JPH04228560A - Dielectric multiplayer film nad its formation - Google Patents

Dielectric multiplayer film nad its formation

Info

Publication number
JPH04228560A
JPH04228560A JP12926491A JP12926491A JPH04228560A JP H04228560 A JPH04228560 A JP H04228560A JP 12926491 A JP12926491 A JP 12926491A JP 12926491 A JP12926491 A JP 12926491A JP H04228560 A JPH04228560 A JP H04228560A
Authority
JP
Japan
Prior art keywords
film
multilayer film
dielectric multilayer
sio2
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12926491A
Other languages
Japanese (ja)
Inventor
Takashi Iwabuchi
岩渕 俊
Takeo Miyata
宮田 威男
Katsuhiko Muto
勝彦 武藤
Yuka Yamada
由佳 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsushita Giken KK
Original Assignee
Matsushita Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Giken KK filed Critical Matsushita Giken KK
Priority to JP12926491A priority Critical patent/JPH04228560A/en
Publication of JPH04228560A publication Critical patent/JPH04228560A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a dielectric multilayer film without the absorption being increased, free of crazing and spectrum change due to the thermal damage resulting from its low light resistance and having enough heat resistance to be used even in the environment exposed to high temp. as the optical parts for a high-output and high-repetition laser of UV rays, etc. CONSTITUTION:Oxygen gas is injected into an inert gas to be used in sputtering only when the film of a low-refraction silicon dioxide (SiO2) which is easily converted to its lower oxide is formed to suppress the formation of the lower oxide and to lower the absorptivity, hence the optical and physical constants such as the refractive index and density are stabilized, and a dielectric multilayer film such as a reflection increasing film and an antireflection film having enough heat resistance to be used even in the environment exposed to the high temps. of a high-output and high-repetition laser, etc., is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、紫外線等の大出力・高
繰り返しレ−ザ用光学部品の反射増加膜や反射防止膜等
を構成する誘電体多層膜およびその形成方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric multilayer film constituting a reflection increasing film, an antireflection film, etc. of an optical component for a high-output, high-repetition laser such as an ultraviolet ray, and a method for forming the same.

【0002】0002

【従来の技術】誘電体多層膜は各種レーザ用光学部品等
(全反射鏡,ビームスプリッター,レンズ,窓材等)に
用いられているが、目標とする反射特性もしくは透過特
性を得るために光学基板表面に誘電体物質を真空蒸着法
等で積層し、反射防止膜や部分反射膜あるいは高反射膜
を構成することは一般技術として知られている。(例え
ば、久保田他「光学技術ハンドブック」)。
[Prior Art] Dielectric multilayer films are used in various laser optical components (total reflection mirrors, beam splitters, lenses, window materials, etc.). It is known as a general technique to form an antireflection film, a partially reflective film, or a high reflection film by laminating a dielectric material on the surface of a substrate by vacuum evaporation or the like. (For example, Kubota et al. "Optical Technology Handbook").

【0003】また、反射鏡としての多層膜構造は光学ガ
ラス基板上に、光学的膜厚がλ/4(λは注目する中心
波長)の高屈折率物質と低屈折率物質を交互に積層した
誘電体多層膜が採用されており、その層数および屈折率
の組合せによって任意の反射率の反射鏡が得られること
も良く知られている。
[0003] In addition, the multilayer film structure as a reflecting mirror is made by alternately laminating high refractive index materials and low refractive index materials with an optical thickness of λ/4 (λ is the center wavelength of interest) on an optical glass substrate. It is also well known that a dielectric multilayer film is used, and that a reflecting mirror with an arbitrary reflectance can be obtained by combining the number of layers and the refractive index.

【0004】0004

【発明が解決しようとする課題】しかしながら、高・低
屈折率物質として用いられる多くの酸化物は、抵抗加熱
法や電子ビーム蒸着法等の従来の蒸着方法や条件によっ
て熱分解が起こり低級酸化物に移行し、その結果吸収の
増加をもたらし、さらに屈折率や密度等の光学および物
理定数が大きく変化する。このように従来の多層膜形成
方法を用いて作製したレ−ザ用光学部品では耐光力が低
く、使用できるパワーレベルは高々100W程度である
。また、破壊までに至らなくとも吸収光により発生した
熱により膜の屈折率や密度が変わりスペクトルが大きく
変化するという課題を有していた。
[Problems to be Solved by the Invention] However, many oxides used as high and low refractive index materials undergo thermal decomposition due to conventional vapor deposition methods and conditions such as resistance heating and electron beam evaporation, resulting in lower oxides. , resulting in an increase in absorption, and further changes in optical and physical constants such as refractive index and density. As described above, laser optical parts manufactured using the conventional multilayer film forming method have low light resistance, and the usable power level is about 100 W at most. Further, even if the film does not break down, the heat generated by the absorbed light changes the refractive index and density of the film, causing a large change in the spectrum.

