JPH0422906A - Production of rare earth element-added waveguide - Google Patents

Production of rare earth element-added waveguide

Info

Publication number
JPH0422906A
JPH0422906A JP2128317A JP12831790A JPH0422906A JP H0422906 A JPH0422906 A JP H0422906A JP 2128317 A JP2128317 A JP 2128317A JP 12831790 A JP12831790 A JP 12831790A JP H0422906 A JPH0422906 A JP H0422906A
Authority
JP
Japan
Prior art keywords
rare earth
tablet
earth element
manufacturing
tablets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2128317A
Other languages
Japanese (ja)
Other versions
JP2747359B2 (en
Inventor
Masataka Nakazawa
正隆 中沢
Yasuro Kimura
康郎 木村
Katsuyuki Imoto
克之 井本
Seiichi Kashimura
誠一 樫村
Fujio Kikuchi
不二男 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Cable Ltd
Priority to JP2128317A priority Critical patent/JP2747359B2/en
Publication of JPH0422906A publication Critical patent/JPH0422906A/en
Application granted granted Critical
Publication of JP2747359B2 publication Critical patent/JP2747359B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form the glass waveguide of a low loss by constituting tablets of lumps of >=10mum particles at the time of forming films on substrate surfaces by irradiating the tablets with electron beams. CONSTITUTION:The tablets 9, 10 consisting of the lumps of the particles contg. rare earth elements and SiO2 and having >=90% sintering density and >=10mum grain size are heat treated at the temp. slightly lower than the m.p. The sintering density is, therefore, increased and the tablets 9, 10 consisting of the lumps of at least 10mum particles are obtd. Since the tablets 9, 10 consist of the lumps of >=10mum particles, the simultaneous splashing of the particles around the irradiated parts does not arise at the time of forming the films 11 on the substrate 5 surfaces by irradiating the tablets 9, 10 with the electron beams. The glass films 11 for cores without contg. the fine particles of several mum are thus formed. The flush type waveguide of the low loss is thus formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、希土類元素を添加した低損失ガラス導波路の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a low-loss glass waveguide doped with rare earth elements.

E従来の技術] 近年、光ファイバのコアに希土類元素を添加した光フア
イバ増幅器及びレーザの研究が活発化し、光波通信用増
幅器及びレーザが注目されてきている。これに伴い、ガ
ラス導波路の光伝搬部分であるコア部分に希土類元素を
添加して、レーザ、増幅器、或いは増幅機能付きの各種
光回路を構成する構想もなされている。
E. Prior Art] In recent years, research into optical fiber amplifiers and lasers in which the core of the optical fiber is doped with rare earth elements has become active, and amplifiers and lasers for light wave communications are attracting attention. Along with this, there are also plans to add rare earth elements to the core portion, which is the light propagation portion, of the glass waveguide to construct lasers, amplifiers, or various optical circuits with amplification functions.

本発明者は、希土類元素を添加したガラス導波路の製造
方法として、次のような方法を提案しな。
The present inventor proposes the following method as a method for manufacturing a glass waveguide doped with rare earth elements.

この方法は、低屈折率層を有する基板上に、電子ビーム
蒸着装置を用いて希土類元素を含むコア用ガラス膜を形
成し、その後、高温熱処理、ホトリングラフィ及びドラ
イエツチングによるコアの加工並びに低屈折率ガラス膜
被覆工程を経て埋込型ガラス導波路を製造するものであ
り、特にコア用ガラス膜の形成方法に特徴がある。
This method involves forming a core glass film containing a rare earth element on a substrate having a low refractive index layer using an electron beam evaporation device, and then processing the core by high-temperature heat treatment, photolithography, and dry etching. A buried glass waveguide is manufactured through a refractive index glass film coating process, and is particularly characterized by the method of forming the core glass film.

その方法は、希土類元素、屈折率制御用酸化物及び5i
n2の粉末を混合し、ホットプレスで焼き固めた後、更
に焼結して粒状、板状、或いは棒状のタブレットとし、
このタブレットを電子ビーム蒸着装置の高真空酸素分圧
化で蒸発させてコア用ガラス膜を形成する方法である。
The method includes rare earth elements, refractive index controlling oxides and 5i
After mixing the n2 powder and hardening it with a hot press, it is further sintered to form a granular, plate-shaped, or rod-shaped tablet,
In this method, this tablet is evaporated using high vacuum oxygen partial pressure using an electron beam evaporation device to form a glass film for the core.

