JPH04211385A - Production of l-malic acid polymer by microorganism - Google Patents

Production of l-malic acid polymer by microorganism

Info

Publication number
JPH04211385A
JPH04211385A JP3055624A JP5562491A JPH04211385A JP H04211385 A JPH04211385 A JP H04211385A JP 3055624 A JP3055624 A JP 3055624A JP 5562491 A JP5562491 A JP 5562491A JP H04211385 A JPH04211385 A JP H04211385A
Authority
JP
Japan
Prior art keywords
malic acid
acid polymer
culture
ifo
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3055624A
Other languages
Japanese (ja)
Other versions
JP2971158B2 (en
Inventor
Takeshi Tabuchi
田渕 武士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP3055624A priority Critical patent/JP2971158B2/en
Publication of JPH04211385A publication Critical patent/JPH04211385A/en
Application granted granted Critical
Publication of JP2971158B2 publication Critical patent/JP2971158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To obtain the title polymer in high productivity by incubating fungi belonging to Aureobasidium capable of producing the title polymer. CONSTITUTION:The objective L-malic acid polymer can be obtained by incubating fungi belonging to Aureobasidium (pref. Aureobasidium Sp.A-91 strain) capable of producing the title polymer and by collection from the resulting cultured product.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、微生物によるL−リン
ゴ酸重合物(poly−L−Malic acid, 
 以下PMLAと称する)の製造法に関する。 【0002】PMLAは、生体内分解吸収性高分子化合
物として、生体吸収性縫合系、骨接合用材料、人工腱、
人工血管及びドラッグデリバリーの高分子キャリアー等
として、医薬及び医療の分野での用途が大いに期待され
ている。 【0003】 【従来の技術】PMLAは、リンゴ酸モノベンジル又は
モノメチルエステルを原料とする化学合成法[Repo
rts of the Faculty Engine
ering, Tottori University
, 8, 124 (1977) ]、ベンジルマロラ
クトネートを開環重合させる化学合成法[米国特許第4
265247号明細書]、直接熱縮合法[高分子論文集
、44、 701 (1987)]等の化学合成法によ
る製造法が報告されている。 【0004】また、微生物を用いたPMLAの製造では
、ペニシリウム・サイクロピウム (Penicill
ium cyclopium)を用いた固体培養による
製造例[Agricultural Biologic
al Chemistry 33 (4), 459 
(1969)]が報告されている。 【0005】 【発明が解決しようとする課題】しかしながら、化学合
成法による製造では原料が高価であるばかりか、多数の
工程を必要とするため収率が低いという欠点を有してい
る。 【0006】一方、前記したペニシリウム・サイクロピ
ウムを用いた固体培養法による製造では、収率が低く、
また精製に多工程を要するため実際的な方法とは言い難
い。従って、従来より安価な原料から高収量で製造する
方法の開発が望まれていた。 【0007】 【課題を解決するための手段】本発明は、オウレオバセ
ディウム属に属するPMLA産生菌を培養し、培養物よ
りPMLAを採取することを特徴とするPMLAの製造
法である。 【0008】オウレオバセディウム(Aureobas
idium) 属に属する微生物には、従来プルラリア
(Pullularia)属に分類され、後にオウレオ
バセディウム属に再分類された微生物も含まれ、総括的
に黒色酵母(black yeast) とも言われて
いる[Mycopathologia et Myco
logia Applicata, 12, 1 (1
959),  同 17, 1 (1962) ]。従
って、PMLAを産生し得る黒色酵母であれば、これら
をも本発明の範囲に含むものである。そのような微生物
の具体例としては、例えば以下のものが挙げられる。 【0009】オウレオバセディウム・プルランス(Au
reobasidium pullulans) IF
O  4464、同IFO  4465、同IFO  
4875、同IFO  7757、同ATCC  73
05、オウレオバセディウム・マンソニー(Aureo
basidium mansonii)IFO  64
21、同IFO  8194、同IFO  9233、
同ATCC  14249、オウレオバセディウム・ミ
クロスティクタム(Aureobasidium mi
crostictum)IFO  32066、同IF
