JPH05232298A - X-ray multilayer film reflector - Google Patents

X-ray multilayer film reflector

Info

Publication number
JPH05232298A
JPH05232298A JP4037899A JP3789992A JPH05232298A JP H05232298 A JPH05232298 A JP H05232298A JP 4037899 A JP4037899 A JP 4037899A JP 3789992 A JP3789992 A JP 3789992A JP H05232298 A JPH05232298 A JP H05232298A
Authority
JP
Japan
Prior art keywords
layer
multilayer film
substance
reflectance
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4037899A
Other languages
Japanese (ja)
Other versions
JP2993261B2 (en
Inventor
Katsuhiko Murakami
勝彦 村上
Tetsuya Oshino
哲也 押野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4037899A priority Critical patent/JP2993261B2/en
Publication of JPH05232298A publication Critical patent/JPH05232298A/en
Application granted granted Critical
Publication of JP2993261B2 publication Critical patent/JP2993261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To prevent mutual diffusion between substances of discrete layers without lowering reflectance by a construction wherein the composition of substances is made different in one layer between the central part thereof and the interface part with another layer and the composition is varied gradually between the central part and the interface part. CONSTITUTION:Out of two layers A and B constituting a multilayer film and being different in refractive index, at least one layer, e.g. the layer B, is formed of two kinds of substances B-1 and B-2. As to a compositional distribution in the direction of the depth of the layer B, the interface part with the layer A is formed of the substance B-1, while the inside is formed of the substance B-2, and the composition between them is varied gradually. Since a substance having the refractive index giving a high reflectance, but being easy to diffuse, is selected for the substance B-2 while a substance being inferior to the substance B-2 in terms of the reflectance, but being hard to diffuse, is selected for the substance B-1, on the occasion, there is no possibility of the substance B-2 being diffused into the layer A. A distinct interface does not exist between the two substances B-1 and B-2 and no interface roughness is brought forth. Therefore, lowering of the reflectance of the multilayer film due to scattering does not occur. Even when a periodical length of the multilayer film becomes small, besides, the diffusion can be prevented effectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線縮小投影露光、X
線望遠鏡、X線顕微鏡、X線レーザー、各種X線分析装
置等において、X線の波長域での反射光学系に用いられ
る多層膜反射鏡に関するものである。
The present invention relates to X-ray reduction projection exposure, X-ray reduction projection exposure.
The present invention relates to a multilayer film reflecting mirror used in a reflecting optical system in the wavelength range of X-rays in a ray telescope, an X-ray microscope, an X-ray laser, various X-ray analyzers and the like.

【0002】[0002]

【従来の技術】X線波長域の光に対しては、物質の屈折
率は、 n=1−δ−iβ (δ、β:正の実数) と表され、δ、βともに1に比べて非常に小さい(屈折
率の虚部βはX線の吸収を表す)。従って、屈折率がほ
ぼ1に近くなりX線はほとんど屈折せず、また、必ずX
線を吸収する。そのため、可視光領域の光のように屈折
を利用したレンズはX線波長域の光には使用できない。
2. Description of the Related Art For light in the X-ray wavelength range, the refractive index of a material is expressed as n = 1-δ-iβ (δ, β: positive real number), and both δ and β are compared to 1. Very small (refractive index imaginary part β represents absorption of X-rays). Therefore, the refractive index is close to 1 and X-rays are hardly refracted.
Absorb the rays. Therefore, a lens that uses refraction such as light in the visible light region cannot be used for light in the X-ray wavelength region.

【0003】そこで、反射を利用した光学系が用いられ
るが、やはり屈折率が1に近いために反射率は非常に低
く、大部分のX線は透過するか或いは吸収されてしま
う。この問題を解決するために、使用するX線の波長域
での屈折率と真空の屈折率(=1)との差が大きい物質
と、差の小さい物質とを交互に何層も積層することでそ
れらの界面である反射面を多数設け、それぞれの界面か
らの反射波の位相が一致するように光学的干渉理論に基
づいて各層の厚さを調整した多層膜反射鏡が開発され
た。このような多層膜反射鏡の代表的なものとして、W
(タングステン)/C(炭素)、Mo(モリブデン)/
Si(シリコン)等の組合せが知られている。そして、
これらの多層膜はスパッタリング、真空蒸着、CVD
(Chemical Vaper Deposition )等の薄膜形成技術によ
って作製されていた。
Therefore, an optical system utilizing reflection is used. However, since the refractive index is also close to 1, the reflectance is very low and most X-rays are transmitted or absorbed. In order to solve this problem, a material having a large difference between the refractive index in the wavelength range of X-rays used and a vacuum refractive index (= 1) and a material having a small difference are alternately laminated in many layers. Then, a multi-layered film mirror was developed in which a large number of reflecting surfaces, which are the interfaces between them, were provided, and the thickness of each layer was adjusted based on the optical interference theory so that the phases of the reflected waves from the respective interfaces coincided with each other. A typical example of such a multilayer-film reflective mirror is W
(Tungsten) / C (carbon), Mo (molybdenum) /
A combination of Si (silicon) or the like is known. And
These multilayer films are used for sputtering, vacuum deposition, and CVD.
It was produced by a thin film forming technique such as (Chemical Vaper Deposition).

