JPH04210203A - Filter cloth - Google Patents

Filter cloth

Info

Publication number
JPH04210203A
JPH04210203A JP40633090A JP40633090A JPH04210203A JP H04210203 A JPH04210203 A JP H04210203A JP 40633090 A JP40633090 A JP 40633090A JP 40633090 A JP40633090 A JP 40633090A JP H04210203 A JPH04210203 A JP H04210203A
Authority
JP
Japan
Prior art keywords
melting point
filter cloth
point component
fiber
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40633090A
Other languages
Japanese (ja)
Inventor
Takao Hata
秦 孝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwabo Create Co Ltd
Original Assignee
Daiwabo Create Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwabo Create Co Ltd filed Critical Daiwabo Create Co Ltd
Priority to JP40633090A priority Critical patent/JPH04210203A/en
Publication of JPH04210203A publication Critical patent/JPH04210203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

PURPOSE:To improve cake releasability by forming the nonwoven-fabric sheet constituting the filter cloth supply side face with the extra-fine fiber consisting of low m.p. and high m.p. components, melting and resinifying the fiber of the low m.p. component on the surface side by a hot calender roller. CONSTITUTION:A nonwoven-fabric sheet 2 constituting the face of a filter cloth on the sludge and dust supply side or a warp is formed with the extra-fine fiber obtained by splitting a splitting composite fiber 1 consisting of a low m.p. component A (e.g. PP) and a high m.p. component B (e.g. polyester). The surface is hot-calendered by a roller to melt and resinify 4 the fiber of the low m.p. component on the surface side, and the supply surface is smoothed. Consequently, since the surface of the filter cloth is resinified in the form of satin instead of film, the releasability of the dust and cake deposited on the filtration surface is improved without reducing the filtration accuracy and rate.

Description

【発明の詳細な説明】[Detailed description of the invention]

[0001] [0001]

【産業上の利用分野】本発明は、特にフィルタープレス
用やバグフィルタ−用に好適な濾過布に関するものであ
る。 [0002]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter cloth particularly suitable for filter presses and bag filters. [0002]

【従来の技術】従来の織物による濾過布、例えばフィル
タープレス用やバグフィルタ−用の濾過布としては、経
糸および緯糸にマルチフィラメントを用いたもの、経糸
および緯糸に紡績糸の撚糸を用いたものが汎用され、通
常濾過布の汚泥あるいはダストの供給側(以下表面側と
いう)の大部分が経糸によって覆われるように織成され
ている。とりわけ紡績糸の撚糸で織成された濾過布は、
比較的廉価であり柔軟性に富みかつ濾過精度に優れてい
ることからフィルタープレス用として好んで使用されて
いる。 [0003]
[Prior Art] Conventional woven filter cloths, such as filter cloths for filter presses and bag filters, use multifilament yarns for the warp and weft, and fabrics that use twisted spun yarn for the warp and weft yarns. is commonly used, and is usually woven so that most of the sludge or dust supply side (hereinafter referred to as the surface side) of the filter cloth is covered by warp threads. In particular, filter cloths woven from twisted spun yarns are
It is preferred for use in filter presses because it is relatively inexpensive, highly flexible, and has excellent filtration accuracy. [0003]

【発明が解決しようとする課題】ところが紡績糸の撚糸
によって構成された濾過布あるいは基布の表面に不織布
を積層してなる濾過布は、濾過精度に優れているがマル
チフィラメント糸による濾過布に比べてケーキの剥離性
が悪く、使用中に濾過速度が早期に低下するという不都
合を有している。 [0004]またケーキの剥離性については例えば実開
昭60−17223号公報に記載されているように、不
織布の表層に鎖成分が低融点の芯−鞘型複合繊維の不織
布を重ね合わせ、表面側を加熱押圧して低融点成分を溶
融せしめて平滑化することによって改善することができ
るが、反面において表面側に樹脂膜のようなものが形成
されて濾過速度が大幅に低下するという問題点が生じる
。 [00051本発明は上記不都合や問題点が改善された
濾過布を提供するものである。 [0006]
[Problems to be Solved by the Invention] However, a filter fabric made of twisted spun yarn or a filter fabric made by laminating a nonwoven fabric on the surface of a base fabric has excellent filtration accuracy, but a filter fabric made of multifilament yarn has In comparison, it has the disadvantage that the cake peelability is poor and the filtration rate decreases early during use. [0004] Regarding the releasability of the cake, for example, as described in Japanese Utility Model Application Publication No. 60-17223, a nonwoven fabric of core-sheath type composite fibers whose chain component has a low melting point is superimposed on the surface layer of the nonwoven fabric, and the surface This can be improved by heating and pressing the side to melt the low melting point components and smooth it, but on the other hand, the problem is that a resin film is formed on the surface side, which significantly reduces the filtration rate. occurs. [00051] The present invention provides a filter cloth in which the above-mentioned disadvantages and problems are improved. [0006]

【課題を解決するための手段】本発明は、濾過布の少な
くとも表面側に低融点成分と高融点成分とからなる分割
型複合繊維が分割された極細繊維が存在し、その表面側
から熱カレンダーでもって押圧加熱処理されてなる。即
ち、本発明における濾過布は、低融点成分と高融点成分
とからなる分割型複合繊維が分割された0、5デニール
以下の極細繊維が少なくとも汚泥あるいはダストの供給
側の面の一部に存在し、その面に熱カレンダー加工が施
されて上記低融点成分が斑点状に溶融樹脂化されている
ことを特徴としている。 [0007]上記した特徴を具備した濾過布は、低融点
成分と高融点成分とからり、分割後の太さが0.5デニ
ル以下の分割型複合繊維でもって糸条となしてその糸条
を少なくとも表面経糸に配して織成し、その織物を高圧
水流処理して該分割型複合繊維を分割し、乾燥後該織物
の表面に熱カレンダー加工を施して上記低融点成分を溶
融樹脂化することによって得ることができる。 [0008]また他の手段として、上記分割型複合繊維
からなる低融点成分と高融点成分とからなる分割型複合
繊維のカードウェブを形成し、このウェブを高圧水流処
理して極細繊維に分割するとともに交絡させて不織布と
なし、次いでこの不織布を任意の濾過重用織物基布の表
面に重ね合わせてニードリングして一体化し、しかるの
ちその不織布面に熱カレンダー加工を施して上記分割繊
維の低融点成分を溶融樹脂化することによって得ること
ができる。 [00091本発明に適用される分割型複合繊維として
は、融点の異なる2成分からなる剥離型複合繊維が好ま
しい。そしてその構成成分としては、溶融紡糸可能な重
合体もしくは共重合体、例えばポリエチレン、ポリプロ
ピレン、ポリメチルペンテン、エチレン−ビニルアルコ
ール共重合体、エチレン−酢酸ビニル共重合体等のポリ
オレフィン系やポリエチレンテレフタレート、ポリブチ
レンテレフタレート等のポリエステル系、ナイロン6、
ナイロン66、ナイロン12等のポリアミド系、ポリ塩
化ビニル等の重合体もしくは共重合体の中から、融点の
異なる2成分以上を適宜選択するとよいが、とりわけ2
0℃以上の融点差を有する2成分で形成するとよい。 [00101分割型複合繊維の断面形状は種々なものが
考えられ特に限定を要するものではないが、中でも放射
繊状型が好ましく、かかる繊維を分割することによって
太さが0.5デニール以下の熱融着性の極細繊維を含む
糸条や不織布を得ることができる。そして0.5デニー
ル以下の低融点成分の極細繊維を含む糸条や不織布を表
面側に配し、熱カレンダー加工を施すことによって本発
明の濾過布が得られる。 [00111カレンダー加工の条件としては、低融点成
分の極細繊維の融点をt℃とすると、ロール温度T℃が
t−10≦T≦t+20の範囲にある熱ロールと常温の
ロールとの2本のカレンダーロールを用い、濾過布の表
面側を熱ロール側となして線圧50〜100 kg/’
cm 、速度3〜71でもって処理するとよい。 [0012] このような条件でカレンダー加工処理を
行うと濾過布の表面側の表層部の極細繊維の低融点成分
のみが溶融し$を脂化して平滑性が良好となるとともに
高融点成分の極細繊維が溶融せずに残留しているため、
濾過速度に大きな影響を与えることなくケーキ剥離性を
向上させることができる。 [0013]
[Means for Solving the Problems] The present invention provides ultrafine fibers in which splittable conjugate fibers consisting of a low melting point component and a high melting point component are split at least on the surface side of a filter cloth, and thermal calendering is carried out from the surface side. It is then subjected to pressure and heat treatment. That is, in the filter cloth of the present invention, ultrafine fibers of 0.5 deniers or less, which are split split composite fibers consisting of a low melting point component and a high melting point component, are present at least in a part of the surface on the sludge or dust supply side. It is characterized in that its surface is thermally calendered to turn the low melting point component into a molten resin in spots. [0007] The filter cloth having the above-mentioned characteristics is made of splittable conjugate fibers that are composed of a low-melting point component and a high-melting point component, and whose thickness after splitting is 0.5 denyl or less. is arranged in at least the surface warp, the woven fabric is treated with high-pressure water to separate the splittable composite fibers, and after drying, the surface of the woven fabric is thermally calendered to convert the low melting point component into a molten resin. can be obtained by [0008] As another method, a carded