【0005】さらに、紫外線領域で代表的なエキシマレ
ーザの出力が2KW,繰り返し数が1KHzともなると
、使用する光学部品にとっては、パルスレーザであるは
ずのエキシマレーザ光でも連続光と同様な熱ダメージを
受ける。それに加えて、従来より1桁以上高いレーザ光
が照射されることにより、光学部品にとって僅かな吸収
でも発生する熱が問題となる。ガラスや石英のような熱
伝導度の低い基板では、特にビーム照射部位の温度上昇
が激しくなり局所加熱が発生する。その結果、最初に光
学部品を構成している中で、一番熱に弱い多層膜部分の
破壊が起こり、次に基板等の熱変形が発生し、最後には
光学部品そのものが破壊されるという課題も有していた
。具体的には、従来法で作製され多層膜は300℃加熱
でスペクトルが大幅に変化し、また膜のひび割れが発生
するという課題を有していた。
Furthermore, when the output of a typical excimer laser in the ultraviolet region is 2 kW and the repetition rate is 1 kHz, the excimer laser light, which is supposed to be a pulsed laser, can cause the same thermal damage to the optical components used as continuous light. receive. In addition, since laser light is irradiated with laser light that is one order of magnitude higher than conventional laser light, heat generated even by a small amount of absorption becomes a problem for optical components. For substrates with low thermal conductivity, such as glass or quartz, the temperature rises especially at the beam irradiation site, causing local heating. As a result, first the multilayer film that makes up the optical component is the most vulnerable to heat is destroyed, then the substrate etc. is thermally deformed, and finally the optical component itself is destroyed. It also had its challenges. Specifically, multilayer films produced by conventional methods have the problem that their spectra change significantly when heated to 300° C., and cracks occur in the film.

【0006】本発明は、上記従来技術の課題を解決する
もので、大出力・高繰り返しエキシマレーザ用光学部品
に使用でき、かつ光学部品が高温に曝されるような環境
の下でも使用できる十分な耐熱性を有した、反射増加膜
や反射防止膜等を構成する誘電体多層膜およびその形成
方法を提供することを目的とするものである。
The present invention solves the above-mentioned problems of the prior art, and is capable of being used as an optical component for a high-output, high-repetition excimer laser, and is sufficiently usable even in an environment where the optical component is exposed to high temperatures. It is an object of the present invention to provide a dielectric multilayer film constituting a reflection increasing film, an antireflection film, etc., which has excellent heat resistance, and a method for forming the same.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明は、光学研磨された基板表面を膜形成前に高真
空中で不活性ガスイオンを用いてイオン洗浄した後、ス
パッタリング法により高屈折率物質であるAl2 O3
 と低屈折率物質であるSiO2 を交互に積層するに
際し、高屈折率物質であるAl2 O3 を形成する場
合は不活性ガス雰囲気中で、低屈折率物質であるSiO
2 を形成する場合には不活性ガスに酸素ガスを注入し
ながらスパッタリングする誘電体多層膜およびその形成
方法である。
[Means for Solving the Problems] In order to achieve this object, the present invention cleans an optically polished substrate surface using inert gas ions in a high vacuum before forming a film, and then performs sputtering. Al2O3, a high refractive index material
When forming Al2O3, a high refractive index material, Al2O3, a low refractive index material, is alternately stacked with SiO2, a low refractive index material, in an inert gas atmosphere.
2 is a dielectric multilayer film and its formation method in which sputtering is performed while injecting oxygen gas into an inert gas.

【0008】[0008]

【作用】本発明は上記形成方法により、低級酸化物に移
行しやすい低屈折物質である二酸化珪素(SiO2 )
膜を形成する場合のみスパッタリング用不活性ガスに酸
素ガスを注入することで膜の低級酸化物化を抑制し低吸
収率化を図り、さらに屈折率や密度等の光学および物理
定数を安定化することで、大出力・高繰り返しエキシマ
レーザ用光学部品に使用でき、かつ光学部品が高温に曝
されるような環境の下でも使用できる十分な耐熱性を有
した、反射増加膜や反射防止膜等を得ることができるも
のである。
[Operation] The present invention uses the above-mentioned formation method to form silicon dioxide (SiO2), which is a low refractive substance that easily converts to lower oxides.
By injecting oxygen gas into the inert gas for sputtering only when forming a film, we suppress the formation of lower oxides in the film, lower the absorption rate, and further stabilize optical and physical constants such as refractive index and density. We are developing reflection-enhancing coatings, anti-reflection coatings, etc. that can be used in optical components for high-output, high-repetition excimer lasers, and have sufficient heat resistance to be used even in environments where optical components are exposed to high temperatures. It is something that can be obtained.