ここで、希土類元素とは、Er、Nd、Yb、Ce、H
o、Tmなどを少なくとも一種類含んだしのをいい、屈
折率制御用酸化物とは、P、Ge、Ti、AI、Zn、
B、Fなどを少なくとも一種類含んな酸化物をいう。
Here, the rare earth elements are Er, Nd, Yb, Ce, H
Oxide containing at least one kind of oxide, Tm, etc., and the refractive index controlling oxide is P, Ge, Ti, AI, Zn,
Refers to an oxide containing at least one type of B, F, etc.

[発明が解決しようとする課題] しかし、上記製造方法においては、顕R鏡による暗視野
像を観察しな結果、コア用ガラス膜中に第4図に示すよ
うに粒径が数μmの微粒子が混入することが分かった。
[Problems to be Solved by the Invention] However, in the above manufacturing method, as a result of observing a dark field image with an R microscope, fine particles with a particle size of several μm were found in the core glass film as shown in FIG. was found to be mixed in.

その原因を調べたところ、タブレットが第5図に示すよ
うに数μmの微粒子の焼結体からなり、これに電子ビー
ムを照射すると、照射部分は溶融し、蒸発原子となって
基板表面に膜を形成するが、照射部分の周辺の微粒子が
同時に飛散してコア用ガラス膜に混入することが荊明し
た。
When we investigated the cause of this, we found that the tablet is made of a sintered body of fine particles of several micrometers in size, as shown in Figure 5. When the tablet is irradiated with an electron beam, the irradiated part melts and becomes evaporated atoms, forming a film on the substrate surface. However, it was revealed that fine particles around the irradiated area were scattered at the same time and mixed into the core glass film.

このようなコア用ガラス膜を用いてガラス導波路を作成
すると、散乱損失の大きいガラス導波路となり、レーザ
、増幅器などを実現することが国数である。
When a glass waveguide is created using such a core glass film, it becomes a glass waveguide with large scattering loss, and many countries are now using it to realize lasers, amplifiers, and the like.

そこで、本発明の目的は、上記問題点を解決し、低損失
のガラス導波路を製造することができる希土類元素添加
導波路の製造方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing a rare earth element-doped waveguide that can solve the above problems and manufacture a glass waveguide with low loss.

「課題を解決するための手段] 上記目的を達成するために本発明に係る希土類元素添加
導波路の製造方法は、希土類元素及びS i O2を含
み、焼結密度が90%以上で粒径が10μm以上の粒子
の塊からなるタブレットを電子ビーム蒸着法により蒸発
させて低屈折率層を有する基板上に希土類元素を含むs
io、のコア用ガラス膜を形成する工程と、その基板全
体を高温熱処理する工程と、上記コア用ガラス膜をホト
リングラフィ及びドライエツチングにより断面略矩形の
コアに加工する工程と、基板上のコア全体に低屈折率の
ガラス膜を被覆する工程とからなっている。
"Means for Solving the Problems" In order to achieve the above object, the method for manufacturing a rare earth element-doped waveguide according to the present invention includes a rare earth element and SiO2, a sintered density of 90% or more, and a grain size of S containing rare earth elements is deposited on a substrate having a low refractive index layer by evaporating a tablet consisting of agglomerates of particles of 10 μm or more using an electron beam evaporation method.
io, a step of heat-treating the entire substrate at a high temperature, a step of processing the core glass film into a core having a substantially rectangular cross section by photolithography and dry etching, and a step of forming a core glass film on the substrate. The process consists of a step of coating the entire core with a glass film having a low refractive index.

5作用〕 かかる製造方法によれば、タブレットに電子ビームを照
射して基板表面に膜を形成する際、タブレットが10μ
m以上の粒子の塊からなっているため、照射部分の周辺
の粒子が同時に飛散することがなくなり、従って微粒子
の混入しないコア用ガラス膜を形成することができ、低
損失のガラス導波路を作成することができる。
5 Effect] According to this manufacturing method, when the tablet is irradiated with an electron beam to form a film on the substrate surface, the tablet has a thickness of 10 μm.
Since it is made up of agglomerates of particles larger than m, particles around the irradiated area will not be scattered at the same time, making it possible to form a core glass film that does not contain fine particles, creating a low-loss glass waveguide. can do.

「実施例] 以下、本発明の一実施例を添付図面に基づいて詳述する
``Example'' Hereinafter, an example of the present invention will be described in detail based on the accompanying drawings.

(実施例1) 第1図は最初の工程を実施するための電子ビーム蒸着装
置1を示している0図示するように上記装W1のハウジ
ング2内の下方には遮蔽板3により隔てられた2個の蒸
発源4a、4bが配置され、上方には複数枚の基板5を
保持する凹面状の基板ホルダ6が配置されている。また
、ハウジング2には酸素ガスを供給する供給ガス系7及
びハウジング2内を真空にする真空排気系8が接続され
ている。一方の蒸発源4aにはSiO□とTi0zを混
合したタブレット9が収容され、他方の蒸発源4bには
E r 20 sのタブレット10が収容されている。
(Embodiment 1) FIG. 1 shows an electron beam evaporation apparatus 1 for carrying out the first step. Evaporation sources 4a and 4b are arranged, and a concave substrate holder 6 for holding a plurality of substrates 5 is arranged above. Further, a supply gas system 7 for supplying oxygen gas and a vacuum exhaust system 8 for evacuating the inside of the housing 2 are connected to the housing 2 . One evaporation source 4a accommodates a tablet 9 containing a mixture of SiO□ and Ti0z, and the other evaporation source 4b accommodates a tablet 10 of E r 20 s.

前者のタブレット9は重量比率99%のSiO□の粉末
中に1%のTiO□の粉末を混合し、これを1000℃
の温度で圧力を加えてホットプレスすることにより焼結
密度的90%とされている。
The former tablet 9 is made by mixing 1% TiO□ powder into SiO□ powder with a weight ratio of 99%, and heating it at 1000°C.
The sintering density is said to be 90% by hot pressing at a temperature of .

この状態のタブレットは第5図に示すように数μmの微
粒子の塊からなる焼結体であるが、これを更に約170
0℃の温度で熱処理することにより第3図に示すように
数10μmの粒子の塊からなる焼結体のタブレットとさ
れている。後者のタブレット10も同様に数10μmの
粒子の塊からなる焼結体となるように融点よりも僅かに
低い温度で熱処理されている。低屈折率層を有する基板
5としては、直径3インチ、厚さ1mmの石英ガラスが
用いられている。
As shown in Figure 5, the tablet in this state is a sintered body made up of agglomerates of fine particles of several micrometers in size.
By heat-treating at a temperature of 0° C., a sintered tablet consisting of agglomerates of particles several tens of micrometers in size is obtained, as shown in FIG. The latter tablet 10 is similarly heat-treated at a temperature slightly lower than the melting point so as to form a sintered body consisting of agglomerates of particles several tens of micrometers in size. As the substrate 5 having the low refractive index layer, quartz glass with a diameter of 3 inches and a thickness of 1 mm is used.

そして、上記ハウジング2内を10−’Torrの高真
空状態下で酸素ガスを流量調節して供給することにより
真空度が5X10−’Torrになるようにし、この状
態で蒸発源内4a、4bのタブレット9.10に電子ビ
ームをそれぞれ同時に照射することにより、基板5の表
面にErイオンを含むSiO□−TiO□のコア用ガラ
スW!A11を形成する(第2図の(a)参照)、この
場合、コア用ガラスIf!11中へのErイオンの添加
量を制御するには、Er2O3のタブレット10に照射
する電子ビームのt流値を制御すればよく、この制御方
法によりErイオンの添加量を数ppmから数%まで制
御することができる6 次いで、このコア用ガラス膜11の形成された基板5全
体を1000℃以上の温度で高温熱処理することにより
、波長が0.63μmで屈折率が1.4651の緻密な
膜11を得る(b)、その後、上記1111の表面に膜
厚的1μmのWSf膜12をスパッタリングにより形成
しく同図(c))、そのWSi!112の表面にホトレ
ジストを塗布し、ホトリングラフフィによりホトレジス
ト膜13のパターニングを行い(d)、ドライエツチン
グによりN F sガスを用いてW S i Ill 
2のパターニングを行う(e)。次いで、ホトレジスト
II!13及びW S i H12をマスクにしてドラ
イエツチングによりCHF sカスを用いてコア用ガラ
ス膜11のパターニングを行い(f)、コア14を形成
する。
Then, oxygen gas is supplied inside the housing 2 under a high vacuum state of 10-' Torr so that the degree of vacuum becomes 5 x 10-' Torr, and in this state, the tablets in the evaporation sources 4a and 4b are By simultaneously irradiating 9.10 with an electron beam, the core glass W of SiO□-TiO□ containing Er ions on the surface of the substrate 5! A11 (see FIG. 2(a)), in this case, the core glass If! In order to control the amount of Er ions added to the Er2O3 tablet 10, it is sufficient to control the t current value of the electron beam irradiated to the Er2O3 tablet 10, and by this control method, the amount of Er ions added can be adjusted from several ppm to several percent. Next, the entire substrate 5 on which the core glass film 11 is formed is subjected to high-temperature heat treatment at a temperature of 1000° C. or higher to form a dense film with a wavelength of 0.63 μm and a refractive index of 1.4651. 11 (b), then a WSf film 12 with a thickness of 1 μm is formed on the surface of the above-mentioned 1111 by sputtering (FIG. 2(c)), and the WSi! A photoresist is applied to the surface of the film 112, the photoresist film 13 is patterned by photolithography (d), and dry etching is performed using NFs gas.
2. Perform patterning (e). Next, Photoresist II! 13 and W Si H 12 as masks, the core glass film 11 is patterned by dry etching using CHF s residue (f) to form the core 14.

次いで、ホトレジスト膜13及びW S i H12を
除去した後(g)、基板5上のコア14全体に屈折率が
1.4580 (波長が0.63μmでの値)のSfO
□−P20sB20s系のガラス11115を被覆して
埋込型導波路が完成する(h)。
Next, after removing the photoresist film 13 and W S i H 12 (g), SfO with a refractive index of 1.4580 (value at a wavelength of 0.63 μm) is deposited over the entire core 14 on the substrate 5.
A buried waveguide is completed by covering with □-P20sB20s glass 11115 (h).

かかる製造方法によれば、特にタブレット9゜10を融
点よりも僅かに低い温度で熱処理したので、焼結密度を
高めることができ、少なくとも10μmの粒子の塊から
なるタブレット9,10を得ることができる。従って、
タブレット9,10に電子ビームを照射して基板5表面
に膜11を形成する際、タブレット9,10が10μm
以上の粒子の塊からなっているため、照射部分の周辺の
粒子が同時に飛散することがなくなり、第4図に示した
ような数μmの微粒子の混入しないコア用ガラス膜11
を形成することができ、低損失の埋込型導波路を作成す
ることができる。
According to this manufacturing method, in particular, since the tablets 9 and 10 are heat-treated at a temperature slightly lower than their melting point, the sintered density can be increased, and tablets 9 and 10 consisting of agglomerates of particles of at least 10 μm can be obtained. can. Therefore,
When forming the film 11 on the surface of the substrate 5 by irradiating the tablets 9 and 10 with an electron beam, the tablets 9 and 10 have a thickness of 10 μm.
Since it is made up of agglomerates of the above particles, particles around the irradiated area will not be scattered at the same time, and the core glass film 11 will not be contaminated with fine particles of several μm as shown in Fig. 4.
can be formed, making it possible to create a low-loss buried waveguide.

この導波路のErイオン以外による吸収損失は0.1d
B/cm以下であった。また、散乱中心となる導波路の
梢遣不均−性も殆ど見られなかった。
The absorption loss due to other than Er ions in this waveguide is 0.1d
B/cm or less. In addition, almost no unevenness in the waveguide distribution, which is the center of scattering, was observed.

E、 rイオンによる1、53μm帯での吸収損失はE
rの添加量により数dBから10数dBの値を実現する
ことができた。従って、この導波路により1.53μm
帯の信号光と、0゜098μm或いは1.46μmの励
起光を重畳して伝搬させれば、1.53μm帯の信号光
を増幅させることが可能である。
The absorption loss in the 1.53 μm band due to E, r ions is E
Depending on the amount of r added, it was possible to achieve a value of several dB to more than ten dB. Therefore, with this waveguide, 1.53μm
By superimposing and propagating the band signal light and the 0°098 μm or 1.46 μm pump light, it is possible to amplify the 1.53 μm band signal light.

