JPH04225142A - Measuring method of photoabsorption - Google Patents

Measuring method of photoabsorption

Info

Publication number
JPH04225142A
JPH04225142A JP40761490A JP40761490A JPH04225142A JP H04225142 A JPH04225142 A JP H04225142A JP 40761490 A JP40761490 A JP 40761490A JP 40761490 A JP40761490 A JP 40761490A JP H04225142 A JPH04225142 A JP H04225142A
Authority
JP
Japan
Prior art keywords
gas
infrared
concentration
sample cell
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40761490A
Other languages
Japanese (ja)
Inventor
Kenji Takahashi
謙司 高橋
Hironobu Sawato
沢渡 広信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP40761490A priority Critical patent/JPH04225142A/en
Publication of JPH04225142A publication Critical patent/JPH04225142A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable execution of measurement of high speed and high precision by using a plurality of infrared laser light sources being different in an oscillation wavelength and a plurality of photodetectors and by computing concentration from a ratio between an output of the photodetector and a reference output and an absorption coefficient. CONSTITUTION:In a state that there is no sample in a sample cell 21, laser lights of infrared semiconductor lasers 7 to 9 are applied inside the sample cell 21 and signal strengths Io 10 to Io 30 of infrared detectors 27 to 29 for wavelengths lambda1 to lambda2 of the lights are measured. A methane gas of a known concentration gas of a known concentration c2' and a propane gas of a known concentration c3' are introduced into the sample cell 21 discretely, the laser lights are applied thereto, signal strengths Io 11 to Io 31, Io 12 to Io 32 and To 13 to Io 33 of the detectors 27 to 29 are measured and the respective absorption coefficients (a) 11 to (a) 13, (a) 21 to (a) 23 and (a) 31 to (a) 33 of the gases are determined. An off-gas containing methane, ethane and propane of unknown concentrations is introduced into the sample cell 21, the laser lights are applied thereto and signal strengths I 1 to I 3 of the infrared detectors 27 to 29 for the wavelengths lambda1 to lambda3 are measured. Since Io 10 to Io 30 are already known, the unknown concentration of each gas can be determined.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、気体、固体又は液体中
の物質成分を測定する光吸収測定方法に関する。 【0002】 【従来の技術】従来より、気体、固体又は液体中の物質
成分を測定する必要があった。気体の場合は、例えば、
石油精製プラントのオフガス成分を測定する場合である
。オフガス成分中の炭化水素の成分を知ることは、水素
リフォーマプラントの運転条件を適正化する上で重要で
ある。 【0003】また、液体の場合は、例えば、潤滑油等の
定性的、定量的分析として、物質成分の測定を行う必要
がある。固体の場合は、例えば、GaAs中に含まれる
C(炭素)濃度の測定や、PSG(リンガラス)中のO
H基(水分)の測定等である。従来より、気体、固体又
は液体中の物質成分を測定する方法として、ガスクロマ
トグラフィ、質量分析法、又は白色光源と分光器を用い
て測定する赤外吸収分光法、紫外吸収分光法、可視吸収
分光法等がある。 【0004】 【発明が解決しようとする課題】しかし、これらの測定
方法を実施するための装置は大型であり、かつ高額であ
るという欠点があった。さらに一回ずつ試料を測定する
ので、測定に長時間かかるという欠点があった。本発明
の目的は、気体、固体又は液体中の物質成分を高速、高
精度に測定でき、かつ装置も小型にすることができる光
吸収測定方法を提供することにある。 【0005】 【課題を解決するための手段】本発明の原理について説
明する。例えば光源として発振波長λの赤外線半導体レ
ーザを用い、試料セル内に存在する単一成分の気体試料
を照射する。このとき、その気体試料が、光源からの波
長λの赤外光を一部吸収したとすると、試料セルを通過
して赤外線検出器で検出される赤外光の信号強度Iは、
I=Io ・exp(−ac) で表される。 【0006】ここで、aは波長λにおける気体試料の吸