【0009】[0009]

【実施例】(実施例1)以下本発明の第1実施例につい
て図面を参照しながら説明する。図1は本発明の一実施
例において、光学研磨された合成石英基板上に順次交互
に積層されたSiO2 膜とAl2 O3 膜からなる
36層(18対)多層膜をスパッタリングガスの雰囲気
を変えて形成した場合の分光反射率特性を示した図であ
る。図1において、1は本発明による誘電体多層膜およ
びその形成方法に関し、SiO2 膜の形成時のみアル
ゴンガスに酸素ガスを10%注入しながら形成した場合
の分光反射率特性であり、2はSiO2 、Al2 O
3 膜共にアルゴンガスのみで形成した場合の分光反射
率特性であり、3はSiO2 、Al2 O3 膜共に
アルゴンガスに酸素ガスを10%注入しながら形成した
場合の分光反射率特性である。いずれも膜形成前にアル
ゴンガスイオンにより1.5×10−5Torrにてイ
オン洗浄を行った後、基板温度150℃に加熱し、スパ
ッタ時の全圧力2×10−3Torr、投入パワーを1
.5KWの条件で多層膜の成膜を行った。
Embodiments (Embodiment 1) A first embodiment of the present invention will be described below with reference to the drawings. Figure 1 shows an embodiment of the present invention in which a 36-layer (18-pair) multilayer film consisting of SiO2 films and Al2O3 films stacked alternately on an optically polished synthetic quartz substrate was sputtered in different sputtering gas atmospheres. It is a figure showing the spectral reflectance characteristic when formed. In FIG. 1, 1 relates to the dielectric multilayer film and its forming method according to the present invention, and 2 is the spectral reflectance characteristic when the SiO2 film is formed while 10% oxygen gas is injected into the argon gas only when forming the SiO2 film. , Al2O
3 is the spectral reflectance characteristic when both films are formed using argon gas only, and 3 is the spectral reflectance characteristic when both the SiO2 and Al2 O3 films are formed while injecting 10% oxygen gas into argon gas. In both cases, before film formation, ion cleaning was performed with argon gas ions at 1.5 x 10-5 Torr, the substrate temperature was heated to 150°C, the total pressure during sputtering was 2 x 10-3 Torr, and the input power was 1.
.. A multilayer film was formed under the condition of 5KW.

【0010】この図から判るように、酸化物の低級酸化
物への移行は高屈折率物質であるAl2 O3 膜より
低屈折率物質であるSiO2 膜が激しい。SiO2 
膜を形成する場合にのみアルゴンガスに酸素ガスを注入
することによる本発明の成膜方法により、低級酸化物化
が抑制されるため散乱や吸収が少なく屈折率,密度の安
定した多層膜を得ることができる。なを、本実施例では
、多層膜の総数を偶数層(36層)設けたが、奇数層と
しても同様の効果を得ることができる。
As can be seen from this figure, the transition of oxides to lower oxides is more severe in the SiO2 film, which is a low refractive index material, than in the Al2 O3 film, which is a high refractive index material. SiO2
By using the film forming method of the present invention in which oxygen gas is injected into argon gas only when forming a film, formation of lower oxides is suppressed, so that a multilayer film with low scattering and absorption and stable refractive index and density can be obtained. I can do it. In this embodiment, the total number of multilayer films is an even number (36 layers), but the same effect can be obtained by using an odd number of layers.