【0004】[0004]

【発明が解決しようとする課題】前述のような多層膜
は、人工的に周期構造を構成してあり本来不安定なもの
である。特に、高強度のX線に対してこのような多層膜
反射鏡を使用する場合、X線の一部が多層膜およびその
基板に吸収され、そのエネルギーによって多層膜の温度
が上昇する。そのため、多層膜中で相互拡散、化合物形
成などの反応が促進されるため、短時間のうちに多層膜
構造が破壊されて反射鏡としての機能を失ってしまう。
The above-mentioned multilayer film artificially constitutes a periodic structure and is inherently unstable. In particular, when such a multilayer-film reflective mirror is used for high-intensity X-rays, part of the X-rays is absorbed by the multilayer film and its substrate, and the energy raises the temperature of the multilayer film. Therefore, reactions such as mutual diffusion and compound formation are promoted in the multilayer film, so that the multilayer film structure is destroyed in a short time and the function as a reflecting mirror is lost.

【0005】最近、X線多層膜反射鏡の実用化が進むに
従い、多層膜の耐熱性の評価が行われるようになり、い
くつかの材料の組み合わせについてその耐熱性が明らか
にされつつある。例えば、前記Mo/Siの組合せの多
層膜は、123 Åというシリコンの吸収端の長波長側で高
い反射率を示すため、X線縮小投影露光装置の反射光学
系に用いる多層膜反射鏡として優れている。しかし、こ
の多層膜は耐熱性が低く、真空中で400 ℃程度に加熱さ
れると多層膜構造が破壊してしまう。そして、この破壊
の現象は、モリブデン層へのシリコンの拡散とモリブデ
ンシリサイドの形成によることが知られている。(例え
ば、D.G.Sterns et.al.,J.Appl.Phys.67(1990)2415. 参
照) このような拡散による多層膜構造の破壊を防いで耐熱性
を向上するためには、その界面に拡散防止層を設ければ
良い。しかし、拡散防止効果をもつ物質は光学的特性上
は好ましくなく、多層膜自体の反射率を低下させてしま
う。そのため、反射率の低下を極力抑えるために、拡散
防止層はできるだけ薄く形成する必要がある。
Recently, as the practical use of the X-ray multilayer mirror is advanced, the heat resistance of the multilayer film has been evaluated, and the heat resistance of some combinations of materials is being clarified. For example, the multi-layer film of the Mo / Si combination has a high reflectance on the long wavelength side of the absorption edge of silicon of 123Å, and thus is excellent as a multi-layer film reflection mirror used in the reflection optical system of the X-ray reduction projection exposure apparatus. ing. However, this multi-layer film has low heat resistance, and the multi-layer film structure is destroyed when heated to about 400 ° C. in vacuum. It is known that this destruction phenomenon is due to the diffusion of silicon into the molybdenum layer and the formation of molybdenum silicide. (For example, see DGSterns et.al., J.Appl.Phys.67 (1990) 2415.) In order to prevent the destruction of the multilayer film structure due to such diffusion and improve the heat resistance, diffusion prevention should be performed at the interface. A layer may be provided. However, a substance having a diffusion preventing effect is not preferable in terms of optical characteristics and reduces the reflectance of the multilayer film itself. Therefore, in order to suppress the decrease in reflectance as much as possible, the diffusion prevention layer needs to be formed as thin as possible.

【0006】ところで、薄膜の形成に関し、大部分の物
質は薄膜成長の初期過程においては島状成長をすること
が知られている(例えば、金原あきら 薄膜 P39 裳華
房 1979 参照)。すなわち、非常に薄い薄膜は連続膜と
ならずに島状に成長し、ある程度膜厚が大きくなってか
ら連続した膜になる。島状膜から連続膜に変わる膜厚
は、物質によって異なるが、おおよそ数〜十数オングス
トロームである。一方、X線多層膜反射鏡の周期長d
(多層構造の一周期の厚さ)は、使用するX線の波長を
λ、(法線に対する)入射角をθとして次のブラッグの
式で与えられる。
With respect to the formation of a thin film, it is known that most of the substances form an island-like growth in the initial stage of the thin film growth (see, for example, Akira Kanehara thin film P39 Yukabo 1979). That is, a very thin thin film does not become a continuous film but grows in an island shape and becomes a continuous film after the film thickness increases to some extent. The thickness of the film that changes from an island-shaped film to a continuous film varies depending on the substance, but is approximately several to ten and several angstroms. On the other hand, the cycle length d of the X-ray multilayer mirror
The (thickness of one period of the multilayer structure) is given by the following Bragg equation, where λ is the wavelength of the X-ray used and θ is the incident angle (with respect to the normal).