収係数、cは気体試料の濃度である。Io は試料セル
内に気体試料が存在しない場合の信号強度である。気体
試料による光の吸収の割合をTとすると、T=I/Io
  となる。ここで、 A=ln(1/T) と置くと、 A=ac と表すことができる。 【0007】次に、n個の成分から構成される混合気体
の試料が、試料セル内に存在している場合について考え
る。ある波長λの光が、n個の成分の混合気体により吸
収されるときの全体の吸収をAT とすると、    
  AT =a1 ・c1 +a2 ・c2 +a3 
・c3 +・・・+an ・cn と表せる。 【0008】このとき、光源としてn個の赤外線半導体
レーザを用い、n個の成分の混合気体の吸収係数が各々
異なるように、赤外線半導体レーザの発振波長λ1 ,
λ2 ,…、λn を選択する。個々の波長λ1 〜λ
n の光が、n個の成分の混合気体により吸収されると
きの全体の吸収は、次式のように表すことができる。       A1 =a11・c1 +a12・c2 
+a13・c3 +・・・+a1n・cn      
 A2 =a21・c1 +a22・c2 +a23・
c3 +・・・+a2n・cn       A3 =
a31・c1 +a32・c2 +a33・c3 +・
・・+a3n・cn       ・       ・       ・       An =an1・c1 +an2・c2 
+an3・c3 +・・・+ann・cn 【0009
】これを、マトリックス形式で表すと、【0010】 【数1】 となる。従って、n個の成分の混合気体の個々の気体濃
度c1 、c2 、c3 、…、cn は、次式で表さ
れる。 【0011】 【数2】 この式から、n個の発振波長の半導体レーザ光を用いて
、混合気体による波長λ1 〜λn の光の吸収を測定
することにより、n成分からなる混合気体の個々の成分
の濃度を測定することができる。本発明の原理は、混合
気体の各成分の濃度測定について説明したが、一般的な
混合物(液体、固体)についても成立するのはもちろん
である。 【0012】このように、本発明の目的は、発振波長の
それぞれ異なるn個の赤外線レーザを光源とし、n種の
物質を含む試料による光吸収を検出するための前記n個
の赤外線レーザに対応したn個の光検出器とを用い、前
記n種の物質を含まない試料の場合の前記n個の光検出
器の出力である参照出力を測定する第1の較正段階と、
前記n種の物質の濃度が既知であるn個の試料の場合の
前記n個の光検出器の出力から前記n個の赤外線レーザ
の発振波長におけるそれぞれの前記n種の物質の吸収係
数a11〜annを演算する第2の較正段階と、前記n
種の物質の濃度が未知である試料の場合の前記n個の光
検出器の出力と前記参照出力の比と前記n種の物質の吸
収係数a11〜annから前記濃度が未知である試料の
前記n種の物質の濃度を演算する測定段階とを有するこ
とを特徴とする光吸収測定方法によって達成される。 【0013】 【作用】本発明によれば、気体、固体又は液体中の物質
成分を高速、高精度に測定でき、さらに光源が小型で分
光器を必要としない小型の光吸収測定装置による光吸収
測定を実現することができる。 【0014】 【実施例】本発明の一実施例による光吸収測定方法を第
1図を用いて説明する。本実施例では、石油精製プラン
トのオフガス成分をリアルタイムで測定するシステムに
ついて述べる。オフガス成分は水素、メタン、エタン、
プロパンと若干の水蒸気で構成されており、炭化水素の
成分をリアルタイムで知ることは、水素リフォーマプラ
ントの運転条件を適正化する上で重要である。 【0015】本実施例は、オフガス成分の内、メタン、
エタン、プロパンの3成分についての濃度を測定する場
合に適用したものである。本実施例で用いる光吸収測定
装置の構成について説明する。3個の赤外線半導体レー
ザ7〜9は、液体窒素で冷却された冷却装置(図示せず
)内に設置され、冷却装置には、赤外線半導体レーザの
駆動電源1〜3及び温度コントローラ4〜6が接続され
ている。駆動電源1〜3の駆動電流は0.2〜20mA
、温度コントローラ4〜6の温度コントロール範囲は、
80〜120K(安定度:5E−3K)である。 【0016】3個の赤外線半導体レーザ7〜9は、Pb
Sレーザを用いている。赤外線半導体レーザ7の発振波
長λ1 は3314nmとし、メタンガス(CH4 )
の濃度測定用に、赤外線半導体レーザ8の発振波長λ2
 は3326nmとし、エタンガス(C2 H6 )の
濃度測定用に、赤外線半導体レーザ9の発振波長λ3 
は3464nmとし、プロパンガス(C3 H8 )の
濃度測定用にそれぞれ用いられる。 【0017】赤外線半導体レーザ7〜9の光軸上に光軸
調整用のハーフミラー11〜13が設けられ、ハーフミ
ラー11〜13に対し、赤外線半導体レーザ7〜9の光
軸とほぼ直角方向に、He−Neガスレーザである光軸
調整用レーザ10が設けられている。ハーフミラー11
〜13の先方に、赤外線半導体レーザ7〜9のレーザ光
を断続させるチョッパ14〜16が設けられている。チ
ョッパ14〜16のチョッピング周波数は100Hzで
ある。 【0018】チョッパ14〜16の先方には、赤外線半
導体レーザ7〜9の各々の光軸を平行にして、試料セル
21内に導入するための反射ミラー17〜20が設けら
れている。反射ミラー18、19の先方に、材質がCa
F2 のレーザ光入射窓を有する試料セル21が設置さ
れている。試料セル21には圧力計22とガス導入口2
3及びガス排出口24が設けられている。 【0019】試料セル21を通過した赤外線半導体レー
ザ7〜9の各々の光軸は反射ミラー25、26により、
それぞれ赤外線検出器27〜29に入力する。各赤外線
検出器27〜29は、InSbを用いたpn接合型フォ
トダイオードで、感度波長は5μm以下、応答時間は1
μs以下である。赤外線検出器27〜29の出力信号は
、感度が1μV〜1Vで可変のロックインアンプ30〜
32に入力され、チョッパ14〜16からの信号に基づ
いて増幅され、コンピュータ33に入力される。 【0020】次に、動作を説明する。メタン、エタン、
プロパンの3成分の濃度をc1 、c2 、c3 とし
、前述のごとくマトリックス形式で表すと、 【0021】 【数3】 となる。ただし、吸収長は一定で、吸収係数aに含まれ
ると仮定している。また、オフガス成分には、若干の水
蒸気と水素が含まれているが、水蒸気と水素による光の
吸収は、光の波長が3μm帯では無視できる。まず、H
e−Neガスレーザの光軸調整用レーザ10を用いて赤
外線半導体レーザ7〜9の各々の光軸の調整を行う。 【0022】次に、赤外線半導体レーザ7〜9の各々の
発振波長λ1 、λ2 、λ3 の調整を行う。赤外線
半導体レーザ用駆動電源1〜3及び温度コントローラ4
〜6を用いて行う。次に、試料セル21内に試料が存在
しないブランク状態で、赤外線半導体レーザ7〜9のレ
ーザ光を試料セル21内に照射し、各波長λ1 、λ2
 、λ3 に対する赤外線検出器27〜29の信号強度
Io10 、Io20 、Io30 を測定しておく。 【0023】次に、既知濃度c1 ′のメタンガスのみ