【0011】(実施例2)以下本発明の第2実施例につ
いて図面を参照しながら説明する。図2は本発明の一実
施例において光学研磨された炭化珪素(SiC)基板上
に順次交互に積層されたSiO2 膜とAl2 O3 
膜からなる48層(24対)多層膜のエキシマレーザ(
KrF,ArF,XeCl等)用反射鏡の構成、光学的
膜厚を示した図である。図2において、4は光学研磨さ
れた炭化珪素(SiC)基板、5は全ての層の光学的膜
厚をλ/4(例えば、KrFエキシマレーザ(λ=24
8nm)用の場合には光学的膜厚は62nmとなる)に
したSiO2 膜、6は全ての層の光学的膜厚をλ/4
にしたAl2 O3 膜、7はSiO2 膜とAl2 
O3 膜を交互に積層した48層(24対)の反射増加
膜である。図3は以上のように構成された多層膜からな
るKrFエキシマレーザ用反射鏡の熱処理前後の分光反
射率特性を示した図である。8は加熱前と100℃から
600℃まで50℃毎に各30分間加熱した後の分光反
射率特性であり、9はその後700℃と800℃にて各
30分間加熱した後の分光反射率特性である。いずれも
電気炉を用い大気中で加熱を行い冷却後に分光光度計に
より絶対反射率を測定した。
(Embodiment 2) A second embodiment of the present invention will be described below with reference to the drawings. FIG. 2 shows SiO2 films and Al2O3 layers sequentially and alternately stacked on an optically polished silicon carbide (SiC) substrate in an embodiment of the present invention.
48 layers (24 pairs) multilayer excimer laser (
2 is a diagram showing the configuration and optical film thickness of a reflecting mirror for (KrF, ArF, XeCl, etc.); FIG. In FIG. 2, 4 is an optically polished silicon carbide (SiC) substrate, and 5 is an optically polished silicon carbide (SiC) substrate whose optical film thickness of all layers is λ/4 (for example, KrF excimer laser (λ=24
In the case of 8 nm), the optical thickness is 62 nm).
7 is a SiO2 film and Al2 film.
This is a reflection increasing film with 48 layers (24 pairs) of O3 films stacked alternately. FIG. 3 is a diagram showing the spectral reflectance characteristics of the KrF excimer laser reflector made of the multilayer film configured as described above before and after heat treatment. 8 shows the spectral reflectance characteristics before heating and after heating at 50°C from 100°C to 600°C for 30 minutes each, and 9 shows the spectral reflectance characteristics after heating at 700°C and 800°C for 30 minutes each. It is. In both cases, the samples were heated in the air using an electric furnace, and after cooling, the absolute reflectance was measured using a spectrophotometer.

【0012】この図から判るように、800℃までは加
熱しても分光スペクトルにほとんど変化が無く、耐熱性
の優れたSiO2 非晶質膜とAl2 O3 非晶質膜
になっている。なお、多層膜のひび割れも発生しなかっ
た。また、本実施例では、光学研磨した基板に炭化珪素
(SiC)を用いたが珪素(Si),弗化カルシュウム
(CaF2 ),合成石英(SiO2 )を用いても同
様の反射増加膜を得ることができる。
As can be seen from this figure, there is almost no change in the spectra even when heated up to 800° C., and the SiO2 amorphous film and Al2 O3 amorphous film have excellent heat resistance. In addition, no cracks occurred in the multilayer film. Furthermore, in this example, silicon carbide (SiC) was used for the optically polished substrate, but a similar reflection increasing film can also be obtained using silicon (Si), calcium fluoride (CaF2), or synthetic quartz (SiO2). I can do it.

【0013】図4は本発明の多層膜および形成方法によ
り光学研磨された炭化珪素(SiC)基板上に順次交互
に積層されたSiO2 膜とAl2O3 膜からなる多
層膜の対数による反射率の変化を示した図である。この
図(図4)から明らかのように、本実施例による反射増
加膜は、少なくとも18対(36層)以上にすることで
反射率99%を達成することが可能である。
FIG. 4 shows the change in reflectance according to the logarithm of a multilayer film consisting of a SiO2 film and an Al2O3 film that are sequentially and alternately stacked on a silicon carbide (SiC) substrate that has been optically polished using the multilayer film and formation method of the present invention. FIG. As is clear from this figure (FIG. 4), the reflection increasing film according to this example can achieve a reflectance of 99% by providing at least 18 pairs (36 layers) or more.