O  32067、同IFO  32068、同IFO
  32069、オウレオバセデイウム(Aureob
asidium) ・Sp.A−91株及びこれらの変
異株を含むものである。 【0010】上記菌株の中でオウレオバセデイウム・S
p.A−91株は、本発明者によって土壌中から新たに
分離された菌株であり、その菌学的性状は次のとおりで
ある。 A.培地上の生育状況 a)顕微鏡的所見(YM寒天培地で25℃、5日間培養
後) 栄養細胞の大きさ:3〜6×3〜20μm 栄養細胞の
形状  :菌系及び酵母様の単胞、卵形等の形状を示す b)寒天斜面(ポテトグルコース寒天培地)生育:良好 光沢:無し 色調:3日以上培養すると白色クリーム状から暗色、黒
色のコロニーとなる。 c)液体培養 YM液体培地:生育良好 B.子のう胞子の形成 ポテトグルコース寒天培地:形成せず コーンミール寒天培地    :形成せずYM寒天培地
            :形成せずV8 寒天培地 
           :形成せずC.生理学的性質 酸素要求性:好気的 生育温度  :5〜35℃ 生育pH  :2〜9 KNO3 の利用性(Wickerham 合成培地)
:有り(NH4 )2 SO4 の利用性(Wicke
rham 合成培地):有り 尿素の分解:有り ゼラチンの液化:無し 有機酸の生成:有り ビタミンの要求性(Wickerham 合成培地):
無しD.資化可能な炭素源(Wickerham 合成
培地)グルコース、シュークロース、マルトース、アラ
ビノース、キシロース、マンノース、フラクトース、ト
レハロース、グリセロース、マンニトール、デンプン、
エタノール、クエン酸、イソクエン酸、コハク酸、DL
−リンゴ酸、フマル酸。 【0011】上記の菌学的性質を有する本菌株の分類学
上の位置を“The Genera of Fungi
Sporulating in pure cultu
re ”(第3版)J.A. Von Arx編 Lu
brecht & cramer社刊(1981)によ
り検討した結果、オウレオバセディウム属に属する新菌
株であることが判明し、これをオウレオバセディウム・
Sp.A−91株と命名した。 【0012】本菌株は、工業技術院微生物工業技術研究
所に「微生物受託番号  微工研菌寄第P−11966
号」として寄託されている。 【0013】以下に、本発明のL−リンゴ酸重合物製造
方法について述べる。 【0014】上記のオウレオバセディウム属菌を培養す
るには、通常の方法に従い、炭素源、窒素源、無機塩等
の栄養分を含む培地を用いて行うことができる。 【0015】培地の炭素源としては、例えば糖質原料と
くにグルコースが好適に用いられ、その添加濃度は1〜
30重量%、好ましくは1〜20重量%が適当である。 窒素源としては、微生物の培養に際して通常使用される
窒素含有の有機又は無機物質、例えば、アンモニア、硫
酸アンモニウム、塩化アンモニウム、硝酸アンモニウム
、コハク酸アンモニウムなどの有機酸アンモニウム塩、
尿素等を単独もしくは混合して用いることができ、また
、無機塩としては、例えば、リン酸−水素カリウム、リ
ン酸二水素カリウム、硫酸マグネシウム等を用いること
ができる。この他に菌の生育に必要であれば、酵母エキ
ス、コーンスティープリカー、ペプトン、肉エキス、カ
ザミノ酸、各種ビタミン等の栄養素を培地に添加し用い
ることができる。 【0016】培養は振盪、通気撹拌等の好気的条件下で
行われ、培養温度は一般に20〜40℃、好ましくは2
2〜35℃が好適である。培養pHは2〜10、好まし
くは、3〜9、さらに好ましくは、3〜7である。 【0017】培養期間は、特に制限されるものではない
が、通常1日〜10日間で行われる。 【0018】以上述べた培養法により培養液中に生成す
るPMLAの培養液からの分離・精製は、それ自体既知
の方法に従い、例えば、イオン交換樹脂処理法、沈澱法
例えば、アセトン、メタノール、エタノール、n−プロ
パノール、イソプロパノール、メチルエチルケトン等の
有機溶媒沈澱法等を適宜組合わせて行うことができる。 【0019】以上に述べた方法で製造されるPMLAの
物理化学的性質は、以下のとおりである。 (1)GPC法により測定した分子量は、約2,000
〜50,000の範囲内である。 (2)1N硫酸溶液による加水分解処理により、L−リ
ンゴ酸のみが生成する。 【0020】 【発明の効果】本発明によれば、オウレオバセディウム
属に属するPMLA産生菌を培養して、高い生成量でP
MLAを得ることができる。 【0021】 【実施例】次に実施例を挙げて本発明をさらに具体的に
説明する。しかしながら、下記の実施例は本発明につい
て具体的な認識を得る一助としてのみ挙げたものであり
、これによって本発明は何ら限定されるものではない。 【0022】 実施例1 培地(グルコース12%、KH2 PO4 0.05%
、MgSO4 ・7H2 O0.05%、酵母エキス0
.02%;pH無調整)50mlを500ml容三角フ
ラスコに分注し、滅菌(121℃、15分間)した後、
別に滅菌した6%硝酸アンモニウム溶液1mlを添加し
た。培養は、該調製培地に炭酸カルシウム1g を添加
後、第1表に示した微生物を植菌し、25℃にて3日間
振盪培養を行い、これを前培養物とした。本培養は上記
培地2,000mlを5,000ml容三角フラスコに
分注、滅菌(121℃、15分間)した後、別に滅菌し
た6%硝酸アンモニウムの40mlと乾熱滅菌した炭酸
カルシウム60g を添加後、前培養物の2(v/v)
 %を添加して25℃にて8日間振盪培養を行った。 【0023】培養終了後、培養物の200mlを遠心分
離(8,000rpm 、15分間、室温)後、得られ
た上清液の100mlにメタノール200mlを徐々に
添加すると生成物が析出沈澱した。該沈澱物を遠心分離
(8,000rpm 、10分間、4℃)にて分離し、
メタノール−水(2:1)の混液で洗浄した後、減圧下
デシケーター中で乾燥させ、秤量した。結果を表1に示
した。 【0024】                          
         表1      ────────
───────────────────────  
                         
