JPH04215253A - Battery - Google Patents

Battery

Info

Publication number
JPH04215253A
JPH04215253A JP2409718A JP40971890A JPH04215253A JP H04215253 A JPH04215253 A JP H04215253A JP 2409718 A JP2409718 A JP 2409718A JP 40971890 A JP40971890 A JP 40971890A JP H04215253 A JPH04215253 A JP H04215253A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
battery
current
fiber material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2409718A
Other languages
Japanese (ja)
Inventor
Keiji Taniguchi
圭司 谷口
Fumito Masubuchi
文人 増渕
Yutaka Makibe
豊 牧部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2409718A priority Critical patent/JPH04215253A/en
Publication of JPH04215253A publication Critical patent/JPH04215253A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a large-current discharge and large-current charge battery by forming electrodes into a thin structure. CONSTITUTION:A sheet-shaped fiber material coated with a thin film of a metal such as nickel is used for current collectors of electrodes. A woven fabric or a nonwoven fabric made of synthetic fibers is used for the sheet-shaped fiber material. A separator is inserted between a positive electrode and a negative electrode to obtain electrodes with a spiral structure, they are stored in a battery can, the electrodes are formed into a thin structure, facing areas of the positive electrode and negative electrode are increased, and a large- current discharge and large-current charge battery is obtained. The current collectors of the electrodes are made of the fiber material, and therefore no damage is caused to the separator inserted between the electrodes.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【技術分野】本発明は、改良された集電体を用いた電池
に関するものである。
TECHNICAL FIELD The present invention relates to a battery using an improved current collector.

【0002】0002

【従来技術及びその問題点】一次電池や二次電池におけ
る集電体として、エキスパンドメタルや、金属メッシュ
を用いることは広く知られている(特開昭57−114
73号、特開昭61−151975号)。一方、電極と
しては、できるだけ厚みの薄いものが要望されており、
この要望は特にスパイラル型構造の電極に関して大きい
。その理由は、スパイラル構造電極は、同一直径で巻取
ると、その厚みの薄い方が巻取り長さをより長くするこ
とができるため、正極及び負極の対向面積が大きくなり
、その結果、大電流放電や大電流充電が可能となるから
である
[Prior art and its problems] It is widely known that expanded metal or metal mesh is used as a current collector in primary batteries or secondary batteries (Japanese Patent Application Laid-Open No. 57-114
No. 73, JP-A-61-151975). On the other hand, electrodes are required to be as thin as possible.
This demand is particularly great for electrodes with a spiral structure. The reason is that when spiral structure electrodes are wound with the same diameter, the thinner the electrode, the longer the winding length can be, which increases the opposing area of the positive and negative electrodes, resulting in a large current. This is because it enables discharging and large current charging.

【0003】しかし、従来の前記エキスパンドメタルや
金属メッシュ等の金属材料からなる集電体を用いて作製
した電極では、その厚みを薄くするには限界があり、前
記のような要望を満たすことは困難であった。金属材料
の集電体では、その切断部分や端部のバリがセパレータ
ーを損傷させて内部短絡の原因となるので、活物質をそ
の表面に厚く付着させることが必要になり、その結果、
電極の厚みは必然的に大きいものとなった。電極の厚み
を薄くするために、集電体として金属箔を用いた電極も
知られているが、この電極の場合、その構造上集電効果
に劣る上に、活物質との接着性が悪いという問題もあり
、さらにコスト高になるという問題もある。
[0003] However, with conventional electrodes made using current collectors made of metal materials such as expanded metal and metal mesh, there is a limit to how thin the electrodes can be, and it is difficult to meet the above requirements. It was difficult. For current collectors made of metal materials, burrs on the cut parts and edges can damage the separator and cause internal short circuits, so it is necessary to thickly adhere the active material to the surface.
The thickness of the electrode was inevitably large. In order to reduce the thickness of the electrode, electrodes that use metal foil as a current collector are also known, but in the case of this electrode, the current collection effect is poor due to its structure, and the adhesiveness with the active material is poor. There is also the problem of increased costs.

【0004】0004

【発明の課題】本発明は、前記した従来の電極に見られ
る問題を解決し、実用性ある薄型構造の電極を提供する
ことをその課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems seen in the conventional electrodes described above and to provide a practical electrode with a thin structure.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、金属薄膜で被覆さ
れた織布や不織布を電極の集電体として用いることによ
り、その課題を解決し得ることを見出し、本発明を完成
するに至った。
[Means for Solving the Problems] As a result of intensive research to solve the above problems, the present inventors have found that by using a woven fabric or non-woven fabric coated with a metal thin film as a current collector of an electrode. The inventors have discovered that the problem can be solved and have completed the present invention.

【0006】即ち、本発明によれば、正極と負極の少な
くとも一方の電極の集電体として、金属薄膜で被覆した
シート状繊維材料を用いたことを特徴とする電池が提供
される。
That is, according to the present invention, there is provided a battery characterized in that a sheet-like fibrous material coated with a metal thin film is used as a current collector for at least one of the positive electrode and the negative electrode.

【0007】本発明の電極は、金属薄膜を表面に有する
シート状繊維材料を集電体として用いたものである。こ
の場合、繊維としては、従来公知の種々のもの、例えば
、ポリエステル、ナイロン、ポリエチレン、ポリプロピ
レン、ポリフェニレンサルファイド等の各種合成樹脂か
ら形成したものが挙げられる。繊維の太さは微細な程好
ましい。繊維材料の厚みは、10〜200μm、好まし
くは20〜50μmである。この繊維材料の厚みが薄す
ぎると機械的強度が低くなり、一方、厚すぎると薄型電
極を得るという本発明の目的を達成することができない
。シート状繊維材料には、織布、編布、不織布等が包含
される。この繊維材料の表面に被覆する金属は、導電性
を示すものであれば任意のものが用いられる。その具体
例としては、例えば、銅、ニッケル、金、銀、アルミニ
ウム、それらの合金、SUS等が挙げられる。繊維材料
に対する金属被覆は、化学めっき法や、化学めっき法と
電気めっき法との組合せ、蒸着法等の従来公知の方法に
よって行うことができる。また、あらかじめ金属被覆さ
れた繊維を用いて形成された繊維材料も本発明における
集電体として好ましく使用される。繊維表面に形成され
る金属被膜の厚さは、できるだけ薄くするのが好ましい
The electrode of the present invention uses a sheet-like fibrous material having a metal thin film on its surface as a current collector. In this case, the fibers include various conventionally known fibers, such as those formed from various synthetic resins such as polyester, nylon, polyethylene, polypropylene, and polyphenylene sulfide. The finer the thickness of the fibers, the better. The thickness of the fiber material is 10-200 μm, preferably 20-50 μm. If the thickness of the fiber material is too thin, the mechanical strength will be low, while if it is too thick, the objective of the present invention of obtaining a thin electrode cannot be achieved. Sheet-like fiber materials include woven fabrics, knitted fabrics, non-woven fabrics, and the like. Any metal can be used to coat the surface of the fiber material as long as it exhibits conductivity. Specific examples include copper, nickel, gold, silver, aluminum, alloys thereof, SUS, and the like. Metal coating on the fiber material can be performed by conventionally known methods such as chemical plating, a combination of chemical plating and electroplating, and vapor deposition. Furthermore, fibrous materials formed using fibers coated with metal in advance are also preferably used as current collectors in the present invention. It is preferable that the thickness of the metal coating formed on the fiber surface be as thin as possible.

【0008】本発明で集電体として用いる表面に金属薄
膜を有するシート状繊維材料は、微細空隙(微細孔)を
有するものであり、その空隙の寸法は、100〜100
0μmの範囲に規定するのがよい。これより小さな空隙
では活物質の充填が困難になり、一方前記範囲より大き
い空隙では活物質を充填して電極とした時に、金属被膜
を有する導電性繊維間に充填した活物質の繊維間距離が
長くなることから、電極の内部抵抗が増加するので好ま
しくない。
The sheet-like fibrous material having a metal thin film on the surface used as a current collector in the present invention has fine voids (micropores), and the size of the voids is 100 to 100.
It is preferable to define it in the range of 0 μm. If the gap is smaller than this, it will be difficult to fill the active material, while if the gap is larger than the above range, when the active material is filled to form an electrode, the distance between the fibers of the active material filled between the conductive fibers with the metal coating will be Since the length increases, the internal resistance of the electrode increases, which is not preferable.

【0009】本発明で用いる電極は、前記した表面に金
属薄膜を有するシート状繊維材料に対して、活物質を結
合させることによって作製される。活物質としては、従
来公知のものが用いられる。例えば、正極活物質として
は、MnO2、Cr2O5、V2O5、CoS2、Ti
S、FeS2、MoS2、HgO、Ag2O、(CI)
n、CuO、PbO2、NiOHO、S、FeS2、活
性炭、ポリアニリン、ポリピロール、ポリ−3−メチル
チオフェン、ポリジフェニルベンジジン、メタロセンポ
リマー等が挙げられる。負極活物質としては、Li、N
a、K、Ag、Cu、Zn等の金属や、Liと、Al、
Mg、Pb、Si、Ga、In等との合金、ポリアセチ
レン、ポリチオフェン、ポリパラフェニレン、ポリピリ
ジン、ポリアセン、グラファイト、ピッチコークス等が
挙げられる。
[0009] The electrode used in the present invention is produced by bonding an active material to the above-described sheet-like fibrous material having a metal thin film on its surface. As the active material, conventionally known materials are used. For example, positive electrode active materials include MnO2, Cr2O5, V2O5, CoS2, Ti
S, FeS2, MoS2, HgO, Ag2O, (CI)
n, CuO, PbO2, NiOHO, S, FeS2, activated carbon, polyaniline, polypyrrole, poly-3-methylthiophene, polydiphenylbenzidine, metallocene polymer, and the like. As negative electrode active materials, Li, N
Metals such as a, K, Ag, Cu, Zn, Li, Al,
Examples include alloys with Mg, Pb, Si, Ga, In, etc., polyacetylene, polythiophene, polyparaphenylene, polypyridine, polyacene, graphite, and pitch coke.

【0010】シート状繊維材料に対して活物質を結合さ
せて電極を作製する方法は、従来公知の方法に従って実
施することができる。例えば、MnO2を活物質として
含む正極を得る場合、MnO2の粉体と、カーボンブラ
ックや、グラファイト等の導電材と、テフロンディスパ
ージョンとを所定割合で混練し、この混練物を繊維材料
表面に塗布し、加圧ローラーにより厚みを均一にし、乾
燥すればよい。一方、リチウム負極を得る場合には、リ
チウム箔又はリチウム合金箔を繊維材料表面に重ね、加
圧して一体化すればよい。他の活物質を用いた電極も前
記と同様にして得ることができる。
[0010] A method for producing an electrode by bonding an active material to a sheet-like fibrous material can be carried out according to a conventionally known method. For example, when obtaining a positive electrode containing MnO2 as an active material, MnO2 powder, a conductive material such as carbon black or graphite, and Teflon dispersion are kneaded in a predetermined ratio, and this kneaded product is applied to the surface of the fiber material. Then, use a pressure roller to make the thickness uniform and dry. On the other hand, in order to obtain a lithium negative electrode, lithium foil or lithium alloy foil may be stacked on the surface of the fiber material and integrated by applying pressure. Electrodes using other active materials can also be obtained in the same manner as described above.

【0011】本発明の電池は、前記のようにして得た正
極と負極とをセパレータを介して積層し、電解液ととも
に電池缶内に封入すればよい。この場合、セパセーター
としては、従来公知のもの、例えば、微孔性ポリプロピ
レン膜や、微孔性ポリエチレン膜、ポリアミド不織布、
紙等が用いられる。本発明の電池は、スパイラル電極構
造のものであることができる他、シート型やコイン型の
電池、さらにガム型(角型)電池であることができる。
[0011] The battery of the present invention may be obtained by laminating the positive electrode and negative electrode obtained as described above with a separator interposed therebetween, and enclosing them together with an electrolyte in a battery can. In this case, the separator may be a conventionally known separator, such as a microporous polypropylene membrane, a microporous polyethylene membrane, a polyamide nonwoven fabric,
Paper etc. are used. The battery of the present invention may have a spiral electrode structure, and may also be a sheet-type or coin-type battery, or a gum-type (prismatic) battery.

【0012】0012

【実施例】次に本発明を実施例によりさらに詳細に説明
する。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples.

【0013】[0013]

【実施例1】熱処理電解二酸化マンガン80重量部、グ
ラファイト10重量部及び60%テフロンディスパージ
ョン10重量部を充分に混練し、この混練物を、ニッケ
ルメッキポリエステル織布(厚さ:64μm、ニッケル
付着量:6.4g/m2、三菱電線工業(株)製)の両
面に塗設し、幅:45mm、長さ:40cm、厚さ:8
0μmの正極を作成した。
[Example 1] 80 parts by weight of heat-treated electrolytic manganese dioxide, 10 parts by weight of graphite, and 10 parts by weight of 60% Teflon dispersion were thoroughly kneaded, and the kneaded product was mixed with a nickel-plated polyester woven fabric (thickness: 64 μm, nickel-coated). Amount: 6.4 g/m2, coated on both sides of Mitsubishi Cable Industries Co., Ltd. Width: 45 mm, Length: 40 cm, Thickness: 8
A positive electrode with a thickness of 0 μm was created.

【0014】この正極と負極としてのリチウム箔とをそ
の間にポリプロピレン製セパレーターをはさんで積層し
、スパイラル構造の電極を作り、これを電解液とともに
単−3の電池缶に収納した。この場合、電解液としては
、ジメトキシエタン50重量部とプロピレンカーボネー
ト50重量部との混合溶媒にLiBF4を1mol/l
の割合で溶解した溶液を用いた。このリチウム電池の短
絡電流値は19.8Aであった。また、この短絡電流値
測定後、電池を分解してセパレーターの状態を観察した
ところ、損傷はなかった。
[0014] This positive electrode and a lithium foil serving as a negative electrode were laminated with a polypropylene separator sandwiched between them to form a spiral-structured electrode, which was housed in a AA battery can together with an electrolyte. In this case, the electrolytic solution is a mixed solvent of 50 parts by weight of dimethoxyethane and 50 parts by weight of propylene carbonate with 1 mol/l of LiBF4.
A solution was used in which the mixture was dissolved at a ratio of . The short circuit current value of this lithium battery was 19.8A. Further, after measuring this short circuit current value, the battery was disassembled and the state of the separator was observed, and no damage was found.

【0015】[0015]

【実施例2】SUSを蒸着したナイロン織布(スパッタ
厚さ:0.2μm、織布厚:50μm、NBC工業社製
)に、厚さ:50μmのリチウム箔を圧着し、幅:45
mm、長さ:40cm、厚さ:80μmの負極を作成し
た。次に、この負極と、実施例1で示した正極、セパレ
ーター及び電解液を用いて、実施例1と同様にしてリチ
ウム電池を作った。この電池の短絡電流値は21.2A
であった。また、この短絡電流値測定後、電池を分解し
てセパレーターの状態を観察したところ、損傷はなかっ
た。
[Example 2] Lithium foil with a thickness of 50 μm was crimped onto a nylon woven fabric coated with SUS (sputter thickness: 0.2 μm, woven fabric thickness: 50 μm, manufactured by NBC Industries), width: 45 μm.
A negative electrode with a length of 40 cm and a thickness of 80 μm was prepared. Next, using this negative electrode, the positive electrode, separator, and electrolyte shown in Example 1, a lithium battery was produced in the same manner as in Example 1. The short circuit current value of this battery is 21.2A
Met. Further, after measuring this short circuit current value, the battery was disassembled and the state of the separator was observed, and no damage was found.

【0016】[0016]

【比較例1】厚さ:30μmのSUSエキスパンドメタ
ルの両面に、実施例1で示した二酸化マンガン混練物を
塗設して、厚さ:320μm、幅:45mm、長さ:4
0cmの正極を作成した。次に、この正極と、負極とし
ての幅:45mm、長さ:40cm、厚さ:50μmの
リチウム箔と、実施例1で示したポリプロピレン製セパ
レーターを用いてスパイラル構造の電極を作成したが、
電極は単−3の電池缶には収納できず、単−3の電池缶
に収納するには長さを20cmとしてスパイラル構造電
極とすることが必要であった。しかし、このスパイラル
構造電極を収納して形成した電池は、内部短絡を起して
いた。そこで、この電池を分解して内部を観察したとこ
ろ、正極端部のエキスパンドメタルによりセパレーター
が破られ、正極とリチウムとが接触していることが観察
された。
[Comparative Example 1] The manganese dioxide kneaded product shown in Example 1 was coated on both sides of SUS expanded metal with a thickness of 30 μm, and the thickness was 320 μm, width: 45 mm, and length: 4.
A 0 cm positive electrode was created. Next, an electrode with a spiral structure was created using this positive electrode, a lithium foil having a width of 45 mm, a length of 40 cm, and a thickness of 50 μm as a negative electrode, and the polypropylene separator shown in Example 1.
The electrode could not be housed in a AA battery can, and in order to be housed in a AA battery can, it was necessary to have a spiral structure electrode with a length of 20 cm. However, batteries formed by housing this spiral structure electrode suffered from internal short circuits. When this battery was disassembled and the inside observed, it was observed that the separator was broken by the expanded metal at the positive end, and the positive electrode was in contact with lithium.

【0017】[0017]

【発明の効果】本発明の電池は、正極と負極の少なくと
も一方の電極の集電体として金属薄膜で被覆したシート
状繊維材料を用いて、その電極を薄型構造にしたもので
あり、その結果、正極と負極の対向面積が大きくなり、
大電流放電や大電流充電が可能となったものである。
[Effects of the Invention] The battery of the present invention uses a sheet-like fiber material coated with a metal thin film as a current collector for at least one of the positive and negative electrodes, and the electrode has a thin structure. , the facing area of the positive and negative electrodes increases,
This enables large current discharge and large current charging.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  正極と負極の少なくとも一方の電極の
集電体として、金属薄膜で被覆したシート状繊維材料を
用いたことを特徴とする電池。
1. A battery characterized in that a sheet-like fiber material coated with a metal thin film is used as a current collector for at least one of a positive electrode and a negative electrode.
JP2409718A 1990-12-11 1990-12-11 Battery Pending JPH04215253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2409718A JPH04215253A (en) 1990-12-11 1990-12-11 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2409718A JPH04215253A (en) 1990-12-11 1990-12-11 Battery

Publications (1)

Publication Number Publication Date
JPH04215253A true JPH04215253A (en) 1992-08-06

Family

ID=18519013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2409718A Pending JPH04215253A (en) 1990-12-11 1990-12-11 Battery

Country Status (1)

Country Link
JP (1) JPH04215253A (en)

Similar Documents

Publication Publication Date Title
US7033702B2 (en) Particulate electrode including electrolyte for a rechargeable lithium battery
JP3619000B2 (en) Electrode structure, secondary battery, and manufacturing method thereof
US4960655A (en) Lightweight batteries
US5262255A (en) Negative electrode for non-aqueous electrolyte secondary battery
JP2000311681A (en) Negative electrode material for secondary battery, electrode structural body, secondary battery and their manufacture
DE112012000869T5 (en) Three-dimensional network aluminum porous body, electrode using the aluminum porous body, and non-aqueous electrolyte battery, capacitor, and nonaqueous electrolytic solution lithium-ion capacitor each using the electrode
JP2003282064A (en) Compound current collector
DE112012000878T5 (en) Electrode for electrochemical device and method for its production
JP2001155739A (en) Positive electrode for secondary cell, and secondary cell
KR20080079200A (en) Electrode structure and method of manufacturing the same, and battery and method of manufacturing the same
DE112012000851T5 (en) Three-dimensional network aluminum porous body, electrode using the aluminum porous body, and nonaqueous electrolyte battery, capacitor using a nonaqueous electrolytic solution, and lithium ion capacitor using a nonaqueous electrolytic solution, respectively use the electrode
JP2012174577A (en) Negative electrode plate of lithium secondary battery, negative electrode, and lithium secondary battery
JP2009199744A (en) Negative electrode for lithium secondary battery and its manufacturing method
US5744263A (en) Alkaline storage batteries and nickel electrodes having plurality of substrates
JPH06310126A (en) Nonaquous electrolytic secondary battery
JP4003276B2 (en) Battery electrode and secondary battery using the same
JP6643174B2 (en) Manufacturing method of lithium ion secondary battery
JP4039893B2 (en) High capacity negative electrode
US20220352496A1 (en) Method and apparatus for fabricating an electrode for a battery
JPH04215253A (en) Battery
JP2018078029A (en) Negative electrode and nonaqueous electrolyte power storage device
JP6959015B2 (en) Non-aqueous electrolyte secondary battery
JPS63121247A (en) Negative electrode of secondary battery
WO2023195233A1 (en) Negative electrode for zinc battery, and zinc battery
WO2023074846A1 (en) Lithium secondary battery