【0014】(実施例3)以下本発明の第3実施例につ
いて図面を参照しながら説明する。図5は本発明の一実
施例において光学研磨された炭化珪素(SiC)基板上
に順次交互に積層されたSiO2 膜とAl2 O3 
膜からなる48層多層膜の構成、光学的膜厚を示した図
である。図5において、4は光学研磨された炭化珪素(
SiC)基板、5は光学的膜厚をλ/4(たとえばXe
Clエキシマレーザ(λ=308nm)用の場合には光
学的膜厚は77nmとなる)にしたSiO2 膜、6は
光学的膜厚をλ/4にしたAl2 O3 膜で、以上は
図2の構成と同様なものである。図2の構成と異なるの
はSiO2 膜とAl2 O3 膜からなる最外対に調
整層10を設けた点である。この調整層10は、SiO
2 膜とAl2 O3 膜の光学的膜厚の和がλ/2(
たとえばXeClエキシマレーザ(λ=308nm)用
の場合には光学的膜厚は154nmとなる)としながら
SiO2 膜とAl2 O3 膜それぞれの光学的膜厚
をλ/4からずらす(例えば、SiO2 膜の光学的膜
厚を3・λ/8、Al2 O3 膜の光学的膜厚をλ/
8)ことによって調整層10のそれぞれの膜の境界面で
の入射光の電界強度の最大値より低い値となる所に位置
させることができ、耐光力の向上が期待できる。
(Embodiment 3) A third embodiment of the present invention will be described below with reference to the drawings. FIG. 5 shows SiO2 films and Al2O3 films sequentially and alternately stacked on an optically polished silicon carbide (SiC) substrate in an embodiment of the present invention.
FIG. 2 is a diagram showing the structure and optical thickness of a 48-layer multilayer film. In FIG. 5, 4 is optically polished silicon carbide (
SiC) substrate 5 has an optical film thickness of λ/4 (for example, Xe
6 is an SiO2 film with an optical thickness of 77 nm for a Cl excimer laser (λ = 308 nm), and 6 is an Al2 O3 film with an optical thickness of λ/4. The above is the configuration shown in Figure 2. It is similar to The difference from the configuration shown in FIG. 2 is that an adjustment layer 10 is provided on the outermost pair of the SiO2 film and the Al2 O3 film. This adjustment layer 10 is made of SiO
2 film and the Al2 O3 film is λ/2 (
For example, in the case of XeCl excimer laser (λ = 308 nm), the optical thickness is 154 nm), and the optical thickness of each of the SiO2 film and Al2 O3 film is shifted from λ/4 (for example, the optical thickness of the SiO2 film is 154 nm). The target film thickness is 3・λ/8, and the optical thickness of the Al2O3 film is λ/
8) As a result, the adjustment layer 10 can be positioned at a location where the electric field strength of the incident light has a lower maximum value than the maximum value at the interface between the respective films, and an improvement in light resistance can be expected.

【0015】(実施例4)以下本発明の第4実施例につ
いて図面を参照しながら説明する。図6は本発明の一実
施例における光学研磨された弗化カルシュウム(CaF
2 )基板上にSiO2 膜、Al2 O3 膜、Si
O2 膜の順に交互に積層された3層反射防止膜の構成
、光学的膜厚を示した図である。図6において、11は
光学研磨された弗化カルシュウム(CaF2 )基板、
12は光学的膜厚がλ/4よりも所定量ずらした膜厚(
例えば、KrFエキシマレーザ(λ=248nm)用の
場合には62nmより10nmずれた52.0nm)の
第1層目のSiO2 膜、13は光学的膜厚がλ/4よ
りも所定量ずらした膜厚(例えば、KrFエキシマレー
ザ(λ=248nm)用の場合には62nmより9.4
nmずれた71.4nm)の第2層目のAl2 O3 
膜、14は光学的膜厚がλ/4よりも所定量ずらした膜
厚(例えば、KrFエキシマレーザ(λ=248nm)
用の場合には62nmより4.4nmずれた57.6n
m)の第3層目のSiO2 膜である。
(Embodiment 4) A fourth embodiment of the present invention will be described below with reference to the drawings. FIG. 6 shows optically polished calcium fluoride (CaF) in one embodiment of the present invention.
2) SiO2 film, Al2O3 film, Si
FIG. 2 is a diagram showing the structure and optical film thickness of a three-layer antireflection film in which O2 films are alternately laminated in order. In FIG. 6, 11 is an optically polished calcium fluoride (CaF2) substrate;
12 is a film thickness whose optical film thickness is shifted by a predetermined amount from λ/4 (
For example, in the case of KrF excimer laser (λ = 248 nm), the first layer SiO2 film is 52.0 nm, which is 10 nm off from 62 nm, and 13 is a film whose optical thickness is shifted by a predetermined amount from λ/4. Thickness (for example, for KrF excimer laser (λ = 248 nm), 9.4 nm from 62 nm
71.4 nm) second layer Al2O3
The film 14 is a film whose optical film thickness is shifted by a predetermined amount from λ/4 (for example, KrF excimer laser (λ=248 nm)
57.6n, which is 4.4nm off from 62nm
This is the third layer of SiO2 film of m).

【0016】次に、本膜厚構成により得られる効果につ
いて説明する。図7に反射スペクトルの結果を示す。1
5はそれぞれの光学的膜厚を前記値に一致させた場合の
反射スペクトル、16はそれぞれの光学的膜厚を前記値
より5%増加させた場合の反射スペクトル、17はそれ
ぞれの光学的膜厚を前記値より5%減少させた場合の反
射スペクトルを示した図である。この図(図7)から明
らかのように、本実施例による反射防止膜は、それぞれ
の光学的膜厚を前記値に対して5%増減しても反射率0
.5%以下を達成することが可能である。
Next, the effects obtained by this film thickness configuration will be explained. Figure 7 shows the results of the reflection spectrum. 1
5 is a reflection spectrum when each optical film thickness is made to match the above value, 16 is a reflection spectrum when each optical film thickness is increased by 5% from the above value, and 17 is each optical film thickness. FIG. 3 is a diagram showing a reflection spectrum when the value is decreased by 5% from the above value. As is clear from this figure (FIG. 7), the antireflection film according to this example has a reflectance of 0 even if the optical film thickness is increased or decreased by 5% from the above value.
.. It is possible to achieve less than 5%.

【0017】なを、本実施例では、光学研磨した基板に
弗化カルシュウム(CaF2 )を用いたが合成石英(
SiO2 )を用いても同様の反射防止膜を得ることが
可能である。
In this example, calcium fluoride (CaF2) was used for the optically polished substrate, but synthetic quartz (CaF2) was used for the optically polished substrate.
It is also possible to obtain a similar antireflection film using SiO2).

【0018】また、本実施例においても前実施例におい
て説明したと同様な耐熱性を有することはもちろんであ
る。
It goes without saying that this example also has the same heat resistance as described in the previous example.

【0019】[0019]

【発明の効果】以上のように本発明は、SiO2 膜を
形成する場合にのみ不活性がスに酸素ガスを注入するこ
とにより、SiO2 膜の低級酸化物への移行を抑制し
低吸収率化を図り、さらに屈折率や密度,ストレス等の
光学および物理定数を安定化することが出来、その結果
耐光力が向上し大出力・高繰り返しエキシマレーザ用光
学部品に使用でき、かつ光学部品が高温に曝されるよう
な環境の下でも使用できる十分な耐熱性を有した高反射
膜、反射防止膜等を得ることができるので、その効果は
大である。
As described above, the present invention suppresses the transition of the SiO2 film to lower oxides and lowers the absorption rate by injecting oxygen gas into the inert gas only when forming the SiO2 film. In addition, optical and physical constants such as refractive index, density, and stress can be stabilized, resulting in improved light resistance and can be used in optical components for high-output, high-repetition excimer lasers, and optical components can be used at high temperatures. The effect is great because it is possible to obtain a highly reflective film, an antireflection film, etc. that has sufficient heat resistance to be used even in an environment where it is exposed to.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】第1図は本発明の第1の実施例における合成石
英基板上にSiO2膜とAl2 O3 膜からなる36
層(18対)多層膜をスパッタリングガスの雰囲気を変
えて形成した場合の分光反射率特性図
[Fig. 1] Fig. 1 shows a 36-layer structure consisting of a SiO2 film and an Al2 O3 film on a synthetic quartz substrate in the first embodiment of the present invention.
Spectral reflectance characteristic diagram when a multilayer film (18 pairs) is formed by changing the sputtering gas atmosphere

【図2】第2図は本発明の第2の実施例における光学研
磨された炭化珪素(SiC)基板上に順次交互に積層さ
れたSiO2 膜とAl2 O3 膜からなる48層(
24対)多層膜のエキシマレーザ用反射鏡の構成図
FIG. 2 shows 48 layers (48 layers) consisting of SiO2 films and Al2O3 films stacked sequentially and alternately on an optically polished silicon carbide (SiC) substrate in a second embodiment of the present invention.
24 pairs) Configuration diagram of multilayer excimer laser reflector

【図
3】第3図は本発明の第2の実施例における多層膜から
なるKrFエキシマレーザ用反射鏡の熱処理前後の分光
反射率特性図
[Fig. 3] Fig. 3 is a spectral reflectance characteristic diagram before and after heat treatment of a KrF excimer laser reflector made of a multilayer film according to the second embodiment of the present invention.