【0007】2dcosθ=λ 例えば、多層膜を垂直入射で使用する場合、この多層膜
の周期長は波長の2分の1になる。X線多層膜反射鏡は
数十〜百数十オングストロームの波長の軟X線に対して
使用するものであり、多層膜の周期長もこれと同じオー
ダーとなる。拡散防止層の厚さは周期長に比べて十分小
さい必要があるため、その厚さは数〜数十オングストロ
ームとなり、連続膜としては限界の厚さとなる。
2dcos θ = λ For example, when a multilayer film is used at normal incidence, the cycle length of this multilayer film is ½ of the wavelength. The X-ray multilayer film reflecting mirror is used for soft X-rays having a wavelength of several tens to several hundreds of angstroms, and the cycle length of the multilayer film is of the same order. Since the thickness of the diffusion prevention layer needs to be sufficiently smaller than the cycle length, the thickness is several to several tens of angstroms, which is a limit thickness for a continuous film.

【0008】従って、反射率の低下を防ぐために拡散防
止層の厚さを薄くしていくと該拡散防止層が島状の薄膜
となり、この場合拡散防止効果が失われてしまう。ま
た、島状成長によって界面粗さが増大するため、散乱が
生じて反射率がかえって低下してしまう恐れがある。以
上のように、単純に界面に拡散防止層を設ける方法で
は、拡散防止層の厚さを十分小さくできないために反射
率が低下してしまう。そして、周期長の小さい多層膜に
拡散防止層を設けた場合その傾向が顕著であった。
Therefore, if the thickness of the diffusion prevention layer is reduced in order to prevent a decrease in reflectance, the diffusion prevention layer becomes an island-shaped thin film, and in this case, the diffusion prevention effect is lost. In addition, since the interface roughness increases due to the island-shaped growth, scattering may occur and the reflectance may be rather lowered. As described above, in the method of simply providing the diffusion prevention layer at the interface, the reflectance is lowered because the thickness of the diffusion prevention layer cannot be made sufficiently small. The tendency was remarkable when the diffusion prevention layer was provided on the multilayer film having a small cycle length.

【0009】本発明はこのような問題点を解決すること
を目的とする。
An object of the present invention is to solve such a problem.

【0010】[0010]

【課題を解決するための手段】上記目的のために、本発
明では、使用するX線の波長域で屈折率の異なる物質か
らなる2つの層を交互に積層してなるX線多層膜反射鏡
において、少なくとも一方の層がその中心部と他方の層
との界面部とで物質の組成が異なり、また該中心部と界
面部との間で前記組成が徐々に変化するようにした。
To achieve the above object, in the present invention, an X-ray multi-layer film reflecting mirror is formed by alternately laminating two layers made of substances having different refractive indexes in the X-ray wavelength range to be used. In at least one of the layers, the composition of the substance is different between the central portion and the interface between the other layer, and the composition is gradually changed between the central portion and the interface.

【0011】[0011]

【作用】本発明においては、図1(a)に示すようによ
うに多層膜を構成する互いに屈折率の異なる2つ物質か
らなる層(A層、B層)のうち、少なくとも一方の層
(ここでは、B層とする)が2種類の物質(B−1、B
−2)により形成されるようにした。そして図1(b)
に示すように、多層膜におけるB層の深さ方向の組成分
布は、界面部分は物質B−1からなり内部は物質B−2
からなる。そして、その間では徐々に組成が変化するよ
うにした。この時、物質B−2は高反射率を与える屈折
率を有するが拡散しやすい物質を選択し、物質B−1は
反射率の点では物質B−2よりも劣るが拡散し難い物質
を選択した。従って、物質B−2がA層へ拡散する恐れ
がない。なお、物質B−1と物質B−2との間には明瞭
な界面は存在しないため、この間では界面粗さは生じな
い。そのため、散乱により多層膜の反射率を低下させる
ことはない。また、多層膜の周期長が小さくなっても有
効に拡散防止効果を発揮することができる。
In the present invention, as shown in FIG. 1 (a), at least one layer (A layer and B layer) of two layers (A layer and B layer) having different refractive indexes which form a multilayer film ( Here, the B layer is used as two types of substances (B-1, B).
-2). And FIG. 1 (b)
As shown in, the composition distribution in the depth direction of the B layer in the multilayer film is the substance B-1 at the interface part and the substance B-2 inside.
Consists of. Then, during that period, the composition was gradually changed. At this time, as the substance B-2, a substance having a refractive index that gives a high reflectance but easily diffused is selected, and as the substance B-1, a substance inferior to the substance B-2 in terms of reflectance but hard to diffuse is selected. did. Therefore, there is no risk that the substance B-2 will diffuse into the A layer. Since there is no clear interface between the substance B-1 and the substance B-2, no interfacial roughness occurs between them. Therefore, the reflectance of the multilayer film is not reduced by the scattering. Further, even if the cycle length of the multilayer film becomes small, the diffusion preventing effect can be effectively exhibited.

【0012】さらに、拡散を防止する物質B−1は、A
層との界面部分で組成比が100 %となり、B層の内部に
行くに従って組成比を減少させている。そのため、図2
に示すように拡散防止層として新たに別の層を設ける場
合と比べ、同等の拡散防止効果を得るために必要な物質
B−1の量が少なくて済む。従って、反射率の低下も小
さく抑えることが可能である。
Further, the substance B-1 for preventing diffusion is A
The composition ratio becomes 100% at the interface with the layer, and the composition ratio decreases toward the inside of the B layer. Therefore,
As compared with the case where another layer is newly provided as the diffusion prevention layer as shown in (4), the amount of the substance B-1 required to obtain the same diffusion prevention effect can be reduced. Therefore, the decrease in reflectance can be suppressed to a small level.

【0013】以上のように、本発明によれば反射率を大
きく低下させることなく、多層膜を形成する各層の物質
間の相互拡散を防止できる。その結果、多層膜の耐熱性
が向上する。なお、図では層数を省略してあるが、実際
にはこのような周期構造を数十〜数百層積層したもので
ある。
As described above, according to the present invention, it is possible to prevent the mutual diffusion between the substances of the respective layers forming the multilayer film without significantly reducing the reflectance. As a result, the heat resistance of the multilayer film is improved. In addition, although the number of layers is omitted in the figure, in actuality, such a periodic structure is laminated by several tens to several hundred layers.

【0014】[0014]

【実施例1】図3は、本発明の多層膜の作製に用いたイ
オンビームスパッタ装置の概略構成図である。この装置
は、真空チャンバー10内に基板1を取り付ける基板ホ
ルダ2、2種類のイオン源3a、3bおよび2種類のタ
ーゲットホルダ4a、4bとを設けたものである。一方
のターゲットホルダ4aは、図示していない回転手段に
より図中矢印Sの方向に回転可能になっている。そし
て、ホルダ4aの両面には、それぞれ異なる物質からな
るターゲット5a、5bが取り付けられており、成膜し
たい物質のターゲットをイオン源3aに対向させること
ができる。また、他方のターゲトホルダ4bは固定され
ており、ターゲット5cが取り付けられている。成膜時
は、イオン源3aまたは3bからアルゴンイオンビーム
6a、6bを出射してターゲットに衝突させる。そし
て、ターゲット材料をスパッタリングして生じた蒸気を
基板1上に付着させて薄膜を形成する。
Example 1 FIG. 3 is a schematic configuration diagram of an ion beam sputtering apparatus used for producing a multilayer film of the present invention. This apparatus is provided with a substrate holder 2 for mounting a substrate 1 in a vacuum chamber 10, two types of ion sources 3a and 3b, and two types of target holders 4a and 4b. One of the target holders 4a is rotatable in the direction of arrow S in the figure by a rotating means (not shown). Targets 5a and 5b made of different substances are attached to both surfaces of the holder 4a, so that the target of the substance to be film-formed can be opposed to the ion source 3a. The other target holder 4b is fixed and the target 5c is attached. During film formation, the argon ion beams 6a and 6b are emitted from the ion source 3a or 3b to collide with the target. Then, vapor generated by sputtering the target material is attached onto the substrate 1 to form a thin film.

【0015】本実施例では、ターゲット5aにモリブデ
ン、ターゲット5bにシリコン、ターゲット5cに酸化
珪素(SiO2 )を用いた。また、基板1としてはシリ
コンウエハを用いた。ここで、多層膜の作製過程を説明
する。まず、モリブデンからなるターゲット5aにイオ
ンビーム6aを照射して基板1上に膜厚25Åのモリブデ
ン層を形成する。次に、ターゲットホルダ4aを回転さ
せてシリコンからなるターゲット5bをイオン源3aに
対向させる。そして、ターゲット5bにイオンビーム6
aを照射するとともに、ターゲット5cにもイオンビー
ム6bを照射した。この時、各イオン源3a、3bの出
力(イオンビームの加速電圧およびビーム電流)を制御
することで、成膜の開始時と終了時は酸化珪素だけが成
膜され、その中間ではシリコンの組成比を徐々に増加さ
せて層の中央部ではシリコンの組成比が100 %となり、
その後は再びシリコンの組成比が徐々に減少するように
した。このようにして、膜厚50Åの酸化珪素とシリコン
からなり、図1のように変調された組成分布をもつ層
(B層)が形成される。そして、以上の操作を50回繰り
返して周期長75Åの多層膜を形成した。この多層膜は、
図1においてA層を形成する物質Aがモリブデン、B層
を形成する物質B−1と物質B−2がそれぞれ酸化珪素
とシリコンからなっている。
In this embodiment, molybdenum is used as the target 5a, silicon is used as the target 5b, and silicon oxide (SiO 2 ) is used as the target 5c. A silicon wafer was used as the substrate 1. Here, a manufacturing process of the multilayer film will be described. First, the target 5a made of molybdenum is irradiated with the ion beam 6a to form a molybdenum layer having a film thickness of 25 Å on the substrate 1. Next, the target holder 4a is rotated so that the target 5b made of silicon faces the ion source 3a. Then, the ion beam 6 is applied to the target 5b.
The target 5c was also irradiated with the ion beam 6b while being irradiated with a. At this time, by controlling the outputs (accelerating voltage and beam current of the ion beam) of each of the ion sources 3a and 3b, only silicon oxide is formed at the start and end of the film formation, and the silicon composition is in between. By gradually increasing the ratio, the composition ratio of silicon becomes 100% in the central part of the layer,
After that, the composition ratio of silicon was gradually decreased again. In this way, a layer (layer B) made of silicon oxide and silicon having a film thickness of 50 Å and having a modulated composition distribution as shown in FIG. 1 is formed. Then, the above operation was repeated 50 times to form a multilayer film having a cycle length of 75Å. This multilayer film
In FIG. 1, the substance A forming the A layer is molybdenum, and the substances B-1 and B-2 forming the B layer are silicon oxide and silicon, respectively.

【0016】以上のようにして作製した多層膜を真空中
で加熱して耐熱性を調べた。その結果、600 ℃まで反射
率の変化はなく、800 ℃で多層膜構造が破壊して反射し
なくなった。比較例として本実施例と同じ装置で膜厚25
Åのモリブデン層と膜厚50Åののシリコン層とを交互に
50層ずつ積層して多層膜を作製した。そして、同様にし
てその耐熱性を調べた。その結果、400 ℃で既に反射し
なくなった。
The multilayer film produced as described above was heated in vacuum to examine the heat resistance. As a result, the reflectance did not change up to 600 ° C, and the multilayer structure was destroyed at 800 ° C and no reflection occurred. As a comparative example, a film thickness of 25
Alternating a Å molybdenum layer and a 50 Å thick silicon layer
A multilayer film was prepared by stacking 50 layers each. And the heat resistance was investigated similarly. As a result, it no longer reflects at 400 ° C.

【0017】次に、本実施例の多層膜と従来の多層膜に
ついて、それぞれの軟X線反射率を放射光を用いてS偏
光で測定した。放射光の入射角は多層膜の法線に対して
15゜に設定し、波長 135Å付近に反射率のピークが生じ
るようにした。この結果を図4に示す。図4のグラフに
おいて、曲線Pは従来のモリブデン/シリコンの組み合
わせの多層膜の反射率を示し、曲線Qは本実施例の多層
膜の反射率を示す。グラフから判るように、波長 137Å
の光に対する従来の反射鏡の反射率72%に対して本実施
例の多層膜の反射率は66%であり、反射率の大幅な低下
は認められなかった。
Next, the soft X-ray reflectance of each of the multilayer film of the present example and the conventional multilayer film was measured by S-polarization using radiated light. The incident angle of synchrotron radiation is relative to the normal of the multilayer film
It was set at 15 ° so that the peak of reflectance was generated around the wavelength of 135Å. The result is shown in FIG. In the graph of FIG. 4, a curve P shows the reflectance of the conventional multilayer film of molybdenum / silicon combination, and a curve Q shows the reflectance of the multilayer film of this embodiment. As you can see from the graph, the wavelength is 137Å
The reflectance of the multilayer film of the present example was 66% with respect to the reflectance of 72% of the conventional reflecting mirror with respect to the above light, and no significant decrease in reflectance was observed.

【0018】ところで、図2に示すような界面に拡散防
止層Cを設けた多層膜において、本実施例の多層膜と同
等の耐熱性を得るためには、拡散防止層として膜厚10Å
の酸化珪素からなる層が必要となる。この多層膜に対し
て同様に軟X線反射率を測定した結果を図4のグラフの
曲線Rに示す。グラフから判るように、この場合の多層
膜の反射率は58%となり、本実施例の多層膜よりも反射
率が低下した。また、酸化珪素の膜厚を10Åよりも小さ
くすると、十分な拡散防止効果が得られなくなった。
By the way, in order to obtain heat resistance equivalent to that of the multilayer film of this embodiment in the multilayer film having the diffusion preventive layer C at the interface as shown in FIG. 2, the diffusion preventive layer has a film thickness of 10Å.
A layer of silicon oxide is required. Similarly, the result of measuring the soft X-ray reflectance of this multilayer film is shown by the curve R in the graph of FIG. As can be seen from the graph, the reflectance of the multilayer film in this case was 58%, which was lower than that of the multilayer film of this example. Further, if the film thickness of silicon oxide is smaller than 10Å, a sufficient diffusion preventing effect cannot be obtained.

【0019】[0019]

【実施例2】本実施例では、実施例1と同じ装置でター
ゲット材料を換えて多層膜を作製した。そして、ターゲ
ット5aにモリブデン、ターゲット5bにシリコン、タ
ーゲット5cに炭化珪素(SiC)を用いた。基板1に
はシリコンウエハを用いている。
Example 2 In this example, a target material was changed in the same apparatus as in Example 1 to produce a multilayer film. Then, molybdenum was used for the target 5a, silicon was used for the target 5b, and silicon carbide (SiC) was used for the target 5c. A silicon wafer is used for the substrate 1.

【0020】そして、まず、モリブデンからなるターゲ
ット5aにイオンビーム6aを照射して基板1上に膜厚
25Åのモリブデン層を形成した。次に、ターゲットホル
ダ4aを回転させてシリコンからなるターゲット5bを
イオン源3aに対向させる。そして、ターゲット5bに
イオンビーム6aを照射するとともに、ターゲット5c
にもイオンビーム6bを照射した。この時、各イオン源
3a、3bの出力(イオンビームの加速電圧およびビー
ム電流)を制御することで、成膜の開始時と終了時は炭
化珪素だけが成膜され、その中間ではシリコンの組成比
を徐々に増加させて層の中央部ではシリコンの組成比が
100 %となり、その後は再びシリコンの組成比が徐々に
減少するようにした。このようにして、膜厚50Åの炭化
珪素とシリコンとからなり、図1のように変調された組
成分布をもつ層を形成した。そして、以上の操作を50回
繰り返して周期長75Åの多層膜を形成した。この多層膜
は、図1においてA層を形成する物質Aがモリブデン、
B層を形成する物質B−1と物質B−2がそれぞれ炭化
珪素とシリコンからなっている。
Then, first, the target 5a made of molybdenum is irradiated with the ion beam 6a to form a film on the substrate 1.
A 25 Å molybdenum layer was formed. Next, the target holder 4a is rotated so that the target 5b made of silicon faces the ion source 3a. Then, while irradiating the target 5b with the ion beam 6a, the target 5c
Was also irradiated with the ion beam 6b. At this time, by controlling the output of each of the ion sources 3a and 3b (accelerating voltage and beam current of the ion beam), only silicon carbide is formed at the start and end of the film formation, and the silicon composition is in between. The composition ratio of silicon in the central part of the layer is gradually increased by increasing the ratio.
After that, the composition ratio of silicon was gradually decreased again to 100%. In this way, a layer of silicon carbide and silicon having a film thickness of 50Å and having a modulated composition distribution as shown in FIG. 1 was formed. Then, the above operation was repeated 50 times to form a multilayer film having a cycle length of 75Å. In this multilayer film, the material A forming the layer A in FIG. 1 is molybdenum,
The substance B-1 and the substance B-2 forming the B layer are composed of silicon carbide and silicon, respectively.

【0021】以上のようにして作製した多層膜を真空中
で加熱して耐熱性を調べた。その結果、800 ℃まで反射
率の変化はなく、950 ℃で多層膜構造が破壊して反射し
なくなった。比較例として本実施例と同じ装置で膜厚25
Åのモリブデン層と膜厚50Åのシリコン層とを交互に50
層ずつ積層して多層膜を作製した。そして、同様にして
その耐熱性を調べた。その結果、400 ℃で既に反射しな
くなった。
The heat resistance was investigated by heating the multilayer film produced as described above in a vacuum. As a result, the reflectance did not change up to 800 ° C, and the multilayer structure was destroyed at 950 ° C and no reflection occurred. As a comparative example, a film thickness of 25
Alternating 50Å molybdenum layer and 50Å silicon layer
A multilayer film was prepared by laminating layers. And the heat resistance was investigated similarly. As a result, it no longer reflects at 400 ° C.

【0022】次に、本実施例の多層膜と従来の多層膜に
ついて、それぞれの軟X線反射率を放射光を用いてS偏
光で測定した。放射光の入射角は多層膜の法線に対して
15゜に設定し、波長 135Å付近に反射率のピークが生じ
るようにした。この結果を図5に示す。図5のグラフに
おいて、曲線Pは従来のモリブデン/シリコンの組み合
わせの多層膜の反射率を示し、曲線Qは本実施例の多層
膜の反射率を示す。このグラフから判るように波長 137
Åの光に対する従来の多層膜の反射率72%に対して本実
施例の多層膜の反射率は68%であり、反射率の大幅な低
下は認められなかった。
Next, the soft X-ray reflectance of each of the multilayer film of this example and the conventional multilayer film was measured by S-polarization using radiant light. The incident angle of synchrotron radiation is relative to the normal of the multilayer film
It was set at 15 ° so that the peak of reflectance was generated around the wavelength of 135Å. The result is shown in FIG. In the graph of FIG. 5, a curve P shows the reflectance of the conventional multilayer film of molybdenum / silicon combination, and a curve Q shows the reflectance of the multilayer film of this embodiment. As you can see from this graph, wavelength 137
The reflectance of the conventional multilayer film with respect to the light of Å was 72%, whereas the reflectance of the multilayer film of this example was 68%, and no significant decrease in the reflectance was observed.

【0023】また、図2に示すような界面に拡散防止層
Cを設けた多層膜において、本実施例の多層膜と同等の
耐熱性を得るためには、拡散防止層として膜厚15Åの炭
化珪素からなる層が必要となる。この多層膜に対して同
様に軟X線反射率を測定した結果を図5のグラフの曲線
Rに示す。グラフから判るように、この場合の多層膜の
反射率は63%となり、本実施例の多層膜よりも反射率が
低下した。また、酸化珪素の膜厚を15Åよりも小さくす
ると、十分な拡散防止効果が得られなくなった。
In order to obtain heat resistance equivalent to that of the multilayer film of this embodiment in the multilayer film having the diffusion preventive layer C at the interface as shown in FIG. 2, the diffusion preventive layer is carbonized with a film thickness of 15Å. A layer of silicon is required. The result of measuring the soft X-ray reflectance of this multilayer film in the same manner is shown by the curve R in the graph of FIG. As can be seen from the graph, the reflectance of the multilayer film in this case was 63%, which was lower than that of the multilayer film of this example. Further, when the film thickness of silicon oxide is smaller than 15Å, a sufficient diffusion preventing effect cannot be obtained.

【0024】[0024]

【発明の効果】以上のように本発明によれば、X線の反
射率の低下を小さく抑えたまま、多層膜を形成する各物
質間の相互拡散を防止できる。そのため、多層膜の耐熱
性を大幅に向上させることができる。また、従来のよう
に界面部分に拡散防止層を新たに設ける必要がないた
め、周期長の小さい多層膜に対しても、有効にその耐熱
性を向上することができる。
As described above, according to the present invention, it is possible to prevent mutual diffusion between substances forming a multilayer film while suppressing a decrease in the reflectance of X-rays. Therefore, the heat resistance of the multilayer film can be significantly improved. Further, unlike the conventional case, it is not necessary to newly provide a diffusion prevention layer on the interface portion, so that the heat resistance of the multilayer film having a small cycle length can be effectively improved.

【0025】本発明、今後、放射光を始めとする高強度
のX線源に対して使用される多層膜光学系の用途、ある
いはX線レーザー共振器のように極端に過酷な耐久性が
要求される用途等に対し、おおいにその効果を発揮する
ことができるものである。
In the present invention, a multilayer optical system used for high intensity X-ray sources such as synchrotron radiation in the future, or extremely harsh durability like X-ray laser resonator is required. It is possible to exert its effect to various uses.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明による多層膜の構造と、その深さ方
向の組成分布を示す概略図である。
FIG. 1 is a schematic view showing the structure of a multilayer film according to the present invention and the composition distribution in the depth direction thereof.

【図2】は、従来の界面に拡散防止層を設けた多層膜の
概略図である。
FIG. 2 is a schematic view of a conventional multilayer film provided with a diffusion barrier layer on the interface.

【図3】は、本発明の多層膜の作製に用いたイオンビー
ムスパッタ装置の概略構成図である。
FIG. 3 is a schematic configuration diagram of an ion beam sputtering apparatus used for producing the multilayer film of the present invention.

【図4】は、実施例1の多層膜の軟X線反射率の測定値
を示すグラフである。
FIG. 4 is a graph showing measured values of soft X-ray reflectance of the multilayer film of Example 1.