をガス導入口23から試料セル21内に導入する。赤外
線半導体レーザ7〜9のレーザ光を試料セル21内に照
射し、赤外線検出器27〜29の信号強度Io11 、
Io21 、Io31 を測定し、各波長λ1 、λ2
 、λ3 に対するメタンガスの吸収係数a11、a1
2、a13を求めておく。 次に、ガス排出口24からメタンガスを排出した後、既
知濃度c2 ′のエタンガスのみをガス導入口23から
試料セル21内に導入する。赤外線半導体レーザ7〜9
のレーザ光を試料セル21内に照射し、赤外線検出器2
7〜29の信号強度Io12 、Io22 、Io32
 を測定し、各波長λ1 、λ2 、λ3 に対するエ
タンガスの吸収係数a21、a22、a23を求めてお
く。 【0024】次に、ガス排出口24からエタンガスを排
出した後、既知濃度c3 ′のプロパンガスのみをガス
導入口23から試料セル21内に導入する。赤外線半導
体レーザ7〜9のレーザ光を試料セル21内に照射し、
赤外線検出器27〜29の信号強度Io13 、Io2
3 、Io33 を測定し、それぞれの波長λ1 、λ
2 、λ3 に対するプロパンガスの吸収係数a31、
a32、a33を求めておく。 【0025】以上のようにして求めた吸収係数のマトリ
ックスの要素aを以下に示す。 【0026】 【数4】 単位は1/[cm・%]である。従って、メタン、エタ
ン、プロパンの3成分の濃度c1 、c2 、c3 は
、以下のごとく表すことができる。 【0027】 【数5】 次に、ガス排出口24からプロパンガスを排出した後、
未知濃度のメタン、エタン、プロパンを含むオフガスを
ガス導入口23から試料セル21内に導入する。赤外線
半導体レーザ7〜9のレーザ光を試料セル21内に照射
し、それぞれの波長λ1 、λ2 、λ3 に対する赤
外線検出器27〜29の信号強度I1 、I2 、I3
 を測定する。 【0028】ここで、Aは、 A=ln(Io /I) であり、Io10 〜Io30 は既知であるから、A
1 〜A3 の値はコンピュータによる計算で簡単に求
めることができる。従って、各ガスの未知濃度c1 、
c2 、c3 も、上記連立1次方程式の解としてコン
ピュータによる計算で簡単に求めることができ、その濃
度をリアルタイムで計測することができる。 【0029】本実施例によれば、気体成分の濃度を高速
かつ高精度に測定できるので、オフガス成分がリアルタ
イムで測定でき、プラントの最適運転条件が容易に得ら
れる光吸収測定装置を実現できる。また、光源に半導体
レーザを使用することにより、分解能の高い吸収スペク
トルが得られる。従って、分光器を用いる必要がなく、
装置の小形化が可能である。本発明は、上記実施例に限
らず種々の変形が可能である。 【0030】例えば、赤外線を発する半導体レーザは、
順方向に電流を流すことにより発光し、その発光波長は
、ある範囲内で順方向電流値を変化させることにより変
化させることができるので、光源としての半導体レーザ
は、3個以下、例えば1個としてもよい。この場合、光
源としての半導体レーザの数は減らせるが、半導体レー
ザが安定するまで若干時間がかかるので、その分測定時
間は長くなる。 【0031】 【発明の効果】以上の通り、本発明によれば、気体、固
体又は液体中の物質成分を高速、高精度に測定でき、か
つ装置も小型にすることができる光吸収測定方法を実現
できる。
Description: FIELD OF THE INVENTION The present invention relates to a light absorption measurement method for measuring substance components in a gas, solid or liquid. BACKGROUND OF THE INVENTION There has heretofore been a need to measure constituents of substances in gases, solids or liquids. In the case of gas, for example,
This is a case of measuring off-gas components of an oil refinery plant. Knowing the hydrocarbon components in the off-gas components is important in optimizing the operating conditions of a hydrogen reformer plant. [0003] In the case of liquids, for example, it is necessary to measure the substance components for qualitative and quantitative analysis of lubricating oil and the like. In the case of a solid, for example, the concentration of C (carbon) contained in GaAs or the O in PSG (phosphorus glass) can be measured.
Measurement of H groups (moisture), etc. Conventionally, methods for measuring substance components in gases, solids, or liquids include gas chromatography, mass spectrometry, or infrared absorption spectroscopy, ultraviolet absorption spectroscopy, and visible absorption spectroscopy that use a white light source and a spectrometer. There are laws etc. [0004] However, the apparatuses for carrying out these measuring methods have the drawbacks of being large and expensive. Furthermore, since each sample is measured once, there is a drawback that the measurement takes a long time. An object of the present invention is to provide a light absorption measuring method that can measure substance components in gases, solids, or