web of splittable conjugate fibers consisting of a low melting point component and a high melting point component made of the above splittable conjugate fibers is formed, and this web is subjected to high pressure water jet treatment to split it into ultrafine fibers. Then, this nonwoven fabric is overlaid on the surface of an arbitrary filtration-heavy fabric base fabric and integrated by needling.Then, the surface of the nonwoven fabric is thermally calendered to reduce the low melting point of the split fibers. It can be obtained by melting the components into a resin. [00091 As the splittable conjugate fiber applied to the present invention, a peelable conjugate fiber consisting of two components having different melting points is preferable. Its constituent components include melt-spun polymers or copolymers, such as polyolefins such as polyethylene, polypropylene, polymethylpentene, ethylene-vinyl alcohol copolymers, ethylene-vinyl acetate copolymers, and polyethylene terephthalate; Polyesters such as polybutylene terephthalate, nylon 6,
Two or more components having different melting points may be appropriately selected from among polyamides such as nylon 66 and nylon 12, and polymers or copolymers such as polyvinyl chloride.
It is preferable to use two components having a difference in melting point of 0° C. or more. [00101 The cross-sectional shape of the splittable conjugate fiber can be various and does not need to be particularly limited, but among them, a radial fibrous type is preferable, and by splitting such a fiber, the fiber can be heated to a thickness of 0.5 denier or less. Yarns and nonwoven fabrics containing fusible ultrafine fibers can be obtained. Then, the filter cloth of the present invention is obtained by disposing threads or nonwoven fabric containing ultrafine fibers having a low melting point component of 0.5 denier or less on the surface side and subjecting the cloth to thermal calendering. [00111 The conditions for calendering are two rolls, a heated roll and a roll at room temperature, where the roll temperature T°C is in the range of t-10≦T≦t+20, assuming that the melting point of the ultrafine fiber as a low-melting point component is t°C. Using a calender roll, apply a linear pressure of 50 to 100 kg/' with the surface side of the filter cloth as the hot roll side.
It is preferable to process at a speed of 3 to 71 cm. [0012] When calendering is carried out under these conditions, only the low melting point components of the ultrafine fibers in the surface layer on the surface side of the filter cloth melt and become fat, resulting in good smoothness and the ultrafine fibers of the high melting point components. Because the fibers remain unmelted,
Cake removability can be improved without significantly affecting filtration speed. [0013]

【作用】濾過布の表面側の表層部に現れている低融点成
分の極細繊維のみが樹脂化されているため所定の濾過速
度を維持するとともに濾過作用時に付着したケーキを従
来よりも円滑に剥離できて濾過効率を向上させ、さらに
極細繊維の存在によって濾過精度を高める。 [0014]
[Action] Only the ultrafine fibers of the low-melting point components that appear on the surface layer of the filter cloth are made into resin, so the prescribed filtration speed can be maintained and the cake that adheres during filtration can be peeled off more smoothly than before. This improves filtration efficiency, and the presence of ultrafine fibers also increases filtration accuracy. [0014]

【実施例】実施例1・低融点成分(A)としてポリプロ
ピレン、高融点成分(B)としてポリエステルを用い、
両成分の複合比A:B=11とし、図3(イ)に示すよ
うな16分割の放射線型の分割型複合繊維を紡糸温度2
95℃で溶融押出紡糸を行い、80℃の温水中で3倍延
伸をし、カッターで切断して太さ3デニール、長さ51
111mの分割型複合繊維(1)を得た。 [0015]次いでこの分割型複合繊維(1)を100
重量%用いて目付が約150g/1II2のカードウェ
ブとし、吐水水圧150kg/cm”、速度3m/mi
nで表裏かく2回水流処理を行い、乾燥して不織布シー
ト(2)となした。この処理により複合繊維(1)はA
成分繊維とB成分繊維とに分割され1両者共に太さ0.
19デニールの極細繊維となっていた。 (0016]上記不織布(2)を基布(3)の上に重ね
てニードルパンチングを行い、両者を一体化したのち不
織布シート(2)側を温度170℃の熱ローラ、裏面(
基布側)が常温のローラとなして線圧60kg/cm 
、速度5m/minでもってカレンダー加工を行い、表
層の低融点成分繊維を溶融樹脂化(4)シて濾過布とな
した。なお基布(3)には太さ2デニール、長さ51m
mのポリプロピレン繊維の24番手紡績糸(撚数5T/
1nch)による経糸密度50本/1nch、緯糸密度
41本/1nchの綾織物を使用した。 [0017]実施例2・実施例1の分割型複合繊維10
0重量%を用いてリング紡績機により綿番手245の紡
績糸となし、この紡績系5本を撚加工機により合撚して
撚数0、5T、; 1nchの撚糸とした。そしてこの
撚糸を経糸(5)および緯糸(6)に用い経糸密度33
本/1nch 、緯糸密度33本/1nchの図2に示
したような表裏が経綾織の織物を織成した。 [0018]この織物の表面を占める経糸(3)の割合
は約75%であった。次いでこの織物を吐出水圧150
kg’cIn2、速度3 m[+1 i nで表裏各2
回水流処理を行い分割型複合繊維を分割した。該繊維の
A成分およびB成分は分割されてそれぞれ太さ0.19
デニールの極細繊維となっていた。  しかるのちこの
表面側を上記熱ロール側として、ロール温度170℃、
線圧100kg/cm、速度’D my’m I Hの
条件でカレンダー加工を施し、該撚糸経糸(5)の表層
部分を溶融樹脂化(4)シて濾過布となした。 [0019”]実施例3・ 実施例1の分割型複合繊維
(1)を50重量%と太さ2デニール、繊維長51mm
のポリプロピレンの繊維50重量%との混紡糸(綿番手
24S)を紡績し、この混紡糸を5本撚合わせて経糸と
緯糸に用い、実施例2と同様に綾織物を織成しのち水流
処理を行い、その表面側に熱カレンダー加工を施して濾
過布となした。 [00201実施例4・実施例1の分割型複合繊維(1
)100重量%のカードウェブをプレパンチングにより
目付130g/m2の不織布を作り、これを太さ2デニ
一ル繊維長51mm、目付400g/m2のポリエステ
ル二−ドル不織布の上に重ね合わせてニードルパンチン
グにより仮接合し、次いで分割型複合繊維不織布側から
、吐出水圧180kg/cm2にて2回水流処理して分
割型複合繊維を分割処理し、しかるのち上記同様に分割
繊維不織布側に熱カレンダー加工をおこなって濾過布と
なした。この濾過布の通気度は5ml/cm2/see
であった。 [00211比較例1・実施例3における混紡糸の混紡
比を分割型複合繊維(1)を20重量%、ポリプロピレ
ン繊維を80重量%となし、この混紡糸を5本撚り合わ
せて経糸および緯糸に用いて実施例3と同じ綾織物を織
成し、同様に水流処理および熱カレンダー加工を施して
濾過布となした。 [0022]比較例2・太さ2デニール、長さ41mm
のポリエステル繊維用いて目付が約500g/1l12
の二−ドルパンチング不織布を作り、表面側ロール温度
270℃、線圧60kg/cm、速度5 m/minの
条件でカレンダー加工を施して濾過布となした。この濾
過布の通気度は10m1/cm2/seeであった。 [0023]上記実施例1〜3および比較例1の濾過布
をフィルタープレス用に用いて湿式濾過性能と湿式ケー
キ剥離性のテストを行った際の評価結果を
[Example] Example 1 Using polypropylene as the low melting point component (A) and polyester as the high melting point component (B),
The composite ratio of both components A:B = 11, and the 16-split radiation-type split composite fiber as shown in Figure 3(a) was spun at a temperature of 2.
Melt extrusion spinning was performed at 95°C, stretched 3 times in warm water at 80°C, and cut with a cutter to a thickness of 3 denier and a length of 51 mm.
A 111 m long splittable composite fiber (1) was obtained. [0015] Next, this splittable composite fiber (1) was
A card web with a weight percent of approximately 150 g/1II2 was used, water pressure was 150 kg/cm, and speed was 3 m/mi.
Water treatment was carried out twice on the front and back sides using n, and the sheet was dried to obtain a nonwoven fabric sheet (2). Through this treatment, the composite fiber (1) becomes A
It is divided into component fiber and B component fiber, both of which have a thickness of 0.
It was made of 19 denier ultra-fine fiber. (0016) The nonwoven fabric (2) is layered on the base fabric (3) and needle punched to integrate the two, and then the nonwoven fabric sheet (2) side is heated with a heat roller at a temperature of 170°C, and the back side (
Linear pressure 60kg/cm when the base fabric side) is a roller at room temperature.
Calender processing was performed at a speed of 5 m/min to convert the low melting point component fibers in the surface layer into a molten resin (4) to obtain a filter cloth. The base fabric (3) has a thickness of 2 denier and a length of 51 m.
24 count spun yarn of polypropylene fiber (twist number 5T/
A twill fabric with a warp density of 50 threads/1 nch and a weft thread density of 41 threads/1 nch was used. [0017] Example 2/Splitable composite fiber 10 of Example 1
Using 0% by weight, a spun yarn with a cotton count of 245 was made using a ring spinning machine, and five of these spun yarns were combined and twisted using a twisting machine to obtain twisted yarns with a twist number of 0, 5T, and 1 nch. Then, this twisted yarn was used for the warp (5) and weft (6), and the warp density was 33.
A fabric with a warp twill weave on the front and back sides as shown in FIG. 2 with a weft density of 33 threads/1 nch and a weft density of 33 threads/1 nch was woven. [0018] The proportion of the warp (3) occupying the surface of this fabric was about 75%. This fabric was then discharged under a water pressure of 150
kg'cIn2, speed 3 m [+1 i n, front and back 2 each
The splittable conjugate fibers were split by water flow treatment. The A component and B component of the fiber are divided and each has a thickness of 0.19
It was made of ultra-fine denier fiber. Then, with this surface side as the hot roll side, the roll temperature was set to 170°C.
Calender processing was performed under the conditions of a linear pressure of 100 kg/cm and a speed of 'D my' m I H, and the surface layer portion of the twisted warp (5) was converted into a molten resin (4) to obtain a filter cloth. [0019''] Example 3 - 50% by weight of the splittable composite fiber (1) of Example 1, a thickness of 2 denier, and a fiber length of 51 mm.
A blended yarn (cotton count 24S) with 50% by weight of polypropylene fibers was spun, and five of these blended yarns were twisted together and used for the warp and weft, and a twill fabric was woven in the same manner as in Example 2, followed by water treatment. The surface side of the cloth was thermally calendered to obtain a filter cloth. [00201 Example 4/Splitable composite fiber of Example 1 (1
) A nonwoven fabric with a basis weight of 130 g/m2 was made by pre-punching a 100% carded web, and this was overlaid on a polyester needle nonwoven fabric with a thickness of 2 denier fibers of 51 mm and a basis weight of 400 g/m2, and then needle punched. The splittable conjugate fiber nonwoven fabric side was then subjected to water jet treatment twice at a discharge water pressure of 180 kg/cm2 to split the splittable conjugate fiber, and then the splittable conjugate fiber nonwoven fabric side was thermally calendered in the same manner as above. This was done to make a filter cloth. The air permeability of this filter cloth is 5ml/cm2/see
Met. [00211 The blending ratio of the blended yarns in Comparative Example 1 and Example 3 was 20% by weight of the splittable composite fiber (1) and 80% by weight of the polypropylene fiber, and five of these blended yarns were twisted to form warps and wefts. The same twill fabric as in Example 3 was woven using the same method as in Example 3, and the same water treatment and heat calendering were performed to obtain a filter cloth. [0022] Comparative Example 2 Thickness 2 denier, length 41 mm
The fabric weight is approximately 500g/1l12 using polyester fiber.
A needle-punched nonwoven fabric was prepared and calendered at a surface roll temperature of 270°C, a linear pressure of 60 kg/cm, and a speed of 5 m/min to obtain a filter cloth. The air permeability of this filter cloth was 10 m1/cm2/see. [0023] The evaluation results were obtained when the filter cloths of Examples 1 to 3 and Comparative Example 1 were tested for wet filtration performance and wet cake removability using filter presses.

【表1】 に示す。 また上記実施例4および比較例2の濾過布を
バグフィルタ−に用いて乾式濾過性能と乾式ケーキ隔離
性のテスト行った際の評価結果を
It is shown in [Table 1]. In addition, the evaluation results of dry filtration performance and dry cake isolation tests were conducted using the filter cloths of Example 4 and Comparative Example 2 as bag filters.

【表2】 に示す。 ro 024][Table 2] Shown below. ro 024]

【表1】 [0025][Table 1] [0025]

【表2】 [0026]なお湿式濾過性能および湿式ケーキ剥離性
の評価は次のようにして行った。ダスト捕集率(%):
関東ローム第7種を用いて200■/I濃度(A)の液
を作成し、濾過布9.62cm2で濾過を行い、濾過後
の液濃度(B)を測定し、下記の式より算出した。 [0027]ダスト捕集率(%) = (A−B) X
100 /、八 (0028]濾過精度(μm)二上記で得られた濾液(
B)を超遠心式自動粒度分布装置(堀場製作所1製)で
狭雑粒子の径を測定し、その最大粒径とした。濾過速度
(1/min )  :濾過圧5kg/cm2とし、7
分間濾過液を通過させたときの総連過液量(C)を測定
し、下記の式より算出した。 [0029]濾濾過塵(1/m1n)  =C/7[0
0301ケーキ剥離性(級):カリオン(関東化学■製
)の10%水溶液を11作成し、20cm2で濾過を行
い乾燥後、剥離させ下記のように評価した。 1級:きれいに剥離する。 2級:剥離するが一部濾過布に残る。 3級:剥離できず殆どあるいは全て濾過布に残る。 [00311また乾式濾過性能および乾式ケーキ剥離性
の評価は次のようにして行った。JIS試験試験用トス
810種用し、パルス型集塵試験機でテストした。該試
験機の条件は次の通り設定した。風量2.5m2、濾過
面積0.66m、濾過速度3.8 m/min 、パル
ス間隔2分、0.1sec/111ルス、パルス圧3k
g/cm2、試験時間7hr、温度(室温)とし、加速
のためと一次付着層を形成するため、濾過布面圧力ΔP
が水柱150mmに達するまでダストを払い落とさずに
行った。 (0032]ダスト洩れ量(g):濾過布を通過したダ
ストを0.1μmまで捕集可能な濾紙で捕集した重量。 3集塵効率(%):ダスト供給機より入口ダスト濃度A
 (g/m3)を測定し、濾過布3を通過した風量と上
記タスト洩れ量により出口ダスト濃度B (v’m3)
を計算して下記の式により算出した。 [0033]集塵効率(%)=1−(B/A)X100
[0034]通気性低下度(%):上記試験前の通気度
C(mL’cm2/sec )と試験後の通気度りとを
測定し、下記式により算出した。 [00351通気性低下度(%)=1− (D/C)X
i[0036]圧力損失(水柱mm)  :上記試験で
ΔP=150mm(水柱)後の最大値。 乾式ケーキ剥離性(ダスト付着量g、m’)  :上記
試験後の濾過布の重量を測定し、試験前の濾過布の重量
を差し引いたタスト重量。 (ダスト重量が少ない程剥
離性がよい。) [0037]
[Table 2] [0026] Wet filtration performance and wet cake removability were evaluated as follows. Dust collection rate (%):
A solution with a concentration of 200 ■/I (A) was prepared using Kanto Rohm Type 7, filtered with a filter cloth of 9.62 cm2, and the concentration of the solution after filtration (B) was calculated using the following formula. . [0027] Dust collection rate (%) = (A-B) X
100/, 8 (0028) Filtration precision (μm) 2 Filtrate obtained above (
B) was measured for the diameter of narrow particles using an ultracentrifugal automatic particle size distribution device (manufactured by Horiba, Ltd. 1), and was taken as the maximum particle diameter. Filtration speed (1/min): Filtration pressure 5kg/cm2, 7
The total amount of continuous liquid (C) when the filtrate was passed for a minute was measured and calculated from the following formula. [0029] Filter filter dust (1/mln) = C/7[0
0301 Cake peelability (grade): 11 10% aqueous solutions of Karion (manufactured by Kanto Kagaku ■) were prepared, filtered through 20 cm2, dried, peeled, and evaluated as follows. Grade 1: Removes cleanly. Grade 2: Peels off, but some remains on the filter cloth. Grade 3: Cannot be peeled off and most or all of it remains on the filter cloth. [00311 In addition, dry filtration performance and dry cake peelability were evaluated as follows. Tests were conducted using 810 types of JIS test toss using a pulse type dust collection tester. The conditions of the test machine were set as follows. Air volume 2.5 m2, filtration area 0.66 m, filtration speed 3.8 m/min, pulse interval 2 minutes, 0.1 sec/111 Lus, pulse pressure 3k
g/cm2, test time 7 hr, temperature (room temperature), filter cloth surface pressure ΔP for acceleration and to form a primary adhesion layer.
The dust was not brushed off until the water column reached 150 mm. (0032) Dust leakage amount (g): Weight of dust that has passed through the filter cloth collected by a filter paper that can collect down to 0.1 μm. 3 Dust collection efficiency (%): Dust concentration A at the inlet from the dust supply machine
(g/m3), and the outlet dust concentration B (v'm3) is determined by the air volume passing through the filter cloth 3 and the above-mentioned tast leakage amount.
was calculated using the following formula. [0033] Dust collection efficiency (%) = 1-(B/A)X100
[0034] Degree of decrease in air permeability (%): The air permeability C (mL'cm2/sec) before the above test and the air permeability C after the test were measured, and calculated by the following formula. [00351 Air permeability reduction degree (%) = 1- (D/C)X
i[0036] Pressure drop (water column mm): Maximum value after ΔP=150 mm (water column) in the above test. Dry cake removability (dust adhesion amount g, m'): The dust weight is obtained by measuring the weight of the filter cloth after the above test and subtracting the weight of the filter cloth before the test. (The lower the dust weight, the better the releasability.) [0037]