                         
        *                
                         
                         
    ○                    
          菌株名            
                生成量   (mg
)               ─────────
──────────────────────   
             Aureobasidiu
m     pullulans          
                         
            IFO          
4464                  50 
                         
IFO          7757        
      4200               
           IFO          4
875                500   
               ──────────
─────────────────────    
            Aureobasidium
     mansonii            
                         
           IFO          6
421                150   
                       IF
O          9233          
    3800                 
         ATCC      14249 
                 50      
            ─────────────
──────────────────       
         Aureobasidium   
  microstictum           
                         
        IFO        32066 
               920       
                   IFO   
     32068               
 450                     
     IFO        32069    
          1200           
       ──────────────────
─────────────            
    Aureobasidium   SP.A−
91          8300         
         ────────────────
───────────────          
○                        
                         
                     *  生
成物はカルシウム塩として秤量           
                     【002
5】 実施例2 実施例1の回収した生成物について、分子量の測定はG
PC法(カラム:TSK gel  G3000 PW
XL 、移動相:0.05M リン酸緩衝液(pH7.
0)、25℃、検出機:UV(210nm)及び RI
 )により分析した結果、菌株及び培養条件により分子
量は異なり、2,000〜50,000であった。 【0026】生成物の50mgを1N  H2 SO4
 溶液10mlに溶解後、該液を100℃沸騰水中で3
時間加水分解処理を行った。該処理液をペーパークロマ
トグラフィー(展開溶媒、酢酸エチル:酢酸:水=50
:12:10)により分析した結果、リンゴ酸のRf 
値に相当する単一スポットが認められた。更に高速液体
クロマトグラフィー(島津製LC−5A型)により有機
酸の分析を行った結果、リンゴ酸の保持時間を示す単一
ピークが得られた。例えばオウレオバシディウム・マン
ソニー(Aureobasidium mansoni
i)IFO  9233の培養物から回収した生成物に
ついて酸加水分解物の高速液体クロマトグラフィー[カ
ラム:HPX−87H(BIO−RAD),カラム温度
:60℃、溶媒:0.01M H2 SO4 、流速:
0.7ml/分、検出器:UV(210nm)]分析の
結果、標準物質のL−リンゴ酸と同一のリテンションタ
イムを示した。 【0027】また、得られた加水分解物をL−リンゴ酸
測定キット(ベーリンガー・マンハイム製)により分析
した結果L−体であることが判明した。 【0028】以上の結果から、本生成物はL−リンゴ酸
が重合したものであることが判明した。
Detailed Description of the Invention [0001] [Industrial Application Field] The present invention is directed to the production of poly-L-malic acid by microorganisms.
The present invention relates to a method for producing PMLA (hereinafter referred to as PMLA). PMLA is a biodegradable and absorbable polymer compound that is used in bioabsorbable suture systems, bone joint materials, artificial tendons,
It is highly expected to be used in the pharmaceutical and medical fields, such as as a polymer carrier for artificial blood vessels and drug delivery. [0003] PMLA is produced by a chemical synthesis method using monobenzyl malate or monomethyl ester as a raw material [Repo
rts of the Faculty Engine
ering, Tottori University
, 8, 124 (1977)], a chemical synthesis method for ring-opening polymerization of benzylmalolactonate [U.S. Pat.
265247], direct thermal condensation method [Kobunshi Ronshu, 44, 701 (1987)], and other chemical synthesis methods have been reported. [0004] Furthermore, in the production of PMLA using microorganisms, Penicillium cyclopium (Penicillium
Example of production by solid culture using Agricultural Biological
al Chemistry 33 (4), 459
(1969)] has been reported. [0005] However, production by chemical synthesis has the disadvantage that not only the raw materials are expensive, but also the yield is low because many steps are required. On the other hand, the production using the solid culture method using Penicillium cyclopium has a low yield;
In addition, it is difficult to say that it is a practical method because it requires multiple steps for purification. Therefore, it has been desired to develop a method for producing in high yield from materials that are cheaper than conventional ones. [0007] The present invention is a method for producing PMLA, which is characterized by culturing PMLA-producing bacteria belonging to the genus Aureobasedium and collecting PMLA from the culture. [0008] Aureobasedium (Aureobasedium)
Microorganisms belonging to the genus Aureobaseium include microorganisms that were previously classified as the genus Pullularia and later reclassified as the genus Aureobaseium, and are also collectively referred to as black yeast. [Mycopathology and Myco
logia Applicata, 12, 1 (1
959), 17, 1 (1962)]. Therefore, any black yeast that can produce PMLA is included within the scope of the present invention. Specific examples of such microorganisms include the following. [0009] Aureobasedium pullulans (Au
reobasidium pullulans) IF
O 4464, IFO 4465, IFO
4875, IFO 7757, ATCC 73
05, Aureobasedium mansoni (Aureo
basidium mansonii) IFO 64
21, IFO 8194, IFO 9233,
ATCC 14249, Aureobasidium microstictum (Aureobasidium mi
crostictum) IFO 32066, same IF
O 32067, IFO 32068, IFO
32069, Aureobaseium (Aureob)
acidium) ・Sp. This includes the A-91 strain and mutant strains thereof. Among the above strains, Aureobaseium S.
p. Strain A-91 is a strain newly isolated from soil by the present inventor, and its mycological properties are as follows. A. Growth status on medium a) Microscopic findings (after culturing on YM agar medium at 25°C for 5 days) Size of vegetative cells: 3-6 x 3-20 μm Shape of vegetative cells: Fungal and yeast-like single cells, b) Agar slant (potato glucose agar medium) Growth: Good Gloss: None Color tone: When cultured for 3 days or more, colonies change from white creamy to dark to black. c) Liquid culture YM liquid medium: Good growth B. Ascospore formation Potato glucose agar medium: No formation Cornmeal agar medium: No formation YM agar medium: No formation V8 agar medium
: No formation C. Physiological properties Oxygen requirement: Aerobic Growth temperature: 5-35°C Growth pH: 2-9 KNO3 utilization (Wickerham synthetic medium)
: Available (NH4)2 SO4 availability (Wicke
rham synthetic medium): Yes Decomposition of urea: Yes Liquefaction of gelatin: None Production of organic acids: Yes Vitamin requirements (Wickerham synthetic medium):
NoneD. Assimilable carbon sources (Wickerham synthetic medium) glucose, sucrose, maltose, arabinose, xylose, mannose, fructose, trehalose, glycerose, mannitol, starch,
Ethanol, citric acid, isocitric acid, succinic acid, DL
-malic acid, fumaric acid. The taxonomic position of this strain having the above-mentioned mycological properties is referred to as "The Genera of Fungi".
Sporulating in pure culture
re” (3rd edition) edited by J.A. Von Arx Lu
As a result of an examination published by Brecht & Cramer (1981), it was found that it was a new strain belonging to the genus Aureobasedium, and it was classified as Aureobasedium.
Sp. It was named strain A-91. [0012] This strain was given to the Institute of Microbial Technology, Agency of Industrial Science and Technology as follows: Microorganism accession number P-11966
It has been deposited as "No." [0013] The method for producing L-malic acid polymer of the present invention will be described below. [0014] The above-mentioned bacteria of the genus Aureobasedium can be cultured according to a conventional method using a medium containing nutrients such as a carbon source, a nitrogen source, and inorganic salts. [0015] As a carbon source for the medium, for example, carbohydrate raw materials, particularly glucose, are suitably used, and the concentration thereof is 1 to 1.
30% by weight, preferably 1-20% by weight is suitable. As a nitrogen source, nitrogen-containing organic or inorganic substances commonly used in culturing microorganisms, such as ammonia, ammonium salts of organic acids such as ammonium sulfate, ammonium chloride, ammonium nitrate, and ammonium succinate;
Urea etc. can be used alone or in combination, and as the inorganic salt, for example, potassium hydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate, etc. can be used. In addition, nutrients such as yeast extract, corn steep liquor, peptone, meat extract, casamino acids, and various vitamins can be added to the medium if necessary for the growth of the bacteria. [0016] The culture is carried out under aerobic conditions such as shaking and aeration, and the culture temperature is generally 20 to 40°C, preferably 20°C.
A temperature of 2 to 35°C is suitable. The culture pH is 2-10, preferably 3-9, more preferably 3-7. [0017] The culture period is not particularly limited, but it is usually carried out for 1 to 10 days. PMLA produced in the culture solution by the above-mentioned culture method can be separated and purified from the culture solution by methods known per se, such as ion exchange resin treatment, precipitation, etc., such as acetone, methanol, ethanol, , n-propanol, isopropanol, methyl ethyl ketone, etc. can be carried out in an appropriate combination. The physicochemical properties of PMLA produced by the method described above are as follows. (1) The molecular weight measured by GPC method is approximately 2,000
~50,000. (2) Only L-malic acid is produced by hydrolysis treatment with a 1N sulfuric acid solution. Effects of the Invention According to the present invention, a PMLA-producing bacterium belonging to the genus Aureobasedium is cultured, and P is produced in a high amount.
MLA can be obtained. [Example] Next, the present invention will be explained in more detail with reference to Examples. However, the following examples are given only to help gain a concrete understanding of the present invention, and the present invention is not limited thereby. Example 1 Medium (glucose 12%, KH2 PO4 0.05%
, MgSO4 ・7H2 O0.05%, yeast extract 0
.. After dispensing 50 ml of 02% (no pH adjustment) into a 500 ml Erlenmeyer flask and sterilizing it (121°C, 15 minutes),
1 ml of a separately sterilized 6% ammonium nitrate solution was added. For culturing, 1 g of calcium carbonate was added to the prepared medium, and the microorganisms shown in Table 1 were inoculated, cultured with shaking at 25°C for 3 days, and this was used as a preculture. For the main culture, 2,000 ml of the above medium was dispensed into a 5,000 ml Erlenmeyer flask, sterilized (121°C, 15 minutes), and 40 ml of separately sterilized 6% ammonium nitrate and 60 g of dry heat sterilized calcium carbonate were added. 2 (v/v) of preculture
% and cultured with shaking at 25°C for 8 days. After completion of the culture, 200 ml of the culture was centrifuged (8,000 rpm, 15 minutes, room temperature), and 200 ml of methanol was gradually added to 100 ml of the resulting supernatant, resulting in precipitation of the product. The precipitate was separated by centrifugation (8,000 rpm, 10 minutes, 4°C),
After washing with a mixture of methanol and water (2:1), it was dried in a desiccator under reduced pressure and weighed. The results are shown in Table 1. [0024]
Table 1 ────────
────────────────────────


*



Strain name
Production amount (mg
) ─────────
──────────────────────
Aureobasidiu
m pullulans

IFO
4464 50

IFO 7757
4200
IFO 4
875 500
──────────
──────────────────────
Aureobasidium
mansonii

IFO 6
421 150
IF
O9233
3800
ATCC 14249
50
──────────────
────────────────────
Aureobasidium
microstictum

IFO 32066
920
IFO
32068
450
IFO 32069
1200
────────────────────
──────────────
Aureobasidium SP. A-
91 8300
──────────────────
────────────────


*Product weighed as calcium salt
002
5] Example 2 Regarding the recovered product of Example 1, the molecular weight was measured by G.
PC method (column: TSK gel G3000 PW
XL, mobile phase: 0.05M phosphate buffer (pH 7.
0), 25°C, detector: UV (210 nm) and RI
), the molecular weight varied depending on the strain and culture conditions, and was 2,000 to 50,000. 50 mg of the product was dissolved in 1N H2SO4.
After dissolving in 10ml of solution, the solution was boiled in 100℃ boiling water for 3 hours.
A time hydrolysis treatment was performed. The treated solution was subjected to paper chromatography (developing solvent, ethyl acetate:acetic acid:water=50
:12:10), the Rf of malic acid was
A single spot corresponding to the value was observed. Furthermore, as a result of analyzing organic acids by high performance liquid chromatography (LC-5A model manufactured by Shimadzu), a single peak indicating the retention time of malic acid was obtained. For example, Aureobasidium mansoni
i) High performance liquid chromatography of the acid hydrolyzate of the product recovered from the culture of IFO 9233 [Column: HPX-87H (BIO-RAD), Column temperature: 60°C, Solvent: 0.01M H2SO4, Flow rate:
0.7 ml/min, detector: UV (210 nm)] Analysis results showed the same retention time as the standard substance L-malic acid. The obtained hydrolyzate was analyzed using an L-malic acid measurement kit (manufactured by Boehringer Mannheim) and was found to be L-malic acid. [0028] From the above results, it was found that this product was a product obtained by polymerizing L-malic acid.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  オウレオバセディウム属に属するL−
リンゴ酸重合物産生菌を培養して、培養物よりL−リン
ゴ酸重合物を採取することを特徴とするL−リンゴ酸重
合物の製造法。
Claim 1: L- belonging to the genus Aureobasedium
A method for producing an L-malic acid polymer, which comprises culturing malic acid polymer-producing bacteria and collecting the L-malic acid polymer from the culture.
【請求項2】  オウレオバセデイウム属に属するL−
リンゴ酸重合物産生菌が、オウレオバセデイウム・Sp
.A−91株である請求項1記載の方法。
Claim 2: L- belonging to the genus Aureobaseium
The malic acid polymer producing bacteria is Aureobaseium Sp.
.. The method according to claim 1, wherein the strain is A-91.
【請求項3】  L−リンゴ酸重合物産生能を有するオ
ウレオバセディウム・Sp.A−91株。
3. Aureobasedium Sp. having the ability to produce an L-malic acid polymer. A-91 strain.
JP3055624A 1990-03-02 1991-02-28 Method for producing L-malic acid polymer by microorganism Expired - Fee Related JP2971158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3055624A JP2971158B2 (en) 1990-03-02 1991-02-28 Method for producing L-malic acid polymer by microorganism

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-49401 1990-03-02
JP4940190 1990-03-02
JP3055624A JP2971158B2 (en) 1990-03-02 1991-02-28 Method for producing L-malic acid polymer by microorganism

Publications (2)

Publication Number Publication Date
JPH04211385A true JPH04211385A (en) 1992-08-03
JP2971158B2 JP2971158B2 (en) 1999-11-02

Family

ID=26389790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3055624A Expired - Fee Related JP2971158B2 (en) 1990-03-02 1991-02-28 Method for producing L-malic acid polymer by microorganism

Country Status (1)

Country Link
JP (1) JP2971158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108893498A (en) * 2018-07-11 2018-11-27 天津慧智百川生物工程有限公司 A kind of fermentation process improving polymalic acid yield

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108893498A (en) * 2018-07-11 2018-11-27 天津慧智百川生物工程有限公司 A kind of fermentation process improving polymalic acid yield
CN108893498B (en) * 2018-07-11 2022-05-06 天津慧智百川生物工程有限公司 Fermentation method for increasing yield of polymalic acid

Also Published As

Publication number Publication date
JP2971158B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
US3922194A (en) Process for producing 2-keto-L-gulonic acid
JPH0889264A (en) Production of polyester copolymer
JPS6247520B2 (en)
JP2971158B2 (en) Method for producing L-malic acid polymer by microorganism
JPH04341189A (en) Production of l-malic acid polymer by enzymatic process
JPH04341190A (en) Production of l-malic acid polymer by enzymatic process
JPH0632626B2 (en) Fermentation method for producing L-threonine
JPH02275898A (en) Novel antibiotic substance kt-6291a and kt-6291b, microorganism capable of producing the same, its production and plant disease injury controlling agent
JPH07284395A (en) Production of poly-l-malic acid
JP3432621B2 (en) How to make melanin
JPH07308188A (en) Method for culturing microorganism capable of producing l-malic acid polymer
NO802863L (en) PROCEDURE FOR THE PREPARATION OF 2,5-DICETOGLUCONIC ACID
JP2000239266A (en) New polyene-based antibiotic
JPH01174397A (en) Production of polyglutamic acid
JPH04271787A (en) Production of d-lactic acid and genus pseudomonas bacterium
JPH0352884A (en) Fo-608a substance and production thereof
JPH0593A (en) Production of optically active 3-methyladipic acid
JP2868237B2 (en) Novel bioactive substance OM-6519 and production method thereof
JPH05260984A (en) Production of 3-hydroxybutyric acid and/or its trimer
AU600936B2 (en) New culture medium for bacteria of the bordetella genus containing etherified derivative of d-glucose and a cyclodextrin
JPH0523749B2 (en)
JP2519980B2 (en) Method for producing (S) -2-hydroxy-4-phenyl-3-butenoic acid
JP2000078996A (en) Production of pyruvic acid
JPH04360894A (en) Fo-1513a substance and production thereof
JP2004254585A (en) Method for producing beta-polymalic acid by microorganism

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees