JPH04208528A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04208528A
JPH04208528A JP40014790A JP40014790A JPH04208528A JP H04208528 A JPH04208528 A JP H04208528A JP 40014790 A JP40014790 A JP 40014790A JP 40014790 A JP40014790 A JP 40014790A JP H04208528 A JPH04208528 A JP H04208528A
Authority
JP
Japan
Prior art keywords
silicon
germanium
etching
crystal layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40014790A
Other languages
Japanese (ja)
Inventor
Tetsumasa Okamoto
岡本 哲昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP40014790A priority Critical patent/JPH04208528A/en
Publication of JPH04208528A publication Critical patent/JPH04208528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Weting (AREA)

Abstract

PURPOSE:To prevent electrical instability due to the re-adhesion of organic matter onto the sidewall of a trench by etching a silicon-germanium mixed layer by utilizing the etching rate ratio of a silicon substrate and the silicon- germanium mixed layer. CONSTITUTION:The upper section of a silicon substrate 10 is coated with a photo-resist film 1, and a germanium implanting layer 3 is formed. The photo- resist film 1 is removed, and a silicon-germanium mixed crystal layer 4 is shaped through heat treatment by lamp annealing or furnace annealing. Lastly, fine trenches 5 having excellent shape accuracy at a high aspect ratio are formed by selectively etching the silicon-germanium mixed crystal layer 4 through a dry etching method, etc., by the mixed gas or CF4 and O2. Accordingly, electrical instability due to the re-adhesion of organic matter onto the sidewall of the trench can be prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は半導体装置の製造方法に
関し、特に表面の平坦化及び溝の形成方法に関する。 [0002] 【従来の技術】従来、半導体装置の製造工程において、
半導体基板への溝の形成方法としては、感光性有機膜。 シリコン酸化膜あるいはシリコン窒化膜をマスクとする
プラズマを用いたドライエツチング法、特にアスペクト
比の良い反応性イオンエツチング(RI E)法が主に
用いられている。 [0003]また、凹凸表面の平坦化法としては、エツ
チングレートが等しい膜を形成後エツチングを行うエッ
チバック法や、ポリイミドあるいはシラノール等による
塗布膜形成による平坦化法が主に用いられている。 [0004]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for flattening a surface and forming a groove. [0002] Conventionally, in the manufacturing process of semiconductor devices,
A photosensitive organic film is used as a method for forming grooves in a semiconductor substrate. A dry etching method using plasma using a silicon oxide film or a silicon nitride film as a mask, particularly a reactive ion etching (RIE) method with a good aspect ratio, is mainly used. [0003] Also, as a method for flattening an uneven surface, an etch-back method in which a film with an equal etching rate is formed and then etched, and a flattening method by forming a coating film of polyimide, silanol, etc. are mainly used. [0004]

【発明が解決しようとする課題】上述した従来の半導体
装置の製造工程における半導体基板のエツチング方法で
は、反応ガスをグロー放電によりプラズマ状態とし、プ
ラズマ中のイオンが基板にイオン衝撃を与え、励起した
フッ素及び塩素イオンと化学反応を起こりやすくして除
去しているため、被エツチング部のマスクとしてフォト
レジストなどを使用した場合、これがイオン衝撃により
分解し、側壁に再付着する。この付着物により形成する
溝の形状が悪くなったり、その除去の難しさのため、付
着物が残留してしまい、容量等における電気的不安定性
の原因となる。加えて、装置内壁材料のスパッタによる
半導体基板の汚染も発生する。 [0005]また、基板結晶面によりエツチングレート
に差が生じ、 (100)、  (110)、  (1
11)面の順に溝形成の精度が悪くなる。加えて、不純
物含有量が1020個/Cm3程度からエツチング速度
が増加し、反応性イオンエツチングにおいても、マスク
下にアンダーカットが生じやすく、形状精度が悪くなる
。 [00061更に、基板表面の平坦化の場合も同様に、
ウェハの大口径化に伴い、プラズマ密度やガス流の影響
のため、ウェハ面内やバッチ内の均一なエツチングはよ
り難しくなる。 [0007]
[Problems to be Solved by the Invention] In the conventional method of etching a semiconductor substrate in the manufacturing process of a semiconductor device as described above, a reaction gas is brought into a plasma state by glow discharge, and ions in the plasma impact the substrate and become excited. Since it is removed by easily causing a chemical reaction with fluorine and chlorine ions, if a photoresist or the like is used as a mask for the area to be etched, it will be decomposed by ion bombardment and re-attached to the side wall. This deposit may deteriorate the shape of the groove formed, or because it is difficult to remove, the deposit may remain, causing electrical instability in capacitance and the like. In addition, contamination of the semiconductor substrate occurs due to sputtering of the material on the inner wall of the device. [0005] Also, there are differences in the etching rate depending on the crystal plane of the substrate, (100), (110), (1
11) The accuracy of groove formation deteriorates in the order of surfaces. In addition, the etching rate increases when the impurity content is around 1020/Cm3, and even in reactive ion etching, undercuts are likely to occur under the mask, resulting in poor shape accuracy. [00061 Furthermore, in the case of flattening the substrate surface, similarly,
As wafer diameters increase, uniform etching within the wafer surface and batch becomes more difficult due to the effects of plasma density and gas flow. [0007]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、シリコン基板に選択的にゲルマニウムをイオ
ン注入したのち熱処理しシリコン・ゲルマニウム混晶層
を形成する工程と、シリコン基板とシリコン・ゲルマニ
ラム混晶層とのエツチングレート比を利用し前記シリコ
ン・ゲルマニウム混晶層をエツチングする工程とを含ん
で構成される。 [0008]混晶層を形成するための元素としては、ゲ
ルマニウムの他に高融点金属等も考えられるが、エツチ
ングレート比が低く、しかも後工程の熱処理によるシリ
コン基板への汚染が生ずるため適当ではない。 [0009]
[Means for Solving the Problems] A method for manufacturing a semiconductor device according to the present invention includes the steps of selectively implanting germanium ions into a silicon substrate and then performing heat treatment to form a silicon-germanium mixed crystal layer; The method includes a step of etching the silicon-germanium mixed crystal layer using an etching rate ratio with respect to the germanium mixed crystal layer. [0008] In addition to germanium, high-melting point metals can be considered as elements for forming the mixed crystal layer, but these are not suitable because the etching rate ratio is low and the silicon substrate is contaminated by heat treatment in the post-process. do not have. [0009]

【実施例】次に本発明について図面を参照して説明する
。図1(a)〜(d)は本発明の第1の実施例を説明す
るための工程順に示した半導体チップの断面図であり、
本発明を溝形成に適用した場合である。 [0010]まず図1(a)に示すように、シリコン基
板10上にフォトレジスト膜1を塗布する。続いてフォ
トリソグラフィ技術によってフォトレジスト膜1をパタ
ニングする。次に図1(b)に示すように、加速電圧が
可変なイオン注入装置を用い、数keVのから数十Me
Vの範囲で可変しながら、ゲルマニウムを高濃度(2,
5x 10” cm−3程度)にイオン注入しゲルマニ
ウム注入層3を形成する。 [0011]次いで図1 (C)に示すように、フォト
レジスト膜1を除去した後、ランプアニールあるいは炉
アニールにより数百℃以上で熱処理することによって、
シリコン・ゲルマニウムの混晶層4を形成する。最後に
CF4  と02の混合ガスによるドライエツチング法
、あるいは、100℃程度のアンモニア水・過酸化水素
混合液によるウェットエツチング法により、選択的にシ
リコン・ゲルマニウム混晶層4をエツチングすることに
よって、高アスペクト比の形状精度の良い微細な溝5を
形成する。CF4  +02 ガスを用いた場合のシリ
コン・ゲルマニウム混晶層4のエツチングレートはシリ
コン基板の約4倍またアンモニア水・過酸化水素混合液
では約20倍であり、溝5の形成を精度良く行うことが
できる。 (00121図2(a)〜(d)は本発明の第2の実施
例を説明するための半導体チップの断面図であり、本発
明を基板の平坦化に適用した場合である。 [0013]まず図2(a)に示すように、凸部6のあ
るシリコン基板10上にポリイミドやシラノール等によ
る塗布膜7を形成し表面を平坦化する。次に図2(b)
に示すように塗布膜7を通して、ゲルマニウムを高濃度
にイオン注入し、凸部6をゲルマニウム注入層3Aとす
る。 [0014]次に、図2(C)に示すように、塗布膜7
を除去後、ランプアニールあるいは炉アニールにより数
百℃以上で、熱処理することによって、凸部をシリコン
・ゲルマニウム混晶層4Aとする。次に図2(d)に示
すように、CF 4 と02の混合ガスによるドライエ
ツチング法、あるいは、100℃程度のアンモニア水・
過酸化水素液によるウェットエツチング法により選択的
にシリコン・ゲルマニウム混晶層4Aをエツチングする
ことにより、表面に凹凸のない均一性のよい平坦なシリ
コン基板を形成できる。 [0015]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings. FIGS. 1(a) to 1(d) are cross-sectional views of a semiconductor chip shown in order of steps for explaining the first embodiment of the present invention,
This is a case where the present invention is applied to groove formation. [0010] First, as shown in FIG. 1(a), a photoresist film 1 is coated on a silicon substrate 10. Subsequently, the photoresist film 1 is patterned by photolithography. Next, as shown in Fig. 1(b), an ion implanter with variable acceleration voltage is used to implant the ions from several keV to several tens of Me.
While varying the range of V, germanium was added at a high concentration (2,
5x 10" cm-3) to form a germanium implantation layer 3. [0011] Next, as shown in FIG. By heat treatment at over 100℃,
A silicon-germanium mixed crystal layer 4 is formed. Finally, the silicon-germanium mixed crystal layer 4 is selectively etched using a dry etching method using a mixed gas of CF4 and 02, or a wet etching method using a mixed solution of ammonia water and hydrogen peroxide at about 100°C. To form a fine groove 5 with a good aspect ratio shape accuracy. The etching rate of the silicon-germanium mixed crystal layer 4 when using CF4 +02 gas is about 4 times that of the silicon substrate, and about 20 times when using an ammonia water/hydrogen peroxide mixture, so that the grooves 5 can be formed with high precision. I can do it. (00121 FIGS. 2(a) to 2(d) are cross-sectional views of a semiconductor chip for explaining a second embodiment of the present invention, in which the present invention is applied to planarization of a substrate. [0013] First, as shown in FIG. 2(a), a coating film 7 of polyimide, silanol, etc. is formed on the silicon substrate 10 having the convex portion 6 to flatten the surface.Next, as shown in FIG. 2(b)
As shown in FIG. 2, germanium is ion-implanted at a high concentration through the coating film 7 to form the convex portion 6 as a germanium-implanted layer 3A. [0014] Next, as shown in FIG. 2(C), the coating film 7
After removing, the convex portion is converted into a silicon-germanium mixed crystal layer 4A by heat treatment at several hundred degrees centigrade or higher by lamp annealing or furnace annealing. Next, as shown in Figure 2(d), a dry etching method using a mixed gas of CF 4 and 02, or an ammonia water etching method at about 100°C is performed.
By selectively etching the silicon-germanium mixed crystal layer 4A using a wet etching method using a hydrogen peroxide solution, a flat silicon substrate with good uniformity and no irregularities can be formed on the surface. [0015]

【発明の効果】以上説明したように本発明は、イオン注
入法により高濃度のゲルマニウムをシリコン基板に選択
的に導入し、シリコン・ゲルマニウム混晶層を形成した
のち、この混晶層をエツチングして表面の平坦化や溝の
形成を行うことができる。このため、反応性イオンエツ
チングによる溝側壁への有機物の再付着に起因する電気
的不安定性の恐れがなくなり、VLSI対応の微細な高
アスペクト比を有する形状精度の良い溝の形成や、シリ
コン基板の平坦化を行うことができる。加えて、溝形成
にイオン注入を用いるため、ウェハ面内およびバッチ内
の溝形成の均一性にすぐれ、半導体基板の面方位及び不
純物ドーズ量に無関係に形状精度の良い溝を形成するこ
とができるという効果もある。
[Effects of the Invention] As explained above, the present invention selectively introduces germanium at a high concentration into a silicon substrate by ion implantation to form a silicon-germanium mixed crystal layer, and then etches this mixed crystal layer. The surface can be flattened and grooves can be formed using the same method. Therefore, there is no fear of electrical instability caused by re-deposition of organic matter on the groove sidewalls due to reactive ion etching, and it is possible to form fine grooves with a high aspect ratio and good shape accuracy for VLSI, and to form grooves on silicon substrates. Flattening can be performed. In addition, since ion implantation is used for groove formation, the groove formation is highly uniform both within the wafer and within the batch, and grooves with excellent shape accuracy can be formed regardless of the surface orientation of the semiconductor substrate or the dose of impurities. There is also this effect.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例を説明するための半導体
チップの断面図である。
FIG. 1 is a cross-sectional view of a semiconductor chip for explaining a first embodiment of the present invention.

【図2】本発明の第2の実施例を説明するための半導体
チップの断面図である。
FIG. 2 is a cross-sectional view of a semiconductor chip for explaining a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  フォトレジスト膜 2   Ge” 3.3A  ゲルマニウム注入層 4.4A  シリコン・ゲルマニウム混晶層5溝 6  凸部 7  塗布膜 10  シリコン基板 1 Photoresist film 2  Ge” 3.3A germanium injection layer 4.4A Silicon/germanium mixed crystal layer 5 grooves 6 Convex part 7 Coating film 10 Silicon substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シリコン基板に選択的にゲルマニウムをイ
オン注入したのち熱処理しシリコン・ゲルマニウム混合
層を形成する工程と、シリコン基板とシリコン・ゲルマ
ニウム混合層とのエッチングレート比を利用し前記シリ
コン・ゲルマニウム混合層をエッチングする工程とを含
むことを特徴とする半導体装置の製造方法。
1. A step of selectively implanting germanium ions into a silicon substrate and then performing heat treatment to form a silicon-germanium mixed layer, and utilizing an etching rate ratio between the silicon substrate and the silicon-germanium mixed layer. A method for manufacturing a semiconductor device, comprising the step of etching a mixed layer.
JP40014790A 1990-12-03 1990-12-03 Manufacture of semiconductor device Pending JPH04208528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40014790A JPH04208528A (en) 1990-12-03 1990-12-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40014790A JPH04208528A (en) 1990-12-03 1990-12-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04208528A true JPH04208528A (en) 1992-07-30

Family

ID=18510063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40014790A Pending JPH04208528A (en) 1990-12-03 1990-12-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04208528A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252075A (en) * 1993-02-23 1994-09-09 American Teleph & Telegr Co <Att> Method for manufacturing mos device by performing diffusion of boron
EP0862207A1 (en) * 1997-02-27 1998-09-02 Siemens Aktiengesellschaft Method of forming a DRAM trench capacitor
WO2001011668A1 (en) * 1999-08-06 2001-02-15 Hitachi, Ltd. Method of manufacturing semiconductor device
WO2007036449A1 (en) * 2005-09-30 2007-04-05 Robert Bosch Gmbh Method for accelerating etching of silicon
JP2008508704A (en) * 2004-07-29 2008-03-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for etching a layer on a substrate
US7709333B2 (en) * 2005-08-03 2010-05-04 International Business Machines Corporation Method for reducing overlap capacitance in field effect transistors

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252075A (en) * 1993-02-23 1994-09-09 American Teleph & Telegr Co <Att> Method for manufacturing mos device by performing diffusion of boron
EP0862207A1 (en) * 1997-02-27 1998-09-02 Siemens Aktiengesellschaft Method of forming a DRAM trench capacitor
WO2001011668A1 (en) * 1999-08-06 2001-02-15 Hitachi, Ltd. Method of manufacturing semiconductor device
JP2008508704A (en) * 2004-07-29 2008-03-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for etching a layer on a substrate
JP4686544B2 (en) * 2004-07-29 2011-05-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for etching a layer on a substrate
US8182707B2 (en) 2004-07-29 2012-05-22 Robert Bosch Gmbh Method for etching a layer on a substrate
US7709333B2 (en) * 2005-08-03 2010-05-04 International Business Machines Corporation Method for reducing overlap capacitance in field effect transistors
US7824989B2 (en) * 2005-08-03 2010-11-02 International Business Machines Corporation Method for reducing overlap capacitance in field effect transistors
WO2007036449A1 (en) * 2005-09-30 2007-04-05 Robert Bosch Gmbh Method for accelerating etching of silicon
DE102005047081B4 (en) 2005-09-30 2019-01-31 Robert Bosch Gmbh Process for the plasma-free etching of silicon with the etching gas ClF3 or XeF2

Similar Documents

Publication Publication Date Title
US9570317B2 (en) Microelectronic method for etching a layer
US8093155B2 (en) Method of controlling striations and CD loss in contact oxide etch
JPH08306672A (en) Method of forming perpendicular sidewall
TW200428658A (en) Method for fabricating a gate structure of a field effect transistor
JP3248072B2 (en) Oxide film etching method
JPH0629311A (en) Manufacture of semiconductor device
EP1157411A1 (en) Method for a consistent shallow trench etch profile
US6027959A (en) Methods for in-situ removal of an anti-reflective coating during a nitride resistor protect etching process
US6066567A (en) Methods for in-situ removal of an anti-reflective coating during an oxide resistor protect etching process
JPH04208528A (en) Manufacture of semiconductor device
US6709976B1 (en) Method for improving reliability in trench structures
KR100549204B1 (en) Method for anisotropically etching silicon
US6673695B1 (en) STI scheme to prevent fox recess during pre-CMP HF dip
JP4282391B2 (en) Manufacturing method of semiconductor device
US6828237B1 (en) Sidewall polymer deposition method for forming a patterned microelectronic layer
CN106206284B (en) Improved etching process
KR100267396B1 (en) Gate polysilicon etch method for forming gate electrode of semiconuctor devices
JPH025525A (en) Etching of semiconductor substrate
JPS6258663A (en) Manufacture of semiconductor device
KR100348313B1 (en) Method for fabricating semiconductor device
JPH03241740A (en) Manufacture of semiconductor device
JP3550276B2 (en) Method for manufacturing semiconductor device
CN117936375A (en) Silicon carbide etching method and silicon carbide structure
JPH0220021A (en) Manufacture of semiconductor device
JPH0629263A (en) Manufacture of semiconductor device