【発明の効果】このように本発明の濾過布は、低融点成
分と高融点成分とからなる分割型複合繊維が分割された
0、5デニール以下の極細繊維が少なくとも汚泥あるい
はダストの供給側の面に50重量%以上存在し、その面
に熱カレンダー加工が施されて上記低融点成分が溶融樹
脂化されて、その樹脂化部分が梨地状となっているから
、濾過精度、濾過速度、ダスト捕集率等を低下させるこ
となくケーキ剥離性が良好となり、ケーキの剥離作業が
円滑となって濾過効率を向上させることができる。
Effects of the Invention As described above, the filter cloth of the present invention has ultrafine fibers of 0.5 deniers or less, which are split composite fibers composed of a low melting point component and a high melting point component, at least on the sludge or dust supply side. 50% by weight or more exists on the surface, and the surface is thermally calendered to convert the low melting point component into a molten resin, and the resinized portion has a matte finish, which improves filtration accuracy, filtration speed, and dust. The cake peeling property is improved without reducing the collection rate, etc., and the cake peeling operation becomes smooth, thereby improving the filtration efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】表面側に不織布シートを配した濾過布の経糸方
向の断面図である。
FIG. 1 is a cross-sectional view in the warp direction of a filter cloth with a nonwoven fabric sheet arranged on the front side.

【図2】織物濾過布の経糸方向の断面図である。FIG. 2 is a cross-sectional view of the woven filter cloth in the warp direction.

【図3】 (イ)図および(ロ)図は分割型複合繊維の
それぞれ拡大断面図である。
FIG. 3 (A) and (B) are enlarged cross-sectional views of the splittable composite fiber.

【符号の説明】[Explanation of symbols]

1 分割型複合繊維 2 不織布シート 3 基布 4 溶融樹脂化 10 濾過布 1 Splitable composite fiber 2 Nonwoven fabric sheet 3 Base fabric 4. Molten resin conversion 10 Filter cloth

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】低融点成分と高融点成分とからなる分割型
複合繊維が分割された0.5デニール以下の極細繊維が
少なくとも汚泥あるいはダストの供給側の面に50重量
%以上存在し、その面に熱カレンダー加工が施されて上
記低融点成分が溶融樹脂化されていることを特徴とする
濾過布。
Claim 1: At least 50% by weight of ultrafine fibers of 0.5 denier or less, which are split split composite fibers consisting of a low melting point component and a high melting point component, are present on the supply side of the sludge or dust, and 1. A filter cloth, the surface of which is thermally calendered so that the low melting point component is converted into a molten resin.
【請求項2】低融点成分と高融点成分とからなる分割型
複合繊維が分割された0.5デニール以下の極細繊維を
50重量%以上含む糸条が少なくとも表面経糸に配して
織成され、その表面に熱カレンダー加工が施されて上記
低融点成分が溶融樹脂化されていることを特徴とする濾
過布。
2. A yarn containing 50% by weight or more of ultrafine fibers of 0.5 denier or less, which are split split composite fibers consisting of a low melting point component and a high melting point component, is woven with at least the surface warp. A filter cloth, the surface of which is thermally calendered so that the low melting point component is converted into a molten resin.
【請求項3】織物基布の表面に、低融点成分と高融点成
分とからなる分割型複合繊維が分割された0.5デニー
ル以下の極細繊維を50重量%以上含む不織布が積層さ
れ、その不織布面に熱カレンダー加工が施されて上記低
融点成分が溶融樹脂化されていることを特徴とする濾過
布。
3. A nonwoven fabric containing 50% by weight or more of ultrafine fibers of 0.5 denier or less, which are split split composite fibers consisting of a low melting point component and a high melting point component, is laminated on the surface of the woven base fabric. A filter cloth characterized in that the nonwoven fabric surface is thermally calendered to convert the low melting point component into a molten resin.
JP40633090A 1990-12-05 1990-12-05 Filter cloth Pending JPH04210203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40633090A JPH04210203A (en) 1990-12-05 1990-12-05 Filter cloth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40633090A JPH04210203A (en) 1990-12-05 1990-12-05 Filter cloth

Publications (1)

Publication Number Publication Date
JPH04210203A true JPH04210203A (en) 1992-07-31

Family

ID=18515939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40633090A Pending JPH04210203A (en) 1990-12-05 1990-12-05 Filter cloth

Country Status (1)

Country Link
JP (1) JPH04210203A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192520A (en) * 1992-01-22 1993-08-03 Fujikoo:Kk Filter cloth enhanced in collection efficiency and production thereof
KR100294437B1 (en) * 1993-05-14 2001-10-24 고토 기치 Cylindrical filter and its manufacturing method
DE102010025218A1 (en) * 2010-06-23 2011-12-29 Hydac Filtertechnik Gmbh Filter material for fluids

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192520A (en) * 1992-01-22 1993-08-03 Fujikoo:Kk Filter cloth enhanced in collection efficiency and production thereof
JPH0716570B2 (en) * 1992-01-22 1995-03-01 株式会社フジコー Filter cloth with high collection efficiency and method for producing the same
KR100294437B1 (en) * 1993-05-14 2001-10-24 고토 기치 Cylindrical filter and its manufacturing method
DE102010025218A1 (en) * 2010-06-23 2011-12-29 Hydac Filtertechnik Gmbh Filter material for fluids

Similar Documents

Publication Publication Date Title
CN101674873B (en) Bag house filters and media
JP4614606B2 (en) Melt-spun polyester nonwoven fabric sheet
JP2783602B2 (en) Ultrafine composite fiber for thermal bonding and its woven or nonwoven fabric
JP5600106B2 (en) Filter cloth for dust collector
US20080268194A1 (en) Nonwoven bonding patterns producing fabrics with improved abrasion resistance and softness
JPH0219223B2 (en)
KR20060006046A (en) High strength non-woven fabric
US6797226B2 (en) Process of making microcreped wipers
CN101854818B (en) Contamination control garments
JPH1190135A (en) Pleated filter
JPH06207323A (en) Biodegradable latent-crimping conjugate filament and nonwoven fabric made of the filament
JP4083951B2 (en) Cylindrical filter
JPH04210203A (en) Filter cloth
JP3233988B2 (en) Filter cloth and method for producing the same
JP2004510895A (en) Spunbonding of fine denier fibers and products thereof
JP3326808B2 (en) filter
CN101560734A (en) Anti-bacteria anti-mite textile and production method and device thereof
JPH04194013A (en) Fiber capable of producing ultrafine fiber
JPH031047Y2 (en)
JP2001248056A (en) Composite filament nonwoven fabric and filter obtained therefrom
JP3124017B2 (en) Thermal adhesive fibers and nonwovens
JP2554259Y2 (en) Filter cloth
JPH0327662B2 (en)
JP2555514Y2 (en) Filter cloth
JPH04126815A (en) Ultra-fine fiber-forming conjugate fiber