JPH04215258A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH04215258A
JPH04215258A JP2401861A JP40186190A JPH04215258A JP H04215258 A JPH04215258 A JP H04215258A JP 2401861 A JP2401861 A JP 2401861A JP 40186190 A JP40186190 A JP 40186190A JP H04215258 A JPH04215258 A JP H04215258A
Authority
JP
Japan
Prior art keywords
solid electrolyte
solid
fuel cell
oxide
oxygen ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2401861A
Other languages
Japanese (ja)
Inventor
Noboru Ishida
石 田   登
Yukinori Akiyama
秋 山  幸 徳
Shuzo Murakami
村 上  修 三
Toshihiko Saito
齋 藤  俊 彦
Sanehiro Furukawa
古 川  修 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2401861A priority Critical patent/JPH04215258A/en
Publication of JPH04215258A publication Critical patent/JPH04215258A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To extend the life of a battery by preventing the generation of a low-conductivity material caused by the reaction between a solid electrolyte film and an oxygen electrode film. CONSTITUTION:An oxygen ion conducting thin film 2 made of a material chemically stable for both films is arranged between a solid electrolyte film 1 made of a solid solution of zirconium oxide and a bivalent or trivalent metal oxide and an oxygen electrode film 3 made of a lanthanum perovskite oxide.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は固体電解質型燃料電池に
関し、特に酸素イオン導電性を有するセラミックを電解
質とする固体電解質型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell, and more particularly to a solid oxide fuel cell using a ceramic having oxygen ion conductivity as an electrolyte.

【0002】0002

【従来の技術】上記固体電解質型燃料電池(以下、SO
FCと称する)は、リン酸型及び溶融炭酸塩型燃料電池
につづく、完全固体化した第3世代の燃料電池として注
目され、盛んに研究が行われている。上記SOFCにお
いては、2価または3価の金属酸化物と固溶した酸化ジ
ルコニウム固体〔例えば、(ZrO2 )0.9 (Y
2 O3 )0.1 〕を電解質に用いている。このよ
うな構成の電解質は酸素イオン導電性を有するため、電
解質損失の問題は完全に解消されると共に、作動温度が
約1000℃という高温であるため、発電効率も上記従
来の電池と比べて向上するといった利点がある。
[Prior Art] The above-mentioned solid oxide fuel cell (hereinafter referred to as SO
(referred to as FC) is attracting attention as a completely solid-state third generation fuel cell following phosphoric acid type and molten carbonate type fuel cells, and is being actively researched. In the above SOFC, solid zirconium oxide [for example, (ZrO2)0.9 (Y
2 O3 )0.1] is used as the electrolyte. Since the electrolyte with this structure has oxygen ion conductivity, the problem of electrolyte loss is completely resolved, and since the operating temperature is as high as approximately 1000°C, the power generation efficiency is also improved compared to the conventional batteries mentioned above. There are advantages to doing so.

【0003】また、空気極には、一般に、ランタン系ペ
ロブスカイト酸化物(例えば、La0.9 Sr0.1
 MnO3 )が使用されている。
[0003] Furthermore, the air electrode is generally made of lanthanum-based perovskite oxides (for example, La0.9 Sr0.1
MnO3) is used.

【0004】0004

【発明が解決しようとする課題】ところで、上記ランタ
ン系ペロブスカイト酸化物は、導電性、酸素解離能に優
れ、且つ上記電解質と略同等の熱膨張係数を有するとい
った空気極材料に要求される諸条件を満たしているが、
高温安定性に劣るという課題を有している。具体的には
、空気極を電解質に高温で焼き付けた場合や電池を高温
で長期にわたって運転した場合、前記酸化ジルコニウム
とランタン系ペロブスカイト酸化物とが固相反応を生じ
、空気極と電解質との間に低導電性物質(La2 Zr
2 O7 、SrZrO3 等)が生成される。たとえ
ば、LaMnO3 とZrO2 との場合には下記式の
如く反応して、低導電性物質が生成される。
[Problems to be Solved by the Invention] By the way, the above-mentioned lanthanum-based perovskite oxide meets various conditions required for an air electrode material, such as having excellent conductivity and oxygen dissociation ability, and having a coefficient of thermal expansion approximately equal to that of the above-mentioned electrolyte. Although it satisfies
It has the problem of poor high temperature stability. Specifically, when the air electrode is baked into the electrolyte at high temperatures or when the battery is operated at high temperatures for a long period of time, a solid phase reaction occurs between the zirconium oxide and the lanthanum-based perovskite oxide, and the bond between the air electrode and the electrolyte is Low conductive material (La2 Zr
2 O7 , SrZrO3 , etc.) are generated. For example, in the case of LaMnO3 and ZrO2, they react as shown in the following formula to produce a low conductivity substance.

【0005】   LaMnO3 +ZrO2 →1/2La2 Zr
2 O7 +MnO+1/4O2 そして、上記のよう
な低導電性物質が生成すると、電極の有効面積が減少す
ると共に、内部抵抗が増大して、電池性能の劣化を招来
するという課題を有していた。本発明はかかる現状に鑑
みてなされたものであり、低導電性物質が生成するのを
防止して、電池の長寿命化を図ることができる固体電解
質型燃料電池を提供することを目的とする。
[0005] LaMnO3 + ZrO2 → 1/2 La2 Zr
2 O7 +MnO+1/4O2 When the above-mentioned low conductivity substance is generated, the effective area of the electrode decreases and the internal resistance increases, leading to deterioration of battery performance. The present invention has been made in view of the current situation, and an object of the present invention is to provide a solid oxide fuel cell that can prevent the generation of low conductivity substances and extend the life of the battery. .

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するために、酸化ジルコニウムと2価または3価の金属
酸化物との固溶体から成る固体電解質膜と、ランタン系
ペロブスカイト型酸化物から成る酸素極膜とを有する固
体電解質型燃料電池において、前記固体電解質膜と酸素
極膜との間に、両膜に対して化学的に安定な物質から成
る酸素イオン導電性薄膜を配置したことを特徴とする固
体電解質型燃料電池。
[Means for Solving the Problems] In order to achieve the above objects, the present invention provides a solid electrolyte membrane made of a solid solution of zirconium oxide and a divalent or trivalent metal oxide, and a lanthanum perovskite type oxide. A solid electrolyte fuel cell having an oxygen electrode membrane, characterized in that an oxygen ion conductive thin film made of a substance chemically stable to both membranes is disposed between the solid electrolyte membrane and the oxygen electrode membrane. Solid electrolyte fuel cell.

【0007】[0007]

【作用】上記構成の如く、固体電解質膜と酸素極膜との
間に、両膜に対して化学的に安定な物質から成る酸素イ
オン導電性薄膜を配置すれば、空気極膜を電解質膜に高
温で焼き付けた場合や電池を高温で長期にわたって運転
した場合であっても、空気極膜と固体電解質膜との固相
反応が生じないので、低導電性物質が生成するのを防止
することが可能となる。
[Function] As in the above configuration, if an oxygen ion conductive thin film made of a substance that is chemically stable to both membranes is placed between the solid electrolyte membrane and the oxygen electrode membrane, the air electrode membrane becomes the electrolyte membrane. Even when baked at high temperatures or when batteries are operated at high temperatures for long periods of time, no solid phase reaction occurs between the air electrode membrane and the solid electrolyte membrane, so it is possible to prevent the formation of low conductivity substances. It becomes possible.

【0008】[0008]

〔実施例〕〔Example〕

図1は本発明の一例に係る固体電解質型燃料電池の要部
を示す模式的断面図である。
FIG. 1 is a schematic cross-sectional view showing essential parts of a solid oxide fuel cell according to an example of the present invention.

【0009】図1に示すように、固体電解質型燃料電池
は、固体電解質板1の一方の面に、(CeO2 )0.
8 (LaO1.5 )0.2 を主体とする酸素イオ
ン導電性薄膜2と、La0.9 Sr0.1 MnO3
 を主体とする空気極3とが順に形成されている。また
、固体電解質膜1の他方の面には、NiOとY2 O3
 安定化ZrO2 とを主体とする燃料極4が設けられ
ている。
As shown in FIG. 1, the solid electrolyte fuel cell has (CeO2)0.
8 (LaO1.5)0.2 Oxygen ion conductive thin film 2 mainly composed of La0.9 Sr0.1 MnO3
An air electrode 3 mainly composed of is formed in this order. Further, on the other surface of the solid electrolyte membrane 1, NiO and Y2O3
A fuel electrode 4 mainly composed of stabilized ZrO2 is provided.

【0010】ここで、上記構造の固体電解質型燃料電池
は、以下のようにして発電する。先ず、燃料5(H2 
,CO等)は、燃料極4の気孔を通過して、燃料極4と
固体電解質膜1との接触面近傍に送られる。一方、空気
6中の酸素は、空気極3と酸素イオン導電性薄膜2と固
体電解質膜1とを順次通過して、燃料極4と固体電解質
膜1との接触面近傍に送られる。これにより、燃料5と
空気6とが接触して電極反応が生じ、その後、生成物7
(H2 O,CO2 等)が燃料極4から排出される。 このような電極反応は、燃料5と空気6とが供給される
限り、反永久的に継続されることになる。
[0010] The solid oxide fuel cell having the above structure generates power as follows. First, fuel 5 (H2
, CO, etc.) pass through the pores of the fuel electrode 4 and are sent to the vicinity of the contact surface between the fuel electrode 4 and the solid electrolyte membrane 1. On the other hand, oxygen in the air 6 passes through the air electrode 3, the oxygen ion conductive thin film 2, and the solid electrolyte membrane 1 in sequence, and is sent to the vicinity of the contact surface between the fuel electrode 4 and the solid electrolyte membrane 1. As a result, fuel 5 and air 6 come into contact to cause an electrode reaction, and then a product 7
(H2O, CO2, etc.) is discharged from the fuel electrode 4. Such an electrode reaction will continue indefinitely as long as the fuel 5 and air 6 are supplied.

【0011】次に、上記固体電解質型燃料電池は、以下
のようにして作製される。先ず、下記に示す固体電解質
膜用材料と、酸素イオン導電性薄膜用材料と、空気極用
材料とを、各々ボールミルにて十分混合し、スラリー中
に含まれた微小な気泡を減圧下で攪拌除去する。 (1)固体電解質膜用材料     (ZrO2 )0.92(Y2 O3 )0.
08粉末    100重量部    結着剤(ポリビ
ニルブチラール樹脂)        30重量部  
  可塑剤(フタル酸ジオクチル)         
     20重量部    溶媒(エタノール)  
                    300重量
部  (2)酸素イオン導電性薄膜用材料    (C
eO2 )0.8 (LaO1.5 )0.2 粉末 
 100重量部    結着剤(ポリビニルブチラール
樹脂)        30重量部    可塑剤(フ
タル酸ジオクチル)              20
重量部    溶媒(エタノール)         
             300重量部  (3)空
気極膜用材料     La0.9 Sr0.1 MnO3 粉末  
            80重量部    (ZrO
2 )0.92(Y2 O3 )0.08粉末    
  20重量部    結着剤(ポリビニルブチラール
樹脂)        30重量部    可塑剤(フ
タル酸ジオクチル)              20
重量部    溶媒(エタノール)         
             300重量部次に、上記各
スラリーを、通常のテープキャスティング法によってテ
ープ状にし、固体電解質膜用グリーンシートと、酸素イ
オン導電性薄膜用グリーンシートと、空気極膜用グリー
ンシートとを作製した。尚、各グリーンシートの厚みは
、固体電解質膜用では150μm、酸素イオン導電性薄
膜用では40μm、空気極膜用では100μmとした。 次に、固体電解質膜用と酸素イオン導電性薄膜用とのグ
リーンシートを、50mm×50mmに切断し、更に両
者を積層形成した後、1500℃で5時間大気中で焼成
した。また、空気極用グリーンシートは、45mm×5
0mmとなるように切断し、更に、酸素イオン導電性薄
膜上にコーティングした。
Next, the solid oxide fuel cell described above is manufactured as follows. First, the solid electrolyte membrane material shown below, the oxygen ion conductive thin film material, and the air electrode material are thoroughly mixed in a ball mill, and minute air bubbles contained in the slurry are stirred under reduced pressure. Remove. (1) Solid electrolyte membrane material (ZrO2) 0.92 (Y2 O3) 0.
08 powder 100 parts by weight Binder (polyvinyl butyral resin) 30 parts by weight
Plasticizer (dioctyl phthalate)
20 parts by weight Solvent (ethanol)
300 parts by weight (2) Oxygen ion conductive thin film material (C
eO2 )0.8 (LaO1.5 )0.2 Powder
100 parts by weight Binder (polyvinyl butyral resin) 30 parts by weight Plasticizer (dioctyl phthalate) 20
Parts by weight Solvent (ethanol)
300 parts by weight (3) Air electrode membrane material La0.9 Sr0.1 MnO3 powder
80 parts by weight (ZrO
2) 0.92 (Y2 O3) 0.08 powder
20 parts by weight Binder (polyvinyl butyral resin) 30 parts by weight Plasticizer (dioctyl phthalate) 20
Parts by weight Solvent (ethanol)
300 parts by weight Next, each of the above slurries was formed into a tape by a normal tape casting method to produce a green sheet for a solid electrolyte membrane, a green sheet for an oxygen ion conductive thin film, and a green sheet for an air electrode membrane. The thickness of each green sheet was 150 μm for the solid electrolyte membrane, 40 μm for the oxygen ion conductive thin film, and 100 μm for the air electrode membrane. Next, the green sheets for the solid electrolyte membrane and the oxygen ion conductive thin film were cut into 50 mm x 50 mm, and the two sheets were further laminated and fired in the air at 1500° C. for 5 hours. In addition, the green sheet for the air electrode is 45mm x 5
It was cut to a length of 0 mm and further coated on an oxygen ion conductive thin film.

【0012】このようにして作製した積層膜を、以下(
A)積層膜と称する。 〔比較例〕 図2に示すように、酸素イオン導電性薄膜2を配置しな
い他は、上記実施例と同様にして電池を作製した。この
ようにして作製した積層膜を、以下(X)積層膜と称す
る。 〔実験〕 上記本発明の電池に使用する(A)積層膜及び比較例の
電池に使用する(X)積層膜を、空気中で1250℃(
昇温速度:100℃/hr)まで昇温させた後、100
時間保持した。その後、各層間の反応性を調べるために
、X線回折分析を行った。
The laminated film thus produced is described below (
A) It is called a laminated film. [Comparative Example] As shown in FIG. 2, a battery was produced in the same manner as in the above example except that the oxygen ion conductive thin film 2 was not disposed. The laminated film thus produced is hereinafter referred to as the (X) laminated film. [Experiment] The laminated film (A) used in the battery of the present invention and the laminated film (X) used in the battery of the comparative example were heated at 1250°C (
After heating up to 100°C/hr)
Holds time. Thereafter, X-ray diffraction analysis was performed to examine the reactivity between each layer.

【0013】その結果、(A)積層膜では反応生成物が
確認されなかった。これに対して、比較例の(X)積層
膜では、図3に示すように、固体電解質膜と空気極との
接触部に、La2 Zr2 O7 (低導電性物質)8
が生成していることが認められた。 〔その他の事項〕 ■酸素イオン導電性薄膜は、固体電解質膜と空気極膜と
が直接接し固相反応を生じるのを防止する役割と、空気
極から固体電解質膜へ酸素イオンを移動させるための橋
渡しの役割とを有している。したがって、膜厚が薄すぎ
ると固体電解質膜と空気極とが接触するおそれがあるた
め低導電性物質が生成するおそれがある一方、厚すぎる
と酸素イオンが通過するときに抵抗が大きくなり、この
結果電流値に比例して電池電圧が低下する。したがって
、酸素イオン導電性薄膜の膜厚は1〜50μmが好まし
く、且つ酸素イオン導電率は10−3Ω−1cm−1以
上が好ましい。また、固体電解質膜の膜厚は、機械的強
度や緻密性を考慮すると、上記酸素イオン導電性薄膜の
膜厚より若干厚くする必要があり、好ましくは2倍以上
に設定するのが良い。
As a result, no reaction products were observed in the laminated film (A). On the other hand, in the (X) laminated film of the comparative example, as shown in FIG.
was found to be generated. [Other matters] ■The oxygen ion conductive thin film has two functions: to prevent direct contact between the solid electrolyte membrane and the air electrode membrane and solid-phase reactions, and to transport oxygen ions from the air electrode to the solid electrolyte membrane. It also has a bridging role. Therefore, if the film thickness is too thin, there is a risk that the solid electrolyte membrane and the air electrode may come into contact with each other, resulting in the formation of low conductivity substances, while if the film is too thick, the resistance increases when oxygen ions pass through, and this As a result, the battery voltage decreases in proportion to the current value. Therefore, the thickness of the oxygen ion conductive thin film is preferably 1 to 50 μm, and the oxygen ion conductivity is preferably 10 −3 Ω −1 cm −1 or more. Further, the thickness of the solid electrolyte membrane needs to be slightly thicker than the thickness of the oxygen ion conductive thin film, preferably twice or more, in consideration of mechanical strength and denseness.

【0014】■酸素イオン導電性薄膜の材料としては、
上記(CeO2 )0.8 (LaO1.5 )0.2
 に限定されるものではなく、例えば下記に示すような
ものでも良い。 (1)ThO2 とY2 O3 との固溶体等の酸化ト
リウムと2価又は3価の金属酸化物との固溶体。 (2)Bi2 O3 とEr2 O3 との固溶体、S
m2 O3 とSrOとの固溶体等、酸化ビスマス又は
酸化サマリウムと2価、3価、5価もしくは6価の金属
酸化物との固溶体。
■ Materials for the oxygen ion conductive thin film include:
Above (CeO2)0.8 (LaO1.5)0.2
However, the present invention is not limited to this, and may be, for example, as shown below. (1) A solid solution of thorium oxide and a divalent or trivalent metal oxide, such as a solid solution of ThO2 and Y2 O3. (2) Solid solution of Bi2 O3 and Er2 O3, S
A solid solution of bismuth oxide or samarium oxide and a divalent, trivalent, pentavalent or hexavalent metal oxide, such as a solid solution of m2O3 and SrO.

【0015】(3)SrTiO3 、CaTi0.7 
Al0.3 O3 等のペロブスカイト型酸化物固溶体
。 (4)Cd2 Nb2 O7 等のバイロクロア型酸化
物固溶体。 尚、上記物質のなかには還元雰囲気で電子−酸素イオン
混合導電体となり、固体電解質としては使い難いものも
あるが、電解質と電極との中間層としては電子導電性が
含まれていても問題はない。
(3) SrTiO3, CaTi0.7
Perovskite type oxide solid solution such as Al0.3 O3. (4) Virochlore type oxide solid solution such as Cd2 Nb2 O7. Some of the above substances become electron-oxygen ion mixed conductors in a reducing atmosphere and are difficult to use as solid electrolytes, but there is no problem even if they contain electronic conductivity as an intermediate layer between the electrolyte and the electrode. .

【0016】■酸素イオン導電性薄膜の作製方法として
は、例えば、スラリーコーティング法、メッキ法、各種
溶射法、物理蒸着法、化学蒸着法で行うことが可能であ
る。
[0016] The oxygen ion conductive thin film can be produced by, for example, a slurry coating method, a plating method, various thermal spraying methods, a physical vapor deposition method, or a chemical vapor deposition method.

【0017】[0017]

【発明の効果】以上説明したように本発明によれば、空
気極膜を電解質膜に高温で焼き付けた場合や電池を高温
で長期にわたって運転した場合であっても、空気極膜と
固体電解質膜との固相反応が生じないので、低導電性物
質が生成するのを防止することができる。この結果、固
体電解質型燃料電池の電池特性を長期にわたって維持す
ることができるといった効果を奏する。
Effects of the Invention As explained above, according to the present invention, even if the air electrode membrane is baked onto the electrolyte membrane at high temperature or the battery is operated at high temperature for a long period of time, the air electrode membrane and solid electrolyte membrane can be Since no solid phase reaction occurs with the metal, it is possible to prevent the generation of low conductivity substances. As a result, it is possible to maintain the cell characteristics of the solid oxide fuel cell over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一例に係る固体電解質型燃料電池の模
式的断面図である。
FIG. 1 is a schematic cross-sectional view of a solid oxide fuel cell according to an example of the present invention.

【図2】従来の固体電解質型燃料電池の模式的断面図で
ある。
FIG. 2 is a schematic cross-sectional view of a conventional solid oxide fuel cell.

【図3】従来の固体電解質型燃料電池を長期運転した後
の模式的断面図である。
FIG. 3 is a schematic cross-sectional view of a conventional solid oxide fuel cell after long-term operation.

【符号の説明】[Explanation of symbols]

1    固体電解質膜 2    酸素イオン導電性薄膜 3    空気極膜 1 Solid electrolyte membrane 2 Oxygen ion conductive thin film 3 Air electrode membrane

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  酸化ジルコニウムと2価または3価の
金属酸化物との固溶体から成る固体電解質膜と、ランタ
ン系ペロブスカイト型酸化物から成る酸素極膜とを有す
る固体電解質型燃料電池において、前記固体電解質膜と
酸素極膜との間に、両膜に対して化学的に安定な物質か
ら成る酸素イオン導電性薄膜を配置したことを特徴とす
る固体電解質型燃料電池。
1. A solid electrolyte fuel cell comprising a solid electrolyte membrane made of a solid solution of zirconium oxide and a divalent or trivalent metal oxide, and an oxygen electrode membrane made of a lanthanum-based perovskite oxide, wherein the solid A solid electrolyte fuel cell characterized in that an oxygen ion conductive thin film made of a chemically stable substance is disposed between an electrolyte membrane and an oxygen electrode membrane.
JP2401861A 1990-12-13 1990-12-13 Solid electrolyte fuel cell Pending JPH04215258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2401861A JPH04215258A (en) 1990-12-13 1990-12-13 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2401861A JPH04215258A (en) 1990-12-13 1990-12-13 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH04215258A true JPH04215258A (en) 1992-08-06

Family

ID=18511684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2401861A Pending JPH04215258A (en) 1990-12-13 1990-12-13 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH04215258A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278089A (en) * 2005-03-29 2006-10-12 Kyocera Corp Fuel battery cell and fuel battery
JP2016126984A (en) * 2015-01-08 2016-07-11 株式会社デンソー Fuel battery single cell and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278089A (en) * 2005-03-29 2006-10-12 Kyocera Corp Fuel battery cell and fuel battery
JP2016126984A (en) * 2015-01-08 2016-07-11 株式会社デンソー Fuel battery single cell and method for manufacturing the same

Similar Documents

Publication Publication Date Title
AU2001284851B2 (en) Integrated sofc
AU2001284851A1 (en) Integrated sofc
JPH0748378B2 (en) Air electrode for solid electrolyte fuel cell and solid electrolyte fuel cell having the same
AU2003229677B2 (en) High-temperature solid electrolyte fuel cell comprising a composite of nanoporous thin-film electrodes and a structured electrolyte
JP3915500B2 (en) THIN FILM LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SOLID OXIDE FUEL CELL USING THE SAME
US5672437A (en) Solid electrolyte for a fuel cell
JP2004265734A (en) Fuel battery cell
JPH08287926A (en) Manufacture of solid electrolyte fuel cell
JP4524791B2 (en) Solid oxide fuel cell
JP3661676B2 (en) Solid oxide fuel cell
JPH0567473A (en) Solid electrolyte fuel cell
JPH05151981A (en) Solid electrolyte fuel cell
JP4828104B2 (en) Fuel cell
JPH04215258A (en) Solid electrolyte fuel cell
JP4743949B2 (en) Solid electrolyte fuel cell
JP3339998B2 (en) Cylindrical fuel cell
JP3501409B2 (en) Self-supporting flat-plate solid electrolyte fuel cell
JP3108256B2 (en) Solid oxide fuel cell
JP2980921B2 (en) Flat solid electrolyte fuel cell
JP2771090B2 (en) Solid oxide fuel cell
JPH07320756A (en) Solid electrolytic fuel cell
JP2704071B2 (en) Method for manufacturing single cell of solid oxide fuel cell
JP2005116260A (en) Electrode for solid oxide fuel cell, and its manufacturing method
JPH08222243A (en) Fuel cell
JPH06267571A (en) Solid electrolyte type fuel cell