JPH04224639A - Method for purification of lead wherein copper is especially removed - Google Patents

Method for purification of lead wherein copper is especially removed

Info

Publication number
JPH04224639A
JPH04224639A JP5169391A JP5169391A JPH04224639A JP H04224639 A JPH04224639 A JP H04224639A JP 5169391 A JP5169391 A JP 5169391A JP 5169391 A JP5169391 A JP 5169391A JP H04224639 A JPH04224639 A JP H04224639A
Authority
JP
Japan
Prior art keywords
lead
impurities
copper
phase
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5169391A
Other languages
Japanese (ja)
Inventor
Etienne Lepain
エティエーヌ・ルパン
Gerald Sanchez
ジェラール・サンシェ
Pierre Chabry
ピエール・シャブリー
Richard Kollar
リシャール・コラール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metaleurop SA
Original Assignee
Metaleurop SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metaleurop SA filed Critical Metaleurop SA
Publication of JPH04224639A publication Critical patent/JPH04224639A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/06Refining

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: To rapidly and well float and separate tin, arsenic and Sb as well simultaneously with copper by stirring molten crude lead having the ratio to the amt. of the copper and the total amt. of the tin, arsenic and Sb within a specific range at the prescribed temp. selected in accordance with the compsn. thereof.
CONSTITUTION: The crude lead having the above ratio which is known and is within the range of about 10 to 1 is rapidly cooled down to the prescribed temp. in the range of about 900 to 600°C. The prescribed temp. is so selected that the sepn. of the phase rich in the lead and the phase rich in impurities occurs and that the above ratio in the phase rich in the impurities formed during rapid cooling is kept substantially constant. The crude lead is held at this prescribed temp. or the temp. approximate thereto for the time within a range of about 3 to 60 minutes and sufficient time for obtaining the lead phase not contg. the impurities at a substantial ratio and the floating phase rich in the impurities by completing the sepn. The phase rich in the impurities is removed. The above ratio is preferably about 3, the sepn. temp. about 800°C and the holding time about 5 to 10 minutes.
COPYRIGHT: (C)1992,JPO

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、広義には鉛の精製方法
に関する。より具体的には、鉛から銅その他の不純物を
迅速に除去する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates in a broad sense to a method for refining lead. More specifically, it relates to a method for rapidly removing copper and other impurities from lead.

【0002】0002

【従来の技術】仏国特許出願公開公報No. 2,55
9,161 は、鉛溶鉱炉から得られるような銀含有粗
鉛(argentiferous lead)から、特
に銅を除去する精製方法を教えている。本発明は、鉛−
亜鉛鉱から乾式冶金法により得られる種類の銀含有粗鉛
から銅を除去するための新規な方法に関する。「ISP
法(Imperial SmeltingProces
s)」と一般に呼ばれているこの周知の処理方法は、1
200℃程度の温度の液状の粗鉛を生じ、これは、硫黄
をほとんど含有せず、銅、スズ、アンチモンおよびヒ素
を極めて多量に含有することを本質的な特徴とする。
[Prior Art] French Patent Application Publication No. 2,55
No. 9,161 teaches a purification method for specifically removing copper from silver-containing argentiferous lead, such as that obtained from lead blast furnaces. The present invention is based on lead-
This invention relates to a new process for removing copper from silver-bearing crude lead of the type obtained by pyrometallurgical processes from zinc ores. “ISP
Imperial Smelting Processes
This well-known treatment method, commonly referred to as
A liquid crude lead is produced at a temperature of the order of 200° C., which is essentially characterized by a very low content of sulfur and a very high content of copper, tin, antimony and arsenic.

【0003】従来は、この種の粗鉛から特に銅を除去し
て精製するには、この液状粗鉛の冷却過程において、銅
およびその他の不純物を多く含む相の鉛に対する密度の
差により分離が起こり、不純物を多く含む相が上に浮き
上がってドロスを形成するので、これをスキミングなど
により回収する。実際には、鉛を撹拌機により激しく撹
拌し、浮き上がってきたドロスをその都度すくいとるこ
とによりスキミングする。
Conventionally, in order to specifically remove copper from this type of crude lead and purify it, it was necessary to separate the phase containing a large amount of copper and other impurities due to the difference in density with respect to lead during the cooling process of this liquid crude lead. This occurs and the phase containing many impurities rises to the top to form dross, which is collected by skimming or the like. In practice, lead is skimmed by vigorously stirring it with a stirrer and scooping out the dross that rises each time.

【0004】0004

【発明が解決しようとする課題】従来は、この作業は4
00〜500℃の範囲内の温度で行っており、この温度
を採用するのは、この程度の温度の液状粗鉛が、設備(
ポンプ、配管、撹拌機など)を特別に設計しなくても搬
送、撹拌等が可能であるからと説明されてきた。この公
知の手法は、達成される分離の品質に関して比較的満足
できるものであるが、一方でこの手法では極めて長い処
理時間を要するという重大な欠点がある。処理釜の容量
が70トン以上、銅含有量が2%以上の場合を例にとる
と、通常は約10時間もの処理時間を要する。
[Problem to be solved by the invention] Conventionally, this work was performed in four steps.
The temperature is within the range of 00 to 500℃, and this temperature is used because the liquid crude lead at this temperature is
It has been explained that this is because it is possible to transport, stir, etc. without specially designing pumps, piping, stirrers, etc.). Although this known technique is relatively satisfactory with respect to the quality of the separation achieved, it has the serious drawback of requiring extremely long processing times. For example, when the capacity of the processing vessel is 70 tons or more and the copper content is 2% or more, the processing time usually takes about 10 hours.

【0005】[0005]

【課題を解決するための手段】本発明者らは、銅の除去
処理の時間を、銅と鉛とのデミキシング(分離)の効率
を著しく犠牲にせずに相当に短縮することができること
を見出した。本発明者らはまた、精製すべき粗鉛の組成
と温度条件との関係を調べることにより、銅のみならず
、スズ、アンチモンおよびヒ素といった不純物元素を極
めて良好に分離・除去することができることも見出した
。ここに、本発明は、鉛/亜鉛混合鉱の乾式冶金処理に
より得られる、不純物として銅の他にスズ、アンチモン
およびヒ素よりなる群から選ばれた少なくとも1種の元
素を含有する溶融粗鉛の精製方法に関するものであって
、その特徴とするところは、銅の量とスズ、アンチモン
およびヒ素の合計量との比率が既知であって約10〜1
の範囲内である粗鉛を使用し、この粗鉛を、約900℃
〜600℃の範囲内の所定温度に急冷し、この所定温度
は、鉛に富む相と不純物に富む相との分離を生じ、かつ
急冷中に生成した不純物に富む相における前記比率が本
質的に一定に保たれるように選定し、粗鉛をこの所定温
度またはこれに近い温度に、約3〜60分の範囲内で、
かつ分離を完結させて不純物を実質的割合で含有してい
ない鉛相と不純物に富む浮上相とを得るのに十分な時間
保持し、不純物に富む相を除去する、という工程からな
ることである。
[Means for Solving the Problems] The present inventors have discovered that the time for copper removal treatment can be significantly shortened without significantly sacrificing the efficiency of demixing (separation) of copper and lead. Ta. The present inventors also found that by investigating the relationship between the composition of crude lead to be purified and temperature conditions, it was possible to extremely effectively separate and remove not only copper but also impurity elements such as tin, antimony, and arsenic. I found it. Here, the present invention provides molten crude lead containing at least one element selected from the group consisting of tin, antimony, and arsenic in addition to copper as an impurity, which is obtained by pyrometallurgical treatment of lead/zinc mixed ore. The refining method is characterized by a known ratio between the amount of copper and the total amount of tin, antimony and arsenic, which is about 10 to 1.
Use crude lead that is within the range of
to a predetermined temperature in the range of ~600°C, which predetermined temperature results in separation of the lead-rich phase and the impurity-rich phase and such that the ratio in the impurity-rich phase formed during the quenching is essentially Crude lead is brought to this predetermined temperature or a temperature close to it within a range of about 3 to 60 minutes,
and holding for a sufficient time to complete the separation and obtain a lead phase containing no substantial proportion of impurities and a floating phase rich in impurities, and removing the phase rich in impurities. .

【0006】好ましくは前記の比率は約3に等しく、分
離温度は800℃程度であり、この温度またはその付近
に保持する時間は5〜10分程度である。粗鉛を乾式冶
金処理が終了した時点での温度から約800℃に急冷し
た後、約800℃から約700℃に非常に緩慢に冷却す
ることが有利である。また、本発明の方法は、不純物に
富む相を、除去のために400℃程度の温度に冷却し、
乾燥する工程をさらに包含することが好ましい。本発明
の特徴、目的および利点は、以下の添付図面を参照した
詳細な説明からより明らかとなろう。以下の説明は本発
明の例示のためであって、本発明を制限するものではな
い。
Preferably, the ratio is equal to about 3, the separation temperature is on the order of 800°C, and the holding time at or near this temperature is on the order of 5 to 10 minutes. It is advantageous to rapidly cool the crude lead from the temperature at the end of the pyrometallurgical treatment to about 800°C and then very slowly from about 800°C to about 700°C. The method of the present invention also includes cooling the impurity-rich phase to a temperature of about 400°C for removal,
Preferably, the method further includes a step of drying. The features, objects and advantages of the invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings. The following description is intended to be illustrative of the invention, and is not intended to limit the invention.

【0007】[0007]

【作用】上述したように、本発明は、典型的には従来よ
り高温度の900℃〜600℃の範囲内で、精製すべき
鉛中の銅の量とスズ、アンチモンおよびヒ素の合計量と
の間に存在する量的関係に依存して選定した温度で撹拌
作業を行うことにより、銅のみならず、鉛に付随する上
記の他の不純物の実質的部分をも、非常にすばやく分離
することができるという知見に基づくものである。
[Operation] As mentioned above, the present invention is capable of adjusting the amount of copper and the total amount of tin, antimony, and arsenic in the lead to be purified at a temperature typically higher than that of 900°C to 600°C. By carrying out the stirring operation at a temperature selected depending on the quantitative relationships existing between the two, it is possible to very quickly separate not only the copper, but also a substantial part of the other impurities mentioned above, which accompany the lead. This is based on the knowledge that it is possible to

【0008】この高温での処理を効率的に達成するため
には、原料の粗鉛の組成が、選定した温度でPb−Cu
−(Sn+Sb+As)溶解領域内に位置するように、
温度をこの組成に応じて選定しなければならない。より
詳しく説明すると、本発明は、図1に示すような理論的
な3元系状態図を出発点として採用する。この状態図は
、既知のPb−Cu−Sn、Pb−Cu−AsおよびP
b−Cu−Sbの3元系状態図から導かれたものであり
、これらの既知の3元系状態図の間に著しい類似性があ
るので、生成物の実際の挙動のよい例示となると理論的
に考えられるものである。
In order to efficiently achieve this high-temperature treatment, it is necessary to change the composition of the crude lead raw material to Pb-Cu at the selected temperature.
- (Sn+Sb+As) so as to be located within the dissolution region;
The temperature must be chosen according to this composition. More specifically, the present invention employs a theoretical ternary system phase diagram as shown in FIG. 1 as a starting point. This phase diagram shows the known Pb-Cu-Sn, Pb-Cu-As and Pb-Cu-Sn
The theory is derived from the ternary phase diagram of b-Cu-Sb, and the striking similarities between these known ternary phase diagrams make it a good illustration of the actual behavior of the product. This is something that can be considered.

【0009】即ち、約600〜900℃の間の各処理温
度に対応して、被処理粗鉛の組成が、鉛に富む相と不純
物に富む相とに分離する間に状態図のPbの角付近を基
点として直線に沿って変化する、Cu不純物とSn、S
bおよびAs不純物との間の理想的な分配が成立する。 この不純物に富む相は、これに含まれる銅の量と他の不
純物の合計量との比率が、分離開始時と終了時の間で一
定にとどまるという別の特徴を示す。これは、分離が、
銅と一緒に上記の他の不純物を最適なやり方で分離・除
去することができることを意味する。
That is, corresponding to each treatment temperature between about 600 and 900° C., the composition of the crude lead to be treated changes into a lead-rich phase and an impurity-rich phase, while the Pb angle in the phase diagram changes. Cu impurities, Sn, and S change along a straight line starting from the vicinity.
An ideal distribution between b and As impurities is established. This impurity-rich phase exhibits another characteristic in that the ratio between the amount of copper it contains and the total amount of other impurities remains constant between the beginning and the end of the separation. This means that the separation is
This means that the other impurities mentioned above can be separated and removed together with copper in an optimal manner.

【0010】本発明者らが行った比較試験によると、上
記の処理条件は粒子の凝集を相当に促進させ、その結果
、分離が著しく加速されることが判明した。即ち、本発
明によれば、原料の粗鉛の組成およびこれに付随する処
理温度に依存して変動するが、約3〜60分の範囲内の
、従来に比べて非常に短時間で分離を行うことができる
。より具体的には、非常に急速に不純物粒子が生成およ
び凝集して、かなり大粒径に成長することが判明した。 撹拌により増強される重力の作用により、成長した不純
物粒子は溶融物の表面に非常に急速に浮上する傾向を示
す。1mm程度の粒径に達することのある粒子が、一般
に数分のうちに上記のように浮上して得られる。
Comparative tests carried out by the present inventors have shown that the above treatment conditions considerably promote agglomeration of the particles, resulting in a marked acceleration of separation. That is, according to the present invention, separation can be accomplished in a very short time, within a range of about 3 to 60 minutes, although it varies depending on the composition of the crude lead raw material and the associated processing temperature. It can be carried out. More specifically, it has been found that impurity particles form and agglomerate very rapidly and grow to a fairly large particle size. Due to the action of gravity, which is enhanced by stirring, the grown impurity particles tend to float to the surface of the melt very rapidly. Particles, which can reach a particle size of the order of 1 mm, are generally obtained by flotation as described above within a few minutes.

【0011】これに対して、約400℃という従来の温
度範囲では、核形成は速いが、凝集に対する効果はごく
僅かしかない。その結果、非常の多数の不純物の小粒子
が生成するので、その表面への浮上速度は非常に遅い(
数十時間もかかる)。
In contrast, in the conventional temperature range of about 400° C., nucleation is rapid but has only a marginal effect on agglomeration. As a result, a very large number of small particles of impurities are generated, and their floating speed to the surface is very slow (
(It takes dozens of hours).

【0012】また、本発明では、400℃程度の温度で
の作業で認められた、凝集と浮上速度が不十分であった
場合に起こる、凝集した不純物粒子の解離という不利な
現象が避けられる。さらに、本発明では、より高温であ
ることから混合物の粘度が低下し、鉛より軽い不純物の
粒子の浮上速度がさらにある程度加速されるという効果
もある。
The present invention also avoids the disadvantageous phenomenon of dissociation of agglomerated impurity particles, which occurs when agglomeration and flotation rates are insufficient, which has been observed in operations at temperatures of the order of 400°C. Furthermore, in the present invention, since the temperature is higher, the viscosity of the mixture is reduced, and the floating speed of impurity particles lighter than lead is further accelerated to some extent.

【0013】本発明者らが行った試験によると、発生し
た銅に富む相(不純物に富む相)は、本質的にCu3 
X(X=Sn+Sb+As、Xの含有量約35%)とα
銅(Xの含有量約8%)とからなることを確認すること
ができた。
According to tests conducted by the present inventors, the generated copper-rich phase (impurity-rich phase) is essentially Cu3
X (X=Sn+Sb+As, content of X about 35%) and α
It was confirmed that the material consisted of copper (X content: about 8%).

【0014】また、銅の量の他の不純物(Sn、Sb、
As)の合計量に対する比率が約3程度である原料の粗
鉛を処理することにより、主に(60%以上)Cu3 
Xからなり、α銅と鉛の含有量が非常に低い不純物に富
む相が得られることも確認された。上記比率における約
3という値は、800℃程度の処理温度に伴うものであ
る。この場合、分離に要する処理時間は5〜10分程度
となる。その結果、得られた不純物に富む相からその成
分を抽出するためのその処理がかなり容易になることが
分かる。
[0014] Also, other impurities (Sn, Sb,
By processing the raw material crude lead whose ratio to the total amount of As) is approximately 3, it is possible to mainly (60% or more) Cu3
It was also confirmed that an impurity-rich phase consisting of X with very low content of alpha copper and lead was obtained. The value of about 3 in the above ratio is associated with a processing temperature of about 800°C. In this case, the processing time required for separation is about 5 to 10 minutes. As a result, it turns out that the processing for extracting the constituents from the impurity-rich phase obtained is considerably facilitated.

【0015】さらに、分離が起こった後、冷却が進行す
る間に不純物に富む相の組成が実質的に変化しないこと
も判明した。より正確には、不純物に富む相による鉛の
再汚染が認められない。
It has further been found that after separation has taken place, the composition of the impurity-rich phase does not change substantially during the course of cooling. More precisely, no recontamination of lead by impurity-rich phases is observed.

【0016】本発明により分離を達成した後、鉛に富む
相の再汚染を避けながら、例えば慣用の手法を用いた回
収が容易となるように、生成したドロスを約400℃で
冷却する工程と、これを乾燥する工程とを行うことが好
ましい。
After achieving the separation according to the invention, the dross produced is cooled to about 400° C. to facilitate recovery using, for example, conventional techniques, while avoiding recontamination of the lead-rich phase. It is preferable to carry out a step of drying this.

【0017】従来より知られていた方法に比べて処理温
度が実質的に高いので、上記分離温度範囲内の溶融鉛の
収容、搬送および撹拌には、この温度に耐えることがで
きる材料(例えば、特殊な金属またはセラミック製の適
当な保護層で被覆した鋼)を使用するように注意する。
Since the processing temperatures are substantially higher than in previously known methods, the containment, transport and agitation of molten lead within the above separation temperature range requires the use of materials capable of withstanding this temperature, e.g. Take care to use steel (coated with a suitable protective layer made of special metals or ceramics).

【0018】[0018]

【実施例】ISP法の鉛溶鉱炉を出た、5%の銅と合計
で1.8 %のスズ、アンチモンおよびヒ素を含有する
温度1200℃の粗鉛を、銅除去用のレードルに注入し
た。 鉛を約800℃に急冷し、その後、注入した溶融粗鉛が
約8分間にわたって800〜700℃の温度範囲内にと
どまるようにこの冷却速度を著しく緩めて徐冷し、銅に
富む相を浮上分離させた。次いで400℃に冷却し、銅
に富む相をその回収のために乾燥した。
EXAMPLE Crude lead from an ISP lead furnace containing 5% copper and a total of 1.8% tin, antimony and arsenic at a temperature of 1200° C. was poured into a ladle for copper removal. The lead is rapidly cooled to about 800°C, and then the cooling rate is significantly slowed down so that the injected molten crude lead remains within the temperature range of 800-700°C for about 8 minutes, allowing the copper-rich phase to float. Separated. It was then cooled to 400° C. and the copper-rich phase was dried for its recovery.

【0019】鉛に富む相から固化後に多数の試料を採取
したところ、その平均銅濃度の測定値は約0.5 %で
あった。即ち、銅の抽出率は90%以上であった。また
、他の不純物であるSn、SbおよびAsも、同様に割
合で不純物に富む相に抽出されていた。
A number of samples were taken from the lead-rich phase after solidification and the average copper concentration measured was about 0.5%. That is, the copper extraction rate was 90% or more. In addition, other impurities Sn, Sb, and As were also extracted into the impurity-rich phase in similar proportions.

【0020】[0020]

【発明の効果】このように、本発明によれば、従来より
高温の特定の温度で粗鉛の精製を行うことにより、銅と
同時にSn、SbおよびAsも、従来に比べてごく短時
間でドロスとして浮上分離させ、高い除去率で除去する
ことができる。
[Effects of the Invention] As described above, according to the present invention, by refining crude lead at a specific temperature higher than conventional methods, Sn, Sb, and As can be purified at the same time as copper in a much shorter time than conventional methods. It can be floated and separated as dross and removed at a high removal rate.

【0021】本発明は、当然ながら以上の説明に制限さ
れるものではなく、当業者により本発明の範囲内で各種
の変更をなすことができる。
Naturally, the present invention is not limited to the above description, and various modifications can be made by those skilled in the art within the scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】既知の鉛−銅−スズ、鉛−銅−アンチモンおよ
び鉛−銅−ヒ素の3元系状態図から推測された、鉛−銅
− (スズ+アンチモン+ヒ素) 3元系状態図である
[Figure 1] Lead-copper- (tin + antimony + arsenic) ternary system phase diagram inferred from the known ternary system phase diagrams of lead-copper-tin, lead-copper-antimony, and lead-copper-arsenic. It is.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  鉛−亜鉛混合鉱の乾式冶金処理により
得られる、不純物として銅の他にスズ、アンチモンおよ
びヒ素よりなる群から選ばれた少なくとも1種の元素を
含有する溶融粗鉛の精製方法であって、銅の量とスズ、
アンチモンおよびヒ素の合計量との比率が既知であって
約10〜1の範囲内である粗鉛を使用し、この粗鉛を、
約900℃〜600℃の範囲内の所定温度に急冷し、こ
の所定温度は、鉛に富む相と不純物に富む相との分離を
生じ、かつ急冷中に生成した不純物に富む相における前
記比率が本質的に一定に保たれるように選定し、粗鉛を
この所定温度またはこれに近い温度に、約3〜60分の
範囲内で、かつ分離を完結させて不純物を実質的割合で
含有していない鉛相と不純物に富む浮上相とを得るのに
十分な時間保持し、不純物に富む相を除去する、という
工程からなることを特徴とする方法。
[Claim 1] A method for refining molten crude lead obtained by pyrometallurgical treatment of mixed lead-zinc ore and containing at least one element selected from the group consisting of tin, antimony, and arsenic as impurities in addition to copper. and the amount of copper and tin,
Using crude lead whose ratio to the total amount of antimony and arsenic is known and within the range of about 10 to 1, this crude lead is
quenching to a predetermined temperature within the range of about 900° C. to 600° C., which predetermined temperature results in separation of a lead-rich phase and an impurity-rich phase, and where the ratio in the impurity-rich phase formed during the quenching is The crude lead is brought to or near this predetermined temperature within a range of about 3 to 60 minutes, and the separation is completed so that the crude lead contains a substantial proportion of impurities. A method comprising the steps of holding for a sufficient time to obtain a free lead phase and a floating phase rich in impurities, and removing the phase rich in impurities.
【請求項2】  前記比率が約3に等しく、分離温度が
800℃程度であり、この温度またはその付近に保持す
る時間が5〜10分程度である、請求項1記載の方法。
2. The method of claim 1, wherein the ratio is equal to about 3, the separation temperature is on the order of 800°C, and the holding time at or near this temperature is on the order of 5 to 10 minutes.
【請求項3】  粗鉛を乾式冶金処理が終了した時点で
の温度から約800℃に急冷した後、約800℃から約
700℃にごく緩慢に徐冷する、請求項2記載の方法。
3. The method according to claim 2, wherein the crude lead is rapidly cooled from the temperature at the end of the pyrometallurgical treatment to about 800°C, and then slowly cooled from about 800°C to about 700°C.
【請求項4】  不純物に富む浮上相を、除去のために
400℃程度の温度に冷却し、乾燥する工程をさらに包
含する、請求項1ないし3のいずれかに記載の方法。
4. The method according to claim 1, further comprising the step of cooling the impurity-rich floating phase to a temperature of about 400° C. and drying it for removal.
JP5169391A 1990-03-15 1991-03-15 Method for purification of lead wherein copper is especially removed Withdrawn JPH04224639A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9003329A FR2659665B1 (en) 1990-03-15 1990-03-15 PROCESS FOR REFINING, ESPECIALLY DE-PITCHING, LEAD.
FR9003329 1990-03-15

Publications (1)

Publication Number Publication Date
JPH04224639A true JPH04224639A (en) 1992-08-13

Family

ID=9394770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5169391A Withdrawn JPH04224639A (en) 1990-03-15 1991-03-15 Method for purification of lead wherein copper is especially removed

Country Status (4)

Country Link
EP (1) EP0456528A1 (en)
JP (1) JPH04224639A (en)
AU (1) AU635398B2 (en)
FR (1) FR2659665B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037186A (en) * 2004-07-29 2006-02-09 Dowa Mining Co Ltd METHOD FOR REDUCING CONCENTRATION OF Sb AND Sn IN Pb, AND LEAD FOR ELECTROLYTIC REFINING

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101323905B (en) * 2007-06-15 2010-07-21 西安华英实业有限公司 Fire metallurgy process of copper lead zinc mixing ore concentrate
CA2787198A1 (en) * 2010-01-19 2011-07-28 Aditya Birla Science & Technology Co. Ltd. A system and method for monitoring and optimizing smelting operations of a furnace
BE1025769B1 (en) * 2017-12-14 2019-07-08 Metallo Belgium Improved pyrometallurgical process
BE1025775B1 (en) * 2017-12-14 2019-07-11 Metallo Belgium Improved soldering production method
BE1025772B1 (en) * 2017-12-14 2019-07-08 Metallo Belgium Improvement in copper / tin / lead production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1572928A (en) * 1978-05-19 1980-08-06 Commw Smelting Ltd Refining of pyrometallurgical lead bullion
CA1199180A (en) * 1982-02-11 1986-01-14 Duncan Ritchie Method of removing dross from a lead refining pot
FR2559161A1 (en) * 1984-02-03 1985-08-09 Penarroya Miniere Metall NEW LEAD PURIFICATION PROCESS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037186A (en) * 2004-07-29 2006-02-09 Dowa Mining Co Ltd METHOD FOR REDUCING CONCENTRATION OF Sb AND Sn IN Pb, AND LEAD FOR ELECTROLYTIC REFINING
JP4565178B2 (en) * 2004-07-29 2010-10-20 Dowaメタルマイン株式会社 Method for reducing Sb and Sn content in Pb

Also Published As

Publication number Publication date
FR2659665B1 (en) 1992-07-24
AU7282891A (en) 1991-09-19
AU635398B2 (en) 1993-03-18
EP0456528A1 (en) 1991-11-13
FR2659665A1 (en) 1991-09-20

Similar Documents

Publication Publication Date Title
TWI443237B (en) Method for processing silicon powder to obtain silicon crystals
JPH04224639A (en) Method for purification of lead wherein copper is especially removed
US3506435A (en) Liquid-liquid extraction of reverberatory and converter slags by iron sulphide solutions
US2419973A (en) Separation of copper and nickel sulfides
US3607232A (en) Refining lead
US2029898A (en) Method of purifying magnesium
US3694190A (en) Process for recovering aluminum from dross
US4404026A (en) Process for separation of dross elements combining sodium addition to molten bullion followed by controlled solidification of casting
EP0007890B1 (en) A method of manufacturing and refining crude lead from arsenic-containing lead raw-materials
US2381291A (en) Process for producing beryllium
US2109144A (en) Process of treating metal
USRE22270E (en) Process fob the manufacture of
US1957819A (en) Refining metal
US1954463A (en) Refining white metal scrap
JPH10140254A (en) Method for removing lead in brass
RU2150523C1 (en) Method of aluminothermic refining of dust-like zinc dross fraction
US7670A (en) Bichakd s
JPS6049701B2 (en) Method for removing arsenic and/or copper in molten metal
JPS6342335A (en) Treatment of slag concentrate of copper converter
US4678507A (en) Treatment of dross
US2364815A (en) Method of treating tin hardhead to recover tin
JPS6352093B2 (en)
JP3006799B2 (en) Dissolution method of copper or copper alloy scrap
US2083892A (en) Desilverizing lead bullion
US2097560A (en) Lead and lead alloys

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514