liquids at high speed and with high precision, and that can also be made compact. [Means for Solving the Problems] The principle of the present invention will be explained. For example, an infrared semiconductor laser with an oscillation wavelength λ is used as a light source to irradiate a single component gas sample present in a sample cell. At this time, if the gas sample absorbs some of the infrared light of wavelength λ from the light source, the signal intensity I of the infrared light that passes through the sample cell and is detected by the infrared detector is:
It is expressed as I=Io·exp(-ac). Here, a is the absorption coefficient of the gas sample at wavelength λ, and c is the concentration of the gas sample. Io is the signal intensity when there is no gas sample in the sample cell. If the rate of light absorption by the gas sample is T, then T=I/Io
becomes. Here, if A=ln(1/T), it can be expressed as A=ac. Next, consider the case where a sample of a mixed gas composed of n components exists in the sample cell. When light with a certain wavelength λ is absorbed by a gas mixture of n components, the total absorption is AT, then
AT =a1 ・c1 +a2 ・c2 +a3
・c3 +...+an ・cn At this time, n infrared semiconductor lasers are used as light sources, and the oscillation wavelengths λ1, λ1,
Select λ2,..., λn. Individual wavelengths λ1 ~ λ
The total absorption when n lights are absorbed by a gas mixture of n components can be expressed as follows. A1 = a11・c1 +a12・c2
+a13・c3 +...+a1n・cn
A2 = a21・c1 +a22・c2 +a23・
c3 +...+a2n・cn A3 =
a31・c1 +a32・c2 +a33・c3 +・
・・+a3n・cn ・ ・ ・ An =an1・c1 +an2・c2
+an3・c3 +...+ann・cn 0009
] If this is expressed in matrix form, it becomes [Equation 1]. Therefore, the individual gas concentrations c1, c2, c3,..., cn of the mixed gas of n components are expressed by the following equations. [0011] From this equation, by measuring the absorption of light with wavelengths λ1 to λn by the gas mixture using semiconductor laser beams with n oscillation wavelengths, each individual of the gas mixture consisting of n components can be determined. Concentrations of components can be measured. Although the principle of the present invention has been described with respect to measuring the concentration of each component of a mixed gas, it is of course applicable to general mixtures (liquids, solids). As described above, an object of the present invention is to use n infrared lasers each having a different oscillation wavelength as a light source, and to detect light absorption by a sample containing n types of substances. a first calibration step of measuring a reference output, which is the output of the n photodetectors for a sample not containing the n types of substances, using the n photodetectors;
Absorption coefficient a11~ of each of the n types of substances at the oscillation wavelength of the n infrared lasers from the outputs of the n photodetectors in the case of n samples in which the concentrations of the n types of substances are known. a second calibration step of calculating ann;
From the ratio of the output of the n photodetectors to the reference output in the case of a sample in which the concentration of the species substance is unknown and the absorption coefficients a11 to ann of the n species substances, the concentration of the substance in the sample is unknown. This is achieved by a light absorption measurement method characterized by comprising a measurement step of calculating the concentration of n types of substances. [Operation] According to the present invention, it is possible to measure substance components in gases, solids, or liquids at high speed and with high precision, and in addition, light absorption can be measured using a compact light absorption measuring device that has a small light source and does not require a spectrometer. measurement can be realized. [Embodiment] A method for measuring light absorption according to an embodiment of the present invention will be explained with reference to FIG. In this example, a system for measuring off-gas components of an oil refinery plant in real time will be described. Off gas components are hydrogen, methane, ethane,
It is composed of propane and some steam, and knowing the hydrocarbon composition in real time is important in optimizing the operating conditions of a hydrogen reformer plant. In this example, methane,
This method was applied to measure the concentrations of three components: ethane and propane. The configuration of the optical absorption measuring device used in this example will be explained. The three infrared semiconductor lasers 7 to 9 are installed in a cooling device (not shown) cooled with liquid nitrogen, and the cooling device includes drive power supplies 1 to 3 for the infrared semiconductor lasers and temperature controllers 4 to 6. It is connected. The drive current of drive power supplies 1 to 3 is 0.2 to 20mA.
, the temperature control range of temperature controllers 4 to 6 is
80-120K (stability: 5E-3K). The three infrared semiconductor lasers 7 to 9 are made of Pb
S laser is used. The oscillation wavelength λ1 of the infrared semiconductor laser 7 is 3314 nm, and methane gas (CH4) is used.
For concentration measurement, the oscillation wavelength λ2 of the infrared semiconductor laser 8
is 3326 nm, and the oscillation wavelength λ3 of the infrared semiconductor laser 9 is set to 3326 nm.
is 3464 nm, and is used for measuring the concentration of propane gas (C3 H8). Half mirrors 11 to 13 for optical axis adjustment are provided on the optical axes of the infrared semiconductor lasers 7 to 9. , an optical axis adjustment laser 10 which is a He-Ne gas laser is provided. half mirror 11
- 13 are provided with choppers 14 - 16 that cut off and cut off the laser beams of the infrared semiconductor lasers 7 - 9 . The chopping frequency of choppers 14-16 is 100Hz. Reflection mirrors 17 to 20 are provided ahead of the choppers 14 to 16 for introducing the infrared semiconductor lasers 7 to 9 into the sample cell 21 with their respective optical axes parallel to each other. In front of the reflecting mirrors 18 and 19, the material is Ca.
A sample cell 21 having an F2 laser beam entrance window is installed. The sample cell 21 has a pressure gauge 22 and a gas inlet 2.
3 and a gas outlet 24 are provided. The optical axes of each of the infrared semiconductor lasers 7 to 9 that have passed through the sample cell 21 are set by reflecting mirrors 25 and 26.
The signals are input to infrared detectors 27 to 29, respectively. Each infrared detector 27 to 29 is a pn junction photodiode using InSb, and has a sensitivity wavelength of 5 μm or less and a response time of 1
It is less than μs. The output signals of the infrared detectors 27 to 29 are transmitted through lock-in amplifiers 30 to 30 whose sensitivity is variable from 1 μV to 1 V.
32, is amplified based on the signals from choppers 14 to 16, and is input to computer 33. Next, the operation will be explained. methane, ethane,
Letting the concentrations of the three components of propane be c1, c2, and c3, and expressing them in matrix form as described above, the following equation is obtained. However, it is assumed that the absorption length is constant and included in the absorption coefficient a. Further, although the off-gas component contains some water vapor and hydrogen, the absorption of light by the water vapor and hydrogen is negligible when the wavelength of light is in the 3 μm band. First, H
The optical axis of each of the infrared semiconductor lasers 7 to 9 is adjusted using the e-Ne gas laser optical axis adjustment laser 10. Next, the oscillation wavelengths λ1, λ2, and λ3 of the infrared semiconductor lasers 7 to 9 are adjusted. Infrared semiconductor laser drive power supplies 1 to 3 and temperature controller 4
-6 is used. Next, in a blank state in which no sample exists in the sample cell 21, the sample cell 21 is irradiated with laser light from the infrared semiconductor lasers 7 to 9, and each wavelength λ1, λ2 is
, λ3, the signal intensities Io10, Io20, and Io30 of the infrared detectors 27 to 29 are measured in advance. Next, only methane gas having a known concentration c1' is introduced into the sample cell 21 through the gas inlet 23. Laser light from the infrared semiconductor lasers 7 to 9 is irradiated into the sample cell 21, and the signal intensities of the infrared detectors 27 to 29 are Io11,
Io21 and Io31 are measured, and each wavelength λ1 and λ2
, absorption coefficients a11, a1 of methane gas for λ3
2. Find a13. Next, after methane gas is discharged from the gas discharge port 24, only ethane gas having a known concentration c2' is introduced into the sample cell 21 from the gas introduction port 23. Infrared semiconductor laser 7-9
The laser beam is irradiated into the sample cell 21, and the infrared detector 2
7-29 signal strength Io12, Io22, Io32
are measured, and absorption coefficients a21, a22, and a23 of ethane gas for each wavelength λ1, λ2, and λ3 are obtained. Next, after the ethane gas is discharged from the gas outlet 24, only propane gas having a known concentration c3' is introduced into the sample cell 21 from the gas inlet 23. Irradiate the inside of the sample cell 21 with laser light from infrared semiconductor lasers 7 to 9,
Signal strength of infrared detectors 27 to 29 Io13, Io2
3, Io33, and the respective wavelengths λ1, λ
2, absorption coefficient a31 of propane gas for λ3,
Find a32 and a33 in advance. Element a of the absorption coefficient matrix obtained as described above is shown below. [Equation 4] The unit is 1/[cm·%]. Therefore, the concentrations c1, c2, and c3 of the three components methane, ethane, and propane can be expressed as follows. [Equation 5] Next, after discharging the propane gas from the gas outlet 24,
Off-gas containing methane, ethane, and propane at unknown concentrations is introduced into the sample cell 21 from the gas inlet 23. Laser light from the infrared semiconductor lasers 7 to 9 is irradiated into the sample cell 21, and the signal intensities I1, I2, I3 of the infrared detectors 27 to 29 for the respective wavelengths λ1, λ2, λ3 are measured.
Measure. [0028] Here, A is A=ln(Io/I), and Io10 to Io30 are known, so A
The values of 1 to A3 can be easily determined by computer calculation. Therefore, the unknown concentration c1 of each gas,
c2 and c3 can also be easily calculated by computer as solutions to the above simultaneous linear equations, and their concentrations can be measured in real time. According to this embodiment, the concentration of gaseous components can be measured at high speed and with high precision, so it is possible to realize a light absorption measuring device that can measure off-gas components in real time and easily obtain the optimum operating conditions for the plant. Furthermore, by using a semiconductor laser as a light source, an absorption spectrum with high resolution can be obtained. Therefore, there is no need to use a spectrometer,
It is possible to downsize the device. The present invention is not limited to the above-mentioned embodiments, and various modifications are possible. For example, a semiconductor laser that emits infrared rays is
Light is emitted by passing a current in the forward direction, and the emission wavelength can be changed by changing the forward current value within a certain range. Therefore, the number of semiconductor lasers used as a light source is three or less, for example, one. You can also use it as In this case, the number of semiconductor lasers used as light sources can be reduced, but since it takes some time for the semiconductor lasers to stabilize, the measurement time increases accordingly. [0031] As described above, according to the present invention, there is provided a light absorption measuring method that can measure substance components in gases, solids, or liquids at high speed and with high precision, and can also be made compact. realizable.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例による光吸収測定方法を示す
図である。
FIG. 1 is a diagram showing a light absorption measurement method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1〜3…電源 4〜6…温度コントローラ 7〜9…赤外線半導体レーザ 10…光軸調整用レーザ 11〜13…ハーフミラー 14〜16…チョッパ 17〜20…反射ミラー 21…試料セル 22…圧力計 23…ガス導入口 24…ガス排出口 25、26…反射ミラー 27〜29…赤外線検出器 30〜32…ロックインアンプ 33…コンピュータ 1 to 3…Power supply 4-6…Temperature controller 7-9...Infrared semiconductor laser 10... Laser for optical axis adjustment 11-13…Half mirror 14-16...Chopper 17-20...Reflection mirror 21...sample cell 22...Pressure gauge 23...Gas inlet 24...Gas exhaust port 25, 26...Reflection mirror 27-29...Infrared detector 30-32…Lock-in amplifier 33...computer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  発振波長のそれぞれ異なるn個の赤外
線レーザを光源とし、n種の物質を含む試料による光吸
収を検出するための前記n個の赤外線レーザに対応した
n個の光検出器とを用い、前記n種の物質を含まない試
料の場合の前記n個の光検出器の出力である参照出力を
測定する第1の較正段階と、前記n種の物質の濃度が既
知であるn個の試料の場合の前記n個の光検出器の出力
から前記n個の赤外線レーザの発振波長におけるそれぞ
れの前記n種の物質の吸収係数a11〜annを演算す
る第2の較正段階と、前記n種の物質の濃度が未知であ
る試料の場合の前記n個の光検出器の出力と前記参照出
力の比と前記n種の物質の吸収係数a11〜annから
前記濃度が未知である試料の前記n種の物質の濃度を演
算する測定段階とを有することを特徴とする光吸収測定
方法。
1. A light source comprising n infrared lasers each having a different oscillation wavelength, and n photodetectors corresponding to the n infrared lasers for detecting light absorption by a sample containing n types of substances. a first calibration step of measuring a reference output which is the output of the n photodetectors in the case of a sample not containing the n substances; and a first calibration step where the concentration of the n substances is known. a second calibration step of calculating the absorption coefficients a11 to ann of each of the n types of substances at the oscillation wavelengths of the n infrared lasers from the outputs of the n photodetectors for the n samples; From the ratio of the output of the n photodetectors to the reference output and the absorption coefficients a11 to ann of the n types of substances in the case of the sample in which the concentration of the n types of substances is unknown, A method for measuring light absorption, comprising: a measuring step of calculating the concentration of the n types of substances.
JP40761490A 1990-12-27 1990-12-27 Measuring method of photoabsorption Pending JPH04225142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40761490A JPH04225142A (en) 1990-12-27 1990-12-27 Measuring method of photoabsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40761490A JPH04225142A (en) 1990-12-27 1990-12-27 Measuring method of photoabsorption

Publications (1)

Publication Number Publication Date
JPH04225142A true JPH04225142A (en) 1992-08-14

Family

ID=18517182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40761490A Pending JPH04225142A (en) 1990-12-27 1990-12-27 Measuring method of photoabsorption

Country Status (1)

Country Link
JP (1) JPH04225142A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188932A (en) * 1993-10-29 1995-07-25 Internatl Business Mach Corp <Ibm> Apparatus and method for processing workpiece provided with infrared sensor
JP2008534964A (en) * 2005-03-29 2008-08-28 ザ ダウ ケミカル カンパニー Spectroscopic Analysis and Control This invention was made under the Department of Energy Code DE-FC07-0211D14428, which the government has certain ownership rights in this invention.
WO2009060750A1 (en) 2007-11-07 2009-05-14 Toyota Jidosha Kabushiki Kaisha Hydrocarbon concentration measuring apparatus and hydrocarbon concentration measuring method
JP2009522541A (en) * 2005-12-29 2009-06-11 ビーエーエスエフ ソシエタス・ヨーロピア Method for determining homology and non-homology and concentration of chemical compounds in a medium
JP2010210594A (en) * 2009-03-12 2010-09-24 Toyota Motor Corp Hydrocarbon concentration measuring instrument, and method of the same
JP2012108156A (en) * 2012-02-29 2012-06-07 Mitsubishi Heavy Ind Ltd Gas concentration measurement method and device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188932A (en) * 1993-10-29 1995-07-25 Internatl Business Mach Corp <Ibm> Apparatus and method for processing workpiece provided with infrared sensor
JP2008534964A (en) * 2005-03-29 2008-08-28 ザ ダウ ケミカル カンパニー Spectroscopic Analysis and Control This invention was made under the Department of Energy Code DE-FC07-0211D14428, which the government has certain ownership rights in this invention.
JP2009522541A (en) * 2005-12-29 2009-06-11 ビーエーエスエフ ソシエタス・ヨーロピア Method for determining homology and non-homology and concentration of chemical compounds in a medium
WO2009060750A1 (en) 2007-11-07 2009-05-14 Toyota Jidosha Kabushiki Kaisha Hydrocarbon concentration measuring apparatus and hydrocarbon concentration measuring method
JP2009115654A (en) * 2007-11-07 2009-05-28 Toyota Motor Corp Hydrocarbon concentration measuring instrument, and hydrocarbon concentration measuring method
JP2010210594A (en) * 2009-03-12 2010-09-24 Toyota Motor Corp Hydrocarbon concentration measuring instrument, and method of the same
JP2012108156A (en) * 2012-02-29 2012-06-07 Mitsubishi Heavy Ind Ltd Gas concentration measurement method and device

Similar Documents

Publication Publication Date Title
US4410273A (en) Scanning laser spectrometer
US4622845A (en) Method and apparatus for the detection and measurement of gases
CN111122496B (en) Calibration-free gas concentration measuring device and method
US5170064A (en) Infrared-based gas detector using a cavity having elliptical reflecting surface
US8049881B2 (en) Optical analysis system and methods for operating multivariate optical elements in a normal incidence orientation
US4730112A (en) Oxygen measurement using visible radiation
US5464983A (en) Method and apparatus for determining the concentration of a gas
US8009293B2 (en) Modulation cancellation method in laser spectroscopy
JP2010517043A (en) Chemical analyzers for industrial process control
WO1994024545A1 (en) Raman spectrometer
CN108279209A (en) A kind of more gas detecting systems of wave-length coverage and wavelength continuously adjustable
CN208013060U (en) A kind of more gas detecting systems of wave-length coverage and wavelength continuously adjustable
JP2903457B2 (en) Gas analyzer and gas analyzer
JP2007513351A (en) Trace gas analysis apparatus and analysis method using cavity ring-down spectroscopy
CN114397271A (en) Detection device and method for spectral analysis of greenhouse gases
US4803052A (en) Carbon monoxide detector
US20050062972A1 (en) System and method for cavity ring-down spectroscopy using continuously varying continuous wave excitation
JPH04225142A (en) Measuring method of photoabsorption
Loewenstein Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules
US4527062A (en) Portable infrared spectrophotometer
JP2003042950A (en) Instrument for measuring gas component
CN108398393B (en) Optical cavity ring-down spectrometer and measuring method for rapidly measuring greenhouse gas content
EP0105659B1 (en) Carbon monoxide detectors
EP0462755A1 (en) Detecting the presence of a substance in a fluid
US6977179B2 (en) Method and apparatus for measuring the heating value of a single or multi-component fuel gas