(実施例2) 上記実施例1では2個の蒸発源4a、4bによる二源蒸
着法を採用したが、本実施例では一方の蒸発源4aのみ
にタブレットを入れて一源蒸着法により、Erイオンを
添加したSiO□−Ge02  P2O5のコア用ガラ
ス膜11を基板5の表面に形成した。タブレットとして
、スート状のファイバコア母材(S i OsにGeO
□及びP2O、を添加したもの)にE r CI sの
溶液を含浸させ、乾燥、固化後、焼結して透明にガラス
化したファイバコア母材(直径15mm、波長0.63
μmでの屈折率1.4620、Erイオンの添加量30
00ppm)を用いた4 その結果、Erイオンの添加量が約1800ppmの均
一なS S Ox  G e O2P 20 sのコア
用ガラス膜11を基板5上に厚さ7μm形成することが
できた。このコア用ガラス膜11の屈折率は波長0.6
3μmで1.4612であった。そして、このコア用ガ
ラス膜11を有する基板5を用いて上記実施例1と同様
の方法により埋込型導波路を作成した結果、散乱損失の
極めて少ない導波路を得ることができた。
(Example 2) In the above-mentioned Example 1, a two-source evaporation method using two evaporation sources 4a and 4b was adopted, but in this example, a tablet was put in only one evaporation source 4a and a single-source evaporation method was used. A core glass film 11 of SiO□-Ge02P2O5 doped with ions was formed on the surface of the substrate 5. As a tablet, a soot-like fiber core matrix (SiOs and GeO
A fiber core base material (diameter 15 mm, wavelength 0.63
Refractive index in μm 1.4620, amount of Er ions added 30
As a result, a core glass film 11 of S S Ox G e O2P 20 s having a uniform addition amount of Er ions of approximately 1800 ppm could be formed on the substrate 5 to a thickness of 7 μm. The refractive index of this core glass film 11 is 0.6 at wavelength.
It was 1.4612 at 3 μm. Then, as a result of creating a buried waveguide using the substrate 5 having this core glass film 11 in the same manner as in Example 1, a waveguide with extremely low scattering loss could be obtained.

(実施例3) 本実施例では上記実施例2と同様に−m蒸着法によりE
rイオンの添加された5102  TiO□のコア用ガ
ラスWA11を基板5上に形成した。
(Example 3) In this example, as in Example 2 above, E
A core glass WA11 of 5102 TiO□ doped with r ions was formed on the substrate 5.

この場合に用いたタブレットは次のように形成されてい
る。先ず、SiO2とT t O2の粉末を重量比99
対1の割合で混合し、これを100℃でホットプレスし
た後、1500°Cの温度で熱処理してタブレットを得
る。このタブレットをE r C] sを無水アルコー
ル液に0.5Q、/溶かした府中に24時間浸した後、
0□とHeの雰囲気中で乾城し、再度1700℃の温度
で熱処理することにより焼結密度か93%で100μm
程度の粒子の塊からなる焼結体のタブレットとした。
The tablet used in this case was formed as follows. First, the weight ratio of SiO2 and T t O2 powders was 99.
They are mixed at a ratio of 1:1, hot pressed at 100°C, and then heat treated at a temperature of 1500°C to obtain tablets. After soaking this tablet in Fuchu for 24 hours, in which 0.5 Q of E r C]s was dissolved in anhydrous alcohol solution,
By dry casting in an atmosphere of 0□ and He and heat-treating again at a temperature of 1700°C, the sintered density was 93% and 100 μm.
It was made into a sintered body tablet consisting of a mass of particles of about 100 mL.

このタブレットを用いた場合にも、基板5上に形成され
たコア用ガラスpi!11中には数μmの微粒子は全く
混入せず、透明で均質なコア用ガラス1111を形成す
ることができ、低損失の導波路を作成することができた
。なお、コア用ガラス膜11中へのErイオンの添加量
は約2000p p mであった。
Even when this tablet is used, the core glass pi! formed on the substrate 5! No fine particles of several μm were mixed in the core glass 1111, which was transparent and homogeneous, and a waveguide with low loss could be created. Note that the amount of Er ions added into the core glass film 11 was about 2000 ppm.

(実施例4) 本実施例では実施例2と同様に一源蒸着法によりErイ
オンとFイオンの添加されたS i O2T f O2
のコア用ガラス膜11を基板5上に厚さ7μm形成した
。この場合に用いたタブレットは次のように形成されて
いる。先ず、S i O2、T i O2及びErFz
の粉末を重量比89:1:10の割合で混合し、これを
1000℃でホットプレスした後、1700℃の温度で
熱処理することにより焼結密度90%以上で100μm
程度の粒子の塊からなる焼結体のタブレットとした。
(Example 4) In this example, as in Example 2, S i O2T f O2 to which Er ions and F ions were added by the single-source evaporation method was used.
A core glass film 11 was formed on the substrate 5 to a thickness of 7 μm. The tablet used in this case was formed as follows. First, S i O2, T i O2 and ErFz
The powders were mixed at a weight ratio of 89:1:10, hot pressed at 1000°C, and then heat treated at 1700°C to achieve a sintered density of 90% or more and 100 μm.
It was made into a sintered body tablet consisting of a mass of particles of about 100 mL.

このタブレットを用いることにより散乱中心となる微粒
子の混入がなく、約500ppmのErイオンと、Fイ
オンの添加された5iO2−TM01のコア用ガラス膜
11を得ることができ、低損失の導波路を作成すること
ができた。
By using this tablet, it is possible to obtain a core glass film 11 of 5iO2-TM01 doped with approximately 500 ppm of Er ions and F ions without the inclusion of fine particles that become scattering centers, and to create a low-loss waveguide. I was able to create it.

(実施例5) 本実施例では実施例2と同様に一源蒸着法によりEr−
Nd及びFイオンの添加されたS i O2T i O
tのコア用ガラスM11を基板5上に厚さ1μm形成し
た。この場合には、タブレットとして、5to2、Ti
12、ErFz及びNdF、の粉末を重量比85:1:
10:4の割合で混合し、これを実施例4と同様に熱処
理したものを用いた。
(Example 5) In this example, Er-
S i O2T i O doped with Nd and F ions
Core glass M11 of t was formed on the substrate 5 to a thickness of 1 μm. In this case, as a tablet, 5to2, Ti
12, ErFz and NdF powder at a weight ratio of 85:1:
They were mixed at a ratio of 10:4 and heat treated in the same manner as in Example 4.

これにより作成されたのEr、Nd及びFイオンの添加
した導波路は、波長1.3μm帯及び1.5μm帯での
増幅器用として期待することができる。
The thus created waveguide doped with Er, Nd, and F ions can be expected to be used in amplifiers in the wavelength band of 1.3 μm and 1.5 μm.

なお、本発明は上記実施例に限定されるものではなく、
例えば希土類元素としてEr、Nd以外に、Yb、Ce
、Ho、Tmなどを用いてもよく、また屈折率制御用酸
化物として、P、Ge、Ti−A1.Zn、B−Fなど
を少なくとも一種類含んだ酸化物を用いるようにしても
よい。
Note that the present invention is not limited to the above embodiments,
For example, in addition to Er and Nd, rare earth elements include Yb and Ce.
, Ho, Tm, etc. may be used, and P, Ge, Ti-A1. An oxide containing at least one type of Zn, B-F, etc. may be used.

[発明の効果] 以上要するに本発明によれば、タブレットに電子ビーム
を照射して基板表面に膜を形成する際、タブレットが1
0μm以上の粒子の塊からなっているなめ、照射部分の
周辺の粒子が同時に飛散することがなくなり、従って微
粒子の混入しないコア用ガラス膜を形成することができ
、低損失のガラス導波路を作成することができる。
[Effects of the Invention] In summary, according to the present invention, when forming a film on the substrate surface by irradiating the tablet with an electron beam, the tablet
Since the lick is made up of agglomerates of particles of 0 μm or larger, particles around the irradiated area will not be scattered at the same time, making it possible to form a glass film for the core that does not contain fine particles, creating a glass waveguide with low loss. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る希土類元素添加導波路の製造方法
において用いられる電子ビーム蒸着装置の概略断面図、
第2図は同製造方法の工程を示す図、第3図は同製造方
法において用いたタブレフトの表面構造を示す図、第4
図は本発明者が先に提案した製造方法で作成したコア用
ガラス膜の表面構造を示す図、第5図は同製造方法にお
いて用いたタプレ・ソトの表面構造を示す図である。 図中、1は電子ビーム蒸着装!、4a、4bは蒸発源、
5は基板、9.10はタブレット、11はコア用ガラス
膜、14はコア、15はガラス膜である。
FIG. 1 is a schematic cross-sectional view of an electron beam evaporation apparatus used in the method for manufacturing a rare earth element-doped waveguide according to the present invention;
Fig. 2 is a diagram showing the steps of the same manufacturing method, Fig. 3 is a diagram showing the surface structure of the tab left used in the same manufacturing method, and Fig. 4 is a diagram showing the surface structure of the tab left used in the same manufacturing method.
The figure shows the surface structure of a core glass film produced by the production method previously proposed by the present inventor, and FIG. 5 shows the surface structure of Taplet-Soto used in the same production method. In the figure, 1 is an electron beam evaporation system! , 4a, 4b are evaporation sources,
5 is a substrate, 9.10 is a tablet, 11 is a glass film for core, 14 is a core, and 15 is a glass film.

Claims (1)

【特許請求の範囲】 1、希土類元素及びSiO_2を含み、焼結密度が90
%以上で粒径が10μm以上の粒子の塊からなるタブレ
ットを電子ビーム蒸着法により蒸発させて低屈折率層を
有する基板上に希土類元素を含むSiO_2のコア用ガ
ラス膜を形成する工程と、その基板全体を高温熱処理す
る工程と、上記コア用ガラス膜をホトリングラフィ及び
ドライエッチングにより断面略矩形のコアに加工する工
程と、基板上のコア全体に低屈折率のガラス膜を被覆す
る工程とからなる希土類元素添加導波路の製造方法。 2、上記タブレットが、希土類元素を含むタブレットと
SiO_2を含むタブレットとからなり、これらが個別
の蒸発源から蒸発される請求項1記載の希土類元素添加
導波路の製造方法。 3、上記タブレットが、少なくとも2種類の希土類元素
を含んでいる請求項1記載の希土類元素添加導波路の製
造方法。 4、上記タブレットが、ガラス化されている請求項1記
載の希土類元素添加導波路の製造方法。 5、上記タブレットが、Fを含んでいる請求項1記載の
希土類元素添加導波路の製造方法。 6、上記タブレットが、多孔質タブレットに希土類元素
を含んだ液体を含浸させ、これを乾燥及び高温熱処理し
て形成されている請求項1記載の希土類元素添加導波路
の製造方法。 7、上記タブレットが、原料粉末を混合し、ホットプレ
スにより焼き固めて形成されている請求項1記載の希土
類元素添加導波路の製造方法。
[Claims] 1. Contains rare earth elements and SiO_2, and has a sintered density of 90
% or more and a particle size of 10 μm or more by electron beam evaporation to form a core glass film of SiO_2 containing a rare earth element on a substrate having a low refractive index layer; a step of heat-treating the entire substrate at a high temperature; a step of processing the core glass film into a core having a substantially rectangular cross section by photolithography and dry etching; and a step of coating the entire core on the substrate with a glass film with a low refractive index. A method for manufacturing a rare earth element-doped waveguide comprising: 2. The method for manufacturing a rare earth element-doped waveguide according to claim 1, wherein the tablet is composed of a rare earth element-containing tablet and a SiO_2-containing tablet, and these tablets are evaporated from separate evaporation sources. 3. The method for manufacturing a rare earth element-doped waveguide according to claim 1, wherein the tablet contains at least two types of rare earth elements. 4. The method for manufacturing a rare earth element-doped waveguide according to claim 1, wherein the tablet is vitrified. 5. The method for manufacturing a rare earth element-doped waveguide according to claim 1, wherein the tablet contains F. 6. The method for manufacturing a rare earth element-doped waveguide according to claim 1, wherein the tablet is formed by impregnating a porous tablet with a liquid containing a rare earth element, drying it, and subjecting it to high-temperature heat treatment. 7. The method of manufacturing a rare earth element-doped waveguide according to claim 1, wherein the tablet is formed by mixing raw material powders and baking and solidifying the mixture using a hot press.
JP2128317A 1990-05-18 1990-05-18 Manufacturing method of rare earth element doped waveguide Expired - Fee Related JP2747359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2128317A JP2747359B2 (en) 1990-05-18 1990-05-18 Manufacturing method of rare earth element doped waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2128317A JP2747359B2 (en) 1990-05-18 1990-05-18 Manufacturing method of rare earth element doped waveguide

Publications (2)

Publication Number Publication Date
JPH0422906A true JPH0422906A (en) 1992-01-27
JP2747359B2 JP2747359B2 (en) 1998-05-06

Family

ID=14981784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2128317A Expired - Fee Related JP2747359B2 (en) 1990-05-18 1990-05-18 Manufacturing method of rare earth element doped waveguide

Country Status (1)

Country Link
JP (1) JP2747359B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386523B1 (en) 2011-12-30 2014-04-18 한국세라믹기술원 Low density ingot for electron beam evaporation and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139637A (en) * 1984-12-12 1986-06-26 Hitachi Metals Ltd Target for sputter and its manufacture
JPS63111135A (en) * 1986-10-29 1988-05-16 Hitachi Metals Ltd Manufacture of rare earth-transition metal target
JPS63290272A (en) * 1987-05-21 1988-11-28 Hitachi Metals Ltd Production of rare earth element-transition metal target material
JPH01142078A (en) * 1987-11-27 1989-06-02 Matsushita Electric Ind Co Ltd Sputtering target
JPH01287206A (en) * 1988-05-13 1989-11-17 Kobe Steel Ltd Porous sintered body for infiltrated complex target material and manufacture thereof
JPH02146504A (en) * 1988-11-29 1990-06-05 Fujikura Ltd Production of nonlinear light guide
JPH0353202A (en) * 1989-07-21 1991-03-07 Hitachi Cable Ltd Production of waveguide added with rare earth element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139637A (en) * 1984-12-12 1986-06-26 Hitachi Metals Ltd Target for sputter and its manufacture
JPS63111135A (en) * 1986-10-29 1988-05-16 Hitachi Metals Ltd Manufacture of rare earth-transition metal target
JPS63290272A (en) * 1987-05-21 1988-11-28 Hitachi Metals Ltd Production of rare earth element-transition metal target material
JPH01142078A (en) * 1987-11-27 1989-06-02 Matsushita Electric Ind Co Ltd Sputtering target
JPH01287206A (en) * 1988-05-13 1989-11-17 Kobe Steel Ltd Porous sintered body for infiltrated complex target material and manufacture thereof
JPH02146504A (en) * 1988-11-29 1990-06-05 Fujikura Ltd Production of nonlinear light guide
JPH0353202A (en) * 1989-07-21 1991-03-07 Hitachi Cable Ltd Production of waveguide added with rare earth element

Also Published As

Publication number Publication date
JP2747359B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
JP2006309222A (en) Optical waveguide comprising quantum dot waveguide layer and manufacturing method therefor
JPH09105965A (en) Optical device
JPH0422906A (en) Production of rare earth element-added waveguide
JPH0353202A (en) Production of waveguide added with rare earth element
JPH0335203A (en) Glass waveguide added with rare earth element and production thereof and glass waveguide laser and device using this waveguide
JP3085559B2 (en) Method of manufacturing rare earth ion-containing glass waveguide
JPH06144867A (en) Method for forming glass film
JP3107334B2 (en) Rare earth ion doped optical waveguide film and method of manufacturing optical waveguide
JPH06123816A (en) Substrate with rare earth ion and alkali metal addition type glass film and waveguide formed by using the same and its production
JP2004515815A (en) Waveguide including channel on optical substrate
JPH03192206A (en) Production of waveguide added with rare earth element
JPH01147878A (en) Manufacture of superconducting element
Mendoza et al. Photolithographic imaging of planar optical waveguides and integrated optic devices onto porous silicate glasses and silica sol-gels
JP3454134B2 (en) Waveguide and manufacturing method thereof
JPH05226733A (en) Rare-earth element added glass waveguide and its manufacture
JPH0531123B2 (en)
JPH062105A (en) Optical waveguide film and production of optical waveguide
JPH05313034A (en) Low loss rare earth element added optical waveguide and manufacture thereof
RU2156490C1 (en) Method for production of nonlinear-optical material
JPH01235287A (en) Patterning method for high-temperature superconducting thin-film
JPH09113744A (en) Waveguide and its production
JPH07261045A (en) Rare earth element-added glass waveguide and its production
KR100328132B1 (en) Planar optical amplifier and its fabrication method
JPH11209131A (en) Formation of glass thin film
JPH02146504A (en) Production of nonlinear light guide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees