粒を活物質中に添加す
る。ここで本願明細書における鉛化合物とは、鉛、鉛酸
化物および塩基性硫酸鉛のうち少なくとも一種から選択
されたものである。例えば凝集粒の活物質中への添加は
、水、鉛粉および希硫酸を混練したペーストに凝集粒を
添加して混練することにより達成される。
[Means for Solving the Problem] In the invention as claimed in claim 1, porous aggregate particles formed by aggregating fine particles of a lead compound and fine fibers having acid resistance and oxidation resistance are added to the active material. . Here, the lead compound in the present specification is selected from at least one of lead, lead oxide, and basic lead sulfate. For example, the addition of aggregated particles into the active material is accomplished by adding the aggregated particles to a paste prepared by kneading water, lead powder, and dilute sulfuric acid, and kneading the paste.

【0008】また請求項2の発明では、細繊維の一部を
凝集粒より突出する。
In the second aspect of the invention, a portion of the fine fibers protrudes from the agglomerated particles.

【0009】更に請求項3の発明では、凝集粒中に形成
された孔を略一定の孔径に制御する。
Furthermore, in the third aspect of the invention, the pores formed in the agglomerated particles are controlled to have a substantially constant pore diameter.

【0010】0010

【作用】請求項1の発明のように、鉛化合物の微細粒子
と耐酸性および耐酸化性を有する細繊維とを凝集してな
る多孔質の凝集粒を添加すると、鉛化合物は化成後に電
極の活物質となり、ペーストから形成される活物質と一
体化して相互の結合性が確保される。また細繊維は鉛化
合物の微細粒子を強固に保持するため、ペーストに凝集
粒を添加して混練した場合でも、凝集粒は再び微粒子に
***することがない。
[Operation] When porous agglomerated particles formed by aggregating fine particles of lead compounds and fine fibers having acid resistance and oxidation resistance are added as in the invention as claimed in claim 1, the lead compounds will form in the electrode after chemical formation. It becomes an active material and is integrated with the active material formed from the paste to ensure mutual bonding. Furthermore, since the fine fibers firmly hold the fine particles of the lead compound, even when aggregated particles are added to the paste and kneaded, the aggregated particles will not be split into fine particles again.

【0011】より具体的に説明すると、本発明は極板の
活物質内部にペーストの成分によって生成される細孔に
加えて、前述の凝集粒を添加することにより活物質内部
に例えば数十μm 以上の大きな孔を配置して、従来極
板の表層部に集中していた放電反応を内部に展開するこ
とにより、活物質の利用率向上と寿命向上を図る。
More specifically, the present invention adds the above-mentioned agglomerated particles to the inside of the active material of the electrode plate, in addition to the pores generated by the components of the paste, so that the inside of the active material has pores of, for example, several tens of μm. By arranging the large holes described above, the discharge reaction, which conventionally concentrated on the surface layer of the electrode plate, is developed inside, thereby improving the utilization rate and lifespan of the active material.

【0012】活物質内部に大きな孔を配置する方法とし
て鉛化合物の微細粒子を細繊維で連結した多孔性のある
凝集粒に加工して使用する。この凝集粒の孔には、電解
液である硫酸が浸透し、放電時に活物質内部での反応を
促進する。これにより活物質表層の集中使用による劣化
を抑制する。充電時には放電した活物質から遊離した硫
酸がこの孔へ速やかに排出され、極板外部への移動が容
易となる。このことにより充電反応が効率よく進行する
。このような充放電反応への効果により極板の寿命特性
を損なうことなく活物質の利用率を向上させることがで
きる。
[0012] As a method of arranging large pores inside the active material, fine particles of a lead compound are processed into porous aggregates connected by fine fibers. Sulfuric acid, which is an electrolytic solution, penetrates into the pores of the aggregated particles and promotes reactions inside the active material during discharge. This suppresses deterioration of the surface layer of the active material due to intensive use. During charging, sulfuric acid liberated from the discharged active material is quickly discharged into these pores and easily moves to the outside of the electrode plate. This allows the charging reaction to proceed efficiently. Due to such effects on the charge/discharge reaction, the utilization rate of the active material can be improved without impairing the life characteristics of the electrode plate.

【0013】細繊維は通常添加される結合剤とともに、
ペーストに添加された後の混練などの加工時に凝集粒が
***することを防止する。これにより前記効果を確実に
発揮させることができる。
[0013] The fine fibers, together with the binder usually added,
Prevents the agglomerated particles from splitting during processing such as kneading after being added to the paste. Thereby, the above effects can be reliably exhibited.

【0014】請求項2の発明のように、細繊維の一部を
凝集粒から出した状態にしておくと、凝集粒は混練中に
周囲のペーストにからまり、充填した極板において物理
的に強固な状態でペーストと一体化される。また、この
状態で化成工程が行なわれると、化成中の溶解−析出を
伴う電気化学反応によりペースト成分から生成する活物
質と添加した凝集粒とは化学的にも結合する。
[0014] If some of the fine fibers are left out of the aggregated particles as in the second aspect of the invention, the aggregated particles will become entangled with the surrounding paste during kneading, and will physically become tangled in the packed electrode plate. It is integrated with the paste in a strong state. Further, when the chemical conversion step is performed in this state, the active material produced from the paste components and the added aggregate particles are chemically bonded by an electrochemical reaction accompanied by dissolution and precipitation during the chemical formation.

【0015】極板が厚いとこれまで述べた凝集粒を単に
添加するのみでは、活物質の利用率は依然低い場合があ
る。この場合には凝集粒を多く含んだペーストを極板の
内部層に配置し、外部層には凝集粒の少ないペーストを
配置することにより利用率を向上させることができる。
[0015] If the electrode plate is thick, the utilization rate of the active material may still be low if the agglomerated particles described above are simply added. In this case, the utilization rate can be improved by disposing a paste containing many aggregated particles in the inner layer of the electrode plate and disposing a paste containing less aggregated particles in the outer layer.

【0016】[0016]

【実施例】本発明の実施例を図面を用いて詳細に説明す
る。本発明の実施例の極板を製造する場合には、ペース
トの成分である鉛化合物の微細粒子と耐酸、耐酸化性の
細繊維とを併用して例えば予め数十〜数百μm の大き
さの孔からなる多孔性を持った顆粒または凝集粒を製造
しておく。そしてこれをペーストに所定量添加し混練し
てペーストの段階で多孔性を確保する。ペーストを格子
に充填して極板とした後、ペーストを電池の活物質とす
る化成工程を経ると、予め設けた孔はそのまま活物質層
内部にも残り多孔性のある活物質層を形成することがで
きる。なお、凝集粒の基になる鉛化合物の微粒子として
は、鉛,鉛酸化物及び塩基性硫酸鉛のうち少なくとも一
種類を選択して用いることができ、微粒子の平均粒径は
数μm 程度のものが最も良く、また凝集粒は粒径が0
.5〜1.5mmのものが効果的である。また凝集粒の
添加量はペーストの重量に対して5〜25%まで、好ま
しくは5〜10%の範囲が適当である。
Embodiments Examples of the present invention will be explained in detail with reference to the drawings. When manufacturing the electrode plates of the embodiments of the present invention, fine particles of lead compounds, which are components of the paste, and acid-resistant and oxidation-resistant fine fibers are used in advance, for example, in a size of several tens to hundreds of μm. Granules or agglomerates with porosity consisting of pores are prepared in advance. Then, a predetermined amount of this is added to the paste and kneaded to ensure porosity at the paste stage. After the paste is filled into a grid to form an electrode plate, the paste goes through a chemical conversion process that uses it as the battery's active material, and the pores that were created in advance remain inside the active material layer, forming a porous active material layer. be able to. Note that at least one type of lead, lead oxide, and basic lead sulfate can be selected and used as the fine particles of the lead compound that form the basis of the agglomerated particles, and the average particle size of the fine particles is about several μm. is the best, and agglomerated particles have a particle size of 0.
.. A thickness of 5 to 1.5 mm is effective. The amount of agglomerated particles added is suitably in the range of 5 to 25%, preferably 5 to 10%, based on the weight of the paste.

【0017】添加する凝集粒の作成プロセスの一例を簡
単に図1に示した。水以外の材料は鉛化合物の添加粒子
として平均粒径が数μm 程度のPbO2を、結合剤と
してCMC(カルボキシルメチルセルロース)を、細繊
維として0.7μm の径で3mmの長さにカットした
アクリル繊維を使用した。まず、CMCを20g含む水
溶液1リットルに対しPbO2 微粒子1Kgとアクリ
ル繊維3g加えて充分攪拌し、沈降させた後取出し薄い
板状に圧延する。この圧延した板状のものを熱板で圧力
をかけながら急速に乾燥させ、乾燥させたものを粉砕式
の造粒機を使って凝集粒を作った。
[0017] An example of the process for creating the aggregate particles to be added is briefly shown in FIG. Materials other than water include PbO2 with an average particle size of several μm as lead compound additive particles, CMC (carboxyl methyl cellulose) as a binder, and acrylic fibers cut into 3 mm length with a diameter of 0.7 μm as fine fibers. It was used. First, 1 kg of PbO2 fine particles and 3 g of acrylic fibers are added to 1 liter of an aqueous solution containing 20 g of CMC, thoroughly stirred, allowed to settle, and then taken out and rolled into a thin plate. This rolled plate-like product was rapidly dried while applying pressure with a hot plate, and the dried product was used to form aggregated granules using a pulverizing type granulator.

【0018】凝集粒から細繊維をはみ出さすため、粉砕
時のカッターの刃の断面が凹型のものを使用した。上刃
1a及び下刃1bの刃方の一例を図2に示した。凝集粒
の構造モデルの図を図3に示した。図3に示すように、
PbO2 粒子2はアクリル繊維3を骨格として凝集し
空孔4を形成している。このような凝集粒の代表的な細
孔径の分布例を図4に示した。20μm 付近と100
μm 付近の孔が多く生成されている。このような凝集
粒を用いて格子に充填するペーストを次のようにして調
整した。
[0018] In order to extrude fine fibers from the aggregated particles, a cutter blade with a concave cross section was used during crushing. An example of the cutting edge of the upper blade 1a and the lower blade 1b is shown in FIG. A diagram of the structural model of agglomerated grains is shown in Figure 3. As shown in Figure 3,
PbO2 particles 2 aggregate with acrylic fibers 3 as a skeleton to form pores 4. A typical example of pore size distribution of such aggregated particles is shown in FIG. Around 20μm and 100μm
Many pores around μm are generated. A paste to be filled into a grid using such agglomerated particles was prepared as follows.

【0019】まず、PbO2 からなる鉛粉、希硫酸と
水とを混練し、見掛け密度4.5g/cm3 のペース
トを作り、このペーストに前記した凝集粒を10wt%
加え再び混練した。この混練したペーストを格子に一枚
当たり100g充填し、熟成後化成して陽極板を作製し
た。陽極板の細孔分布の測定例を、凝集粒を添加しない
場合と合わせて図5に示した。図5において、曲線aは
凝集粒を添加しない場合の細孔分布であり、曲線bは凝
集粒を添加した化成後の極板の細孔分布を示している。 凝集粒を添加した陽極板は20μm 付近と100μm
 付近の径を持つ細孔が多く形成されていることが分か
る。
First, lead powder made of PbO2, dilute sulfuric acid, and water are kneaded to make a paste with an apparent density of 4.5 g/cm3, and 10 wt% of the above-mentioned aggregate particles are added to this paste.
and kneaded again. This kneaded paste was filled in a grid at 100 g per sheet, and after ripening, it was chemically formed to produce an anode plate. An example of measuring the pore distribution of the anode plate is shown in FIG. 5 together with a case where no aggregate particles are added. In FIG. 5, curve a shows the pore distribution in the case where no aggregated particles are added, and curve b shows the pore distribution of the electrode plate after chemical formation in which aggregated particles are added. The anode plate with aggregate particles added has a thickness of around 20 μm and a thickness of 100 μm.
It can be seen that many pores with similar diameters are formed.

【0020】図6に凝集粒の極板中における存在状態を
示した。凝集粒はペースト5の中に大きな細孔4を確保
し、且つ周囲のペースト5に細繊維3を侵入させた形で
極板中に存在していた。
FIG. 6 shows the state of the agglomerated particles in the electrode plate. The aggregate particles were present in the electrode plate in the form of large pores 4 secured in the paste 5 and fine fibers 3 penetrating into the surrounding paste 5.

【0021】凝集粒を添加した極板の放電容量と従来の
極板の放電容量との比較を容量比率で示している。図7
において、Aは凝集粒を入れない高密度のペ―ストを使
用した極板を用いた場合の容量比率であり、BはAのペ
―ストに凝集粒を入れた極板の容量比率であり、Cは凝
集粒を入れない見掛け密度3.5g/cm3 の低密度
ペ―ストを使用した極板を用いた場合の容量比率である
。凝集粒入り極板Bの容量比率は、凝集粒を添加しない
前のペーストを使った同図のAの極板に比べ、35%の
容量の増加が認められた。また、凝集粒を添加しないペ
ーストで見掛け密度が低いCの極板と比べても、凝集粒
を入れたBの極板の方が放電容量は多かった。
[0021] A comparison between the discharge capacity of the electrode plate to which agglomerated particles has been added and the discharge capacity of a conventional electrode plate is shown in terms of capacity ratio. Figure 7
In, A is the capacity ratio when using an electrode plate using a high-density paste that does not contain aggregated particles, and B is the capacity ratio of an electrode plate that contains aggregated particles in the paste of A. , C is the capacity ratio when an electrode plate using a low-density paste with an apparent density of 3.5 g/cm3 without agglomerated particles is used. The capacity ratio of electrode plate B containing aggregated particles was found to be increased by 35% compared to electrode plate A in the same figure, which used the paste before adding aggregated particles. Furthermore, even when compared with the electrode plate C, which is a paste without the addition of aggregate particles and has a low apparent density, the electrode plate B containing aggregate particles had a higher discharge capacity.

【0022】前記したA〜Cの三種類の陽極板を用いて
容量48Ahの電池を作製し、JISの測定法に準じて
、20A放電容量で充放電サイクル寿命試験を実施した
。 その結果を図8に示した。図8においてLは寿命判定線
である。この結果から判るように、本発明の陽極板Bを
用いたものは初期の容量が大きく、また充放電を繰り返
しても容量の低下はほとんどない。一方従来品のペース
トの見掛け密度の低い陽極板Cを用いたものでは初期容
量は大きいものの、すぐ容量の低下が生じ寿命に達した
、また高い見掛け密度のペーストを使った陽極板Aを用
いたものでは放電容量は低いままで推移した。
A battery with a capacity of 48 Ah was prepared using the three types of anode plates A to C described above, and a charge/discharge cycle life test was conducted at a discharge capacity of 20 A according to the JIS measurement method. The results are shown in FIG. In FIG. 8, L is a lifespan determination line. As can be seen from the results, those using the anode plate B of the present invention have a large initial capacity, and there is almost no decrease in capacity even after repeated charging and discharging. On the other hand, although the initial capacity was large for the conventional product using anode plate C, which has a low apparent density of paste, the capacity quickly decreased and reached the end of its service life. However, the discharge capacity remained low.

【0023】次に凝集粒に添加する細繊維の量とそれら
を陽極板に添加した場合の電池寿命への影響を図9に示
した。この図から判るように、細繊維の添加量は0.3
wt%までは添加量の増加に伴なって寿命を増加できる
効果があるが、これ以上多くしてもその効果は無い。
Next, FIG. 9 shows the amount of fine fibers added to the agglomerated particles and the effect on the battery life when they are added to the anode plate. As can be seen from this figure, the amount of fine fiber added is 0.3
Up to wt%, there is an effect of increasing the life as the amount added increases, but there is no effect even if the amount is increased beyond this point.

【0024】上記実施例によれば、同一のペーストを用
いた場合で比較すると放電容量を約35%増加させるこ
とができ、また寿命特性も改善することができる。本実
施例では陽極板についてのみ記したが、陽極板Pbの微
粒子からなる凝集粒を作製して適用したところ同様の効
果が得られた。
According to the above embodiment, the discharge capacity can be increased by about 35% and the life characteristics can also be improved compared to when the same paste is used. In this example, only the anode plate was described, but similar effects were obtained when agglomerated particles made of fine particles of Pb were prepared and applied to the anode plate.

【0025】[0025]

【発明の効果】請求項1の発明によれば、鉛化合物の微
細粒子と耐酸性および耐酸化性を有する細繊維とを凝集
してなる多孔質の凝集粒を添加することにより、鉛化合
物は化成後に電極の活物質となり、ペーストから形成さ
れる活物質と一体化して相互の結合性が確保される。ま
た細繊維は鉛化合物の微細粒子を強固に保持するため、
ペーストに凝集粒を添加して混練した場合でも、凝集粒
は再び微粒子に***することがない。したがって多孔質
で寿命の長い鉛蓄電池用極板を得ることができる。
According to the invention of claim 1, by adding porous agglomerated particles formed by aggregating fine particles of lead compounds and fine fibers having acid resistance and oxidation resistance, lead compounds can be removed. After chemical formation, it becomes the active material of the electrode, and is integrated with the active material formed from the paste to ensure mutual bonding. In addition, since the fine fibers firmly hold fine particles of lead compounds,
Even when aggregated particles are added to the paste and kneaded, the aggregated particles do not split into fine particles again. Therefore, it is possible to obtain a porous lead-acid battery plate with a long life.

【0026】また請求項2の発明によれば、細繊維の一
部を凝集粒から出した状態にしておくため、凝集粒が混
練中に周囲のペーストにからまり、物理的に強固な状態
でペーストと一体化される。またこの状態で化成工程が
行なわれると、化成中の溶解−析出を伴う電気化学反応
によりペースト成分から生成する活物質と添加した凝集
粒とは化学的にも結合するため、更に寿命の長い鉛蓄電
池用極板を得ることができる。
Further, according to the second aspect of the invention, since some of the fine fibers are kept out of the aggregated particles, the aggregated particles are entangled with the surrounding paste during kneading and are not physically strong. It is integrated with the paste. Furthermore, if the chemical formation process is carried out in this state, the active material produced from the paste components and the added aggregate particles will be chemically bonded by the electrochemical reaction accompanied by dissolution and precipitation during the chemical formation, resulting in a longer lifespan of lead. A storage battery electrode plate can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】凝集粒の製造プロセスを説明するための図であ
る。
FIG. 1 is a diagram for explaining the manufacturing process of aggregated particles.

【図2】凝集粒を製造する場合に用いるカッタの刃型を
示す断面図である。
FIG. 2 is a cross-sectional view showing the blade shape of a cutter used in producing aggregated grains.

【図3】凝集粒の構造モデルを示す図である。FIG. 3 is a diagram showing a structural model of aggregated grains.

【図4】凝集粒の細孔分布状態を示す図である。FIG. 4 is a diagram showing the pore distribution state of aggregated particles.

【図5】凝集粒を添加した活物質を有する化成後の極板
における細孔分布状態を示す図である。
FIG. 5 is a diagram showing the state of pore distribution in a chemically formed electrode plate having an active material to which aggregated particles are added.

【図6】極板の活物質中に凝集粒が存在する状態を例を
示す図である。
FIG. 6 is a diagram showing an example of a state in which aggregate particles are present in the active material of an electrode plate.

【図7】本発明の極板を用いた電池と従来の極板を用い
た電池の放電容量を比較する図である。
FIG. 7 is a diagram comparing the discharge capacity of a battery using the electrode plate of the present invention and a battery using a conventional electrode plate.

【図8】本発明の極板を用いた電池と従来の極板を用い
た電池の寿命を比較する図である。
FIG. 8 is a diagram comparing the lifespan of a battery using the electrode plate of the present invention and a battery using a conventional electrode plate.

【図9】細繊維の添加量と電池寿命との関係を示した図
である。
FIG. 9 is a diagram showing the relationship between the amount of fine fibers added and battery life.

【符号の説明】[Explanation of symbols]

1a  上刃 1b  下刃 2  PbO2 粒子 3  細繊維 4  空孔 5  活物質 1a Upper blade 1b Lower blade 2 PbO2 particles 3. Fine fiber 4 Vacancy 5 Active material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鉛化合物の微細粒子と耐酸性および耐酸化
性を有する細繊維とを凝集してなる多孔質の凝集粒が活
物質中に添加されていることを特徴とする鉛蓄電池用極
板。
1. An electrode for a lead-acid battery, characterized in that porous aggregate particles formed by aggregating fine particles of a lead compound and fine fibers having acid resistance and oxidation resistance are added to the active material. Board.
【請求項2】前記細繊維の一部が前記凝集粒より突出し
ていることを特徴とする請求項1の鉛蓄電池用極板。
2. The electrode plate for a lead-acid battery according to claim 1, wherein a portion of the fine fibers protrudes from the aggregate particles.
【請求項3】前記凝集粒中に形成された孔が略一定の孔
径に制御されていることを特徴とする請求項2に記載の
鉛蓄電池用極板。
3. The electrode plate for a lead-acid battery according to claim 2, wherein the pores formed in the agglomerated particles are controlled to have a substantially constant pore diameter.
JP40787490A 1990-12-27 1990-12-27 Method for producing electrode plate for lead-acid battery and aggregated particles Expired - Fee Related JP3186071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40787490A JP3186071B2 (en) 1990-12-27 1990-12-27 Method for producing electrode plate for lead-acid battery and aggregated particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40787490A JP3186071B2 (en) 1990-12-27 1990-12-27 Method for producing electrode plate for lead-acid battery and aggregated particles

Publications (2)

Publication Number Publication Date
JPH04229556A true JPH04229556A (en) 1992-08-19
JP3186071B2 JP3186071B2 (en) 2001-07-11

Family

ID=18517404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40787490A Expired - Fee Related JP3186071B2 (en) 1990-12-27 1990-12-27 Method for producing electrode plate for lead-acid battery and aggregated particles

Country Status (1)

Country Link
JP (1) JP3186071B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074239A (en) * 2010-09-28 2012-04-12 Gs Yuasa Corp Lead acid battery with clad type anode plate and method of manufacturing the same
WO2013150754A1 (en) * 2012-04-06 2013-10-10 株式会社Gsユアサ Flooded lead-acid battery
JP2013243054A (en) * 2012-05-21 2013-12-05 Gs Yuasa Corp Positive electrode plate for lead-acid battery and lead-acid battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074239A (en) * 2010-09-28 2012-04-12 Gs Yuasa Corp Lead acid battery with clad type anode plate and method of manufacturing the same
WO2013150754A1 (en) * 2012-04-06 2013-10-10 株式会社Gsユアサ Flooded lead-acid battery
JPWO2013150754A1 (en) * 2012-04-06 2015-12-17 株式会社Gsユアサ Liquid lead-acid battery
JP2013243054A (en) * 2012-05-21 2013-12-05 Gs Yuasa Corp Positive electrode plate for lead-acid battery and lead-acid battery

Also Published As

Publication number Publication date
JP3186071B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
US4110519A (en) Method for the production of electrodes for lead storage batteries
JP2004508662A (en) Battery cathode
JP3341693B2 (en) Active material powder for electrode of silver oxide battery, electrode material and production method thereof
JPH04229556A (en) Plate for lead-acid battery
JP5211681B2 (en) Method for producing lead-acid battery
JP2009252595A (en) Alkaline dry cell, and manufacturing method thereof
US2866840A (en) Polyelectrolytes in battery pastes
JP4830180B2 (en) Method for producing electrode plate for non-aqueous electrolyte secondary battery
JP4739493B2 (en) Positive electrode mixture molded body and battery
JPH09180708A (en) Alkaline dry cell
JP3267075B2 (en) Manufacturing method of electrode plate for lead-acid battery
JPH01128367A (en) Sealed type lead storage battery
JPS6329450A (en) Manufacture of electrode for cell
JPS5990364A (en) Manufacture of positive electrode for battery
JPH06187984A (en) Manufacture of alkaline storage battery
JP2000113880A (en) Hydrogen storage alloy negative electrode and its manufacture
JPH0837008A (en) Paste type lead-acid battery
JPS59869A (en) Manufacture of positive plate for lead storage battery
JP2983066B2 (en) Method for producing paste-type nickel electrode
JPH08180857A (en) Electrode plate for lead-acid battery
JP2840270B2 (en) Paste type cadmium electrode for alkaline storage battery and method for producing the same
JPS61269853A (en) Positive plate of clad type lead-acid battery
JPH0413819B2 (en)
JPS6322414B2 (en)
JPS61114474A (en) Positive plate of clad type lead storage battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010410

LAPS Cancellation because of no payment of annual fees