【図4】第4図は本発明の第2の実施例における光学研
磨された炭化珪素(SiC)基板上に本発明の多層膜お
よび形成方法により順次交互に積層されたSiO2 膜
とAl2 O3 膜からなる多層膜の対数による反射率
の変化図
FIG. 4 shows a SiO2 film and an Al2 O3 film that are sequentially and alternately laminated by the multilayer film and formation method of the present invention on an optically polished silicon carbide (SiC) substrate in a second embodiment of the present invention. Change diagram of reflectance due to logarithm of multilayer film consisting of

【図5】第5図は本発明の第3の実施例における光学研
磨された炭化珪素(SiC)基板上に順次交互に積層さ
れたSiO2 膜とAl2 O3 膜からなる48層多
層膜の構成図
FIG. 5 is a configuration diagram of a 48-layer multilayer film consisting of SiO2 films and Al2 O3 films sequentially and alternately laminated on an optically polished silicon carbide (SiC) substrate in a third embodiment of the present invention.

【図6】第6図は本発明の第4の実施例における光学研
磨された弗化カルシュウム(CaF2 )基板上にSi
O2 膜、Al2 O3 膜、SiO2 膜の順に交互
に積層されたKrFエキシマレーザ用の3層反射防止膜
の構成図
FIG. 6 shows Si on an optically polished calcium fluoride (CaF2) substrate in the fourth embodiment of the present invention.
A configuration diagram of a three-layer antireflection film for KrF excimer lasers, in which O2 film, Al2 O3 film, and SiO2 film are alternately laminated in this order.

【図7】第7図は本発明の第4の実施例におけ
る光学研磨された弗化カルシュウム(CaF2 )基板
上にSiO2 膜、Al2 O3 膜、SiO2 膜の
順に交互に積層されたKrFエキシマレーザ用の3層反
射防止膜の反射スペクトルの結果図
FIG. 7 shows a KrF excimer laser in which SiO2 films, Al2O3 films, and SiO2 films are alternately laminated in this order on an optically polished calcium fluoride (CaF2) substrate according to a fourth embodiment of the present invention. Figure of reflection spectrum results of three-layer anti-reflection film

【符号の説明】[Explanation of symbols]

4  基板 5  2酸化珪素膜 6  酸化アルミニウム膜 7  反射増加膜 10  調整層 11  基板 12  2酸化珪素膜 13  酸化アルミニウム膜 14  2酸化珪素膜 4 Board 5 Silicon dioxide film 6 Aluminum oxide film 7 Reflection increasing film 10 Adjustment layer 11 Board 12 Silicon dioxide film 13 Aluminum oxide film 14 Silicon dioxide film

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】  光学研磨した基板の表面にスパッタリ
ング法により、不活性ガスを用い高屈折率物質として酸
化アルミニウム(Al2 O3 )および不活性がスに
酸素(O2 )ガスを注入しながら低屈折率物質として
二酸化珪素(SiO2 )を交互に積層することを特徴
とする誘電体多層膜。
1. A sputtering method is applied to the surface of an optically polished substrate using aluminum oxide (Al2O3) as a high refractive index material using an inert gas and a low refractive index material while injecting oxygen (O2) gas into the inert gas. A dielectric multilayer film characterized by alternately stacking silicon dioxide (SiO2) as a material.
【請求項2】  誘電体多層膜が反射増加膜または反射
防止膜であることを特徴とする請求項1記載の誘電体多
層膜。
2. The dielectric multilayer film according to claim 1, wherein the dielectric multilayer film is a reflection increasing film or an antireflection film.
【請求項3】  反射増加膜の基板が炭化珪素(SiC
),珪素(Si),弗化カルシュウム(CaF2 ),
合成石英(SiO2 )から選択されることを特徴とす
る請求項2記載の誘電体多層膜。
3. The substrate of the reflection increasing film is silicon carbide (SiC).
), silicon (Si), calcium fluoride (CaF2),
3. The dielectric multilayer film according to claim 2, wherein the dielectric multilayer film is selected from synthetic quartz (SiO2).
【請求項4】  反射防止膜の基板が弗化カルシュウム
(CaF2 ),合成石英(SiO2 )から選択され
ることを特徴とする請求項2記載の誘電体多層膜。
4. The dielectric multilayer film according to claim 2, wherein the substrate of the antireflection film is selected from calcium fluoride (CaF2) and synthetic quartz (SiO2).
【請求項5】  スパッタリングの方法がマグネトロン
スパッタリング法を用いたことを特徴とする請求項1記
載の誘電体多層膜。
5. The dielectric multilayer film according to claim 1, wherein the sputtering method uses a magnetron sputtering method.
【請求項6】  不活性ガスが、アルゴン(Ar)ガス
であることを特徴とする請求項1記載の誘電体多層膜。
6. The dielectric multilayer film according to claim 1, wherein the inert gas is argon (Ar) gas.
【請求項7】  光学研磨した基板の表面にスパッタリ
ング法により、不活性ガスを用い高屈折率物質として酸
化アルミニウム(Al2 O3 )、不活性ガスに酸素
(O2 )ガスを注入しながら低屈折率物質として二酸
化珪素(SiO2 )を交互に積層することを特徴とす
る誘電体多層膜の形成方法。
7. Aluminum oxide (Al2O3) is used as a high refractive index material using an inert gas, and a low refractive index material is added to the surface of the optically polished substrate by sputtering while injecting oxygen (O2) gas into the inert gas. A method for forming a dielectric multilayer film, characterized in that silicon dioxide (SiO2) is alternately laminated as a layer.
【請求項8】  膜形成前の基板表面のクリーニングに
於いて、膜形成時のスパッタリング中の真空度より高真
空度下で不活性ガスを用いたイオンによるクリーニング
をおこなう事を特徴とする請求項7記載の誘電体多層膜
の形成方法。
8. A claim characterized in that, in cleaning the substrate surface before film formation, cleaning is performed with ions using an inert gas under a vacuum degree higher than that during sputtering during film formation. 7. The method for forming a dielectric multilayer film according to 7.
JP12926491A 1990-09-25 1991-05-31 Dielectric multiplayer film nad its formation Pending JPH04228560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12926491A JPH04228560A (en) 1990-09-25 1991-05-31 Dielectric multiplayer film nad its formation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-255833 1990-09-25
JP25583390 1990-09-25
JP12926491A JPH04228560A (en) 1990-09-25 1991-05-31 Dielectric multiplayer film nad its formation

Publications (1)

Publication Number Publication Date
JPH04228560A true JPH04228560A (en) 1992-08-18

Family

ID=26464714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12926491A Pending JPH04228560A (en) 1990-09-25 1991-05-31 Dielectric multiplayer film nad its formation

Country Status (1)

Country Link
JP (1) JPH04228560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261696B1 (en) 1996-03-22 2001-07-17 Canon Kabushika Kaisha Optical element with substrate containing fluorite as main ingredient, and method and apparatus for producing the optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261696B1 (en) 1996-03-22 2001-07-17 Canon Kabushika Kaisha Optical element with substrate containing fluorite as main ingredient, and method and apparatus for producing the optical element

Similar Documents

Publication Publication Date Title
US5513039A (en) Ultraviolet resistive coated mirror and method of fabrication
US7037595B1 (en) Thin hafnium oxide film and method for depositing same
JP2003302520A (en) Reflection mirror for infrared laser and method for manufacturing the same
US4846541A (en) Interference film filter and an optical waveguide and a method for producing the same
Kozlowski et al. High-power optical coatings for a megajoule class ICF laser
JPH0697570A (en) Reflector on semiconductor laser element end and manufacture thereof
US7561611B2 (en) Extended-lifetime elements for excimer lasers
EP0402429A1 (en) Multilayer optical dielectric coating
JP2002055212A (en) Prism and optical device using the same
JPH04228560A (en) Dielectric multiplayer film nad its formation
JP3979814B2 (en) Optical thin film manufacturing method
JPH05188203A (en) Antireflection film for caf2 substrate
US5581395A (en) Non-linear optical crystal element
Wang et al. A comparative study of the influence of different post-treatment methods on the properties of HfO2 single layers
Jelı́nek et al. Waveguiding pulsed laser deposited Ti: sapphire layers on quartz
JPS63142301A (en) Optical thin film influenced only slightly by cummulative effect
JP3069641B2 (en) Dielectric multilayer film
JP3084784B2 (en) Argon gas laser mirror
Jiao et al. Design and fabrication of superior non-polarizing beam splitter applied in laser beam combining technology
JPH05232298A (en) X-ray multilayer film reflector
Yoshida et al. Development of high-reflection mirrors of fluoride multilayers for F2 excimer laser by ion beam sputtering method
JP2004085975A (en) Oxide multilayer optical element and manufacturing method therefor
JPH0784105A (en) Reflecting film
Rudisill Design/deposition process tradeoffs for high performance optical coatings in the DUV spectral region
JPH07294705A (en) Treatment after ultraviolet irradiation