【図5】は、実施例2の多層膜の軟X線反射率の測定値
を示すグラフである。
FIG. 5 is a graph showing measured values of soft X-ray reflectance of the multilayer film of Example 2.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1 基板 2 基板ホルダ 3a イオン源 3b イオン源 4a ターゲットホルダ 4b ターゲットホルダ 5a ターゲット 5b ターゲット 5c ターゲット 6a イオンビーム 6b イオンビーム 10 真空チャンバー 1 substrate 2 substrate holder 3a ion source 3b ion source 4a target holder 4b target holder 5a target 5b target 5c target 6a ion beam 6b ion beam 10 vacuum chamber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 使用するX線の波長域で屈折率の異なる
物質からなる2つの層を交互に積層してなるX線多層膜
反射鏡において、 少なくとも一方の層がその中心部と他方の層との界面部
とで物質の組成が異なり、また該中心部と界面部との間
で前記組成が徐々に変化していることを特徴とするX線
多層膜反射鏡。
1. An X-ray multi-layered film reflecting mirror comprising two layers, which are made of substances having different refractive indexes in the wavelength range of X-rays, which are alternately laminated, wherein at least one layer has a central portion and the other layer. An X-ray multilayer film reflecting mirror, characterized in that the composition of the substance is different at the interface portion with and the composition is gradually changed between the central portion and the interface portion.
JP4037899A 1992-02-25 1992-02-25 X-ray multilayer reflector Expired - Fee Related JP2993261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4037899A JP2993261B2 (en) 1992-02-25 1992-02-25 X-ray multilayer reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4037899A JP2993261B2 (en) 1992-02-25 1992-02-25 X-ray multilayer reflector

Publications (2)

Publication Number Publication Date
JPH05232298A true JPH05232298A (en) 1993-09-07
JP2993261B2 JP2993261B2 (en) 1999-12-20

Family

ID=12510391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4037899A Expired - Fee Related JP2993261B2 (en) 1992-02-25 1992-02-25 X-ray multilayer reflector

Country Status (1)

Country Link
JP (1) JP2993261B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647860A1 (en) * 1993-10-08 1995-04-12 Koninklijke Philips Electronics N.V. Multilayer mirror with a variable refractive index
JP2002277589A (en) * 2001-03-16 2002-09-25 Japan Atom Energy Res Inst Mo/Si MULTILAYER FILM AND METHOD FOR IMPROVING ITS HEAT RESISTANCE
CN109001122A (en) * 2018-09-29 2018-12-14 西安工业大学 The optical constant measuring device and method of gradient or graded index films

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647860A1 (en) * 1993-10-08 1995-04-12 Koninklijke Philips Electronics N.V. Multilayer mirror with a variable refractive index
BE1007607A3 (en) * 1993-10-08 1995-08-22 Philips Electronics Nv MULTI-LAYER MIRROR Graded Index.
JP2002277589A (en) * 2001-03-16 2002-09-25 Japan Atom Energy Res Inst Mo/Si MULTILAYER FILM AND METHOD FOR IMPROVING ITS HEAT RESISTANCE
CN109001122A (en) * 2018-09-29 2018-12-14 西安工业大学 The optical constant measuring device and method of gradient or graded index films
CN109001122B (en) * 2018-09-29 2023-05-26 西安工业大学 Optical constant measuring device and method for gradient or graded index film

Also Published As

Publication number Publication date
JP2993261B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
RU2410732C2 (en) Thermally stable multilayer mirror for extreme ultraviolet spectral range
KR100567363B1 (en) Euvl multilayer structures
US6160867A (en) Multi-layer X-ray-reflecting mirrors with reduced internal stress
US20110228234A1 (en) Reflective optical element and method for production of such an optical element
US7037595B1 (en) Thin hafnium oxide film and method for depositing same
JP2883100B2 (en) Half mirror or beam splitter for soft X-ray and vacuum ultraviolet
JP3033323B2 (en) Method for manufacturing X-ray multilayer mirror
JP2723955B2 (en) Multilayer reflector for soft X-ray and vacuum ultraviolet
JP2993261B2 (en) X-ray multilayer reflector
JP2006308483A (en) Multilayer film and method for manufacturing multilayer film
JP2585300B2 (en) Multilayer reflector for X-ray or vacuum ultraviolet
JP2569447B2 (en) Manufacturing method of multilayer mirror
JPH06235806A (en) Reflection mirror for laser
JP2814595B2 (en) Multilayer reflector
Gaponov et al. Spherical and plane multilayer normal incidence mirrors for soft x-rays
JPH08262198A (en) X-ray multilayer film reflection mirror
JP3102959B2 (en) High durability thin film
JP2002277589A (en) Mo/Si MULTILAYER FILM AND METHOD FOR IMPROVING ITS HEAT RESISTANCE
JP3069641B2 (en) Dielectric multilayer film
JPH0784105A (en) Reflecting film
JPH02145999A (en) Multi-layered reflecting mirror for x-ray
JP2535036B2 (en) Multi-layer film mirror for X-ray / VUV
JP2007163221A (en) Manufacturing method for multilayer-film reflector
JP2008096271A (en) Multilayered film mirror and its manufacturing method
JPH0237303A (en) Multilayered reflecting mirror

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees