JPH04208237A - Production of nucleus-substituted chlorinated toluene - Google Patents

Production of nucleus-substituted chlorinated toluene

Info

Publication number
JPH04208237A
JPH04208237A JP2334979A JP33497990A JPH04208237A JP H04208237 A JPH04208237 A JP H04208237A JP 2334979 A JP2334979 A JP 2334979A JP 33497990 A JP33497990 A JP 33497990A JP H04208237 A JPH04208237 A JP H04208237A
Authority
JP
Japan
Prior art keywords
catalyst
magnesia
toluene
mct
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2334979A
Other languages
Japanese (ja)
Inventor
Kanemasa Takashima
兼正 高島
Teruo Yoshida
吉田 照雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2334979A priority Critical patent/JPH04208237A/en
Publication of JPH04208237A publication Critical patent/JPH04208237A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce the subject compound useful as raw materials for medicines and agricultural chemicals in a high yield in an extremely simple post-treatment operation by chlorinating toluene or monochlorotoluene in liquid phase in the presence of magnesia as a catalyst. CONSTITUTION:Toluene(TOL) or monochlorotoluene(MCT) is chlorinated in liquid phase in the presence of magnesia to produce the subject compound. The magnesia is preferably light calcined magnesia produced by calcining MgCO3 or Mg(OH)2 or heating metallic magnesium in the air. Chlorine is fed into the reaction system at a rate of 0.01-0.1mol/g-cat.hr. TOL or MCT is preferably fed at a rate of 0.05-1mol per 1.0g of the magnesia for batchwise system and at a rate of 0.01 to 0.1mol/g-cat.hr for continuous system. Since the catalyst is not dissolved in the reaction product, the post treatment of the catalyst is simplified.

Description

【発明の詳細な説明】 イ)発明の目的 〔産業上の利用分野〕 本発明は、トルエン(以下、T、OLと省略)および/
またはモノクロロトルエン(以下、MCTと省略)を塩
素化し、核置換塩素化トルエンを製造する方法に関する
ものである。
Detailed Description of the Invention A) Purpose of the Invention [Industrial Application Field] The present invention provides toluene (hereinafter abbreviated as T and OL) and/or
Alternatively, the present invention relates to a method for producing nuclear-substituted chlorinated toluene by chlorinating monochlorotoluene (hereinafter abbreviated as MCT).

核置換塩素化トルエンは工業的に重要な化合物であり、
医薬、農薬の原料として用いられている。
Nuclear-substituted chlorinated toluene is an industrially important compound;
It is used as a raw material for medicines and agricultural chemicals.

特にMC,Tあるいはジクロロトルエン(以下、DC,
Tと省略)は有用であり、MCTには、オルソクロロト
ルエン、メタクロロトルエン、パラクロロトルエンの3
種の異性体か、DCTには、2゜3−ジクロロトルエン
、2,4−ジクロロトルエン、2,5−ジクロロ・トル
エン、2,6−ジクロロトルエン、3,4−ジクロロト
ルエン、3,5−ジクロロトルエンの6種の異性体が存
在する。
In particular, MC, T or dichlorotoluene (hereinafter referred to as DC,
(abbreviated as T) is useful, and MCTs include orthochlorotoluene, metachlorotoluene, and parachlorotoluene.
Species isomers, DCT include 2゜3-dichlorotoluene, 2,4-dichlorotoluene, 2,5-dichlorotoluene, 2,6-dichlorotoluene, 3,4-dichlorotoluene, 3,5-dichlorotoluene, There are six isomers of dichlorotoluene.

〔従来の技術〕[Conventional technology]

従来、核置換塩素化トルエンは、塩化第二鉄等のフリー
デルクラフト型触媒を用い、TOLを塩素化して製造し
ている。・ 一般に、塩化第二鉄を触媒、とする反応では、トリクロ
ロトルエン等の高次核置換塩素化トルエンの副生が多く
、工業的に有用であるMCT、DCTの収率の低下の原
因となっている。また、この触媒は反応生成物に均一に
溶解するため、反応生成物から触媒を除去するための水
洗工程、水洗後の反応生成物の脱水工程か必要であり、
更に水洗工程において触媒か水和物となるため、触媒の
再利用か不可能となる等の問題かあり、操作か複雑で1
.経済的に不利であった。
Conventionally, nuclear-substituted chlorinated toluene has been produced by chlorinating TOL using a Friedel-Crafts type catalyst such as ferric chloride. - In general, reactions using ferric chloride as a catalyst produce many by-products of highly substituted chlorinated toluenes such as trichlorotoluene, which causes a decrease in the yield of MCT and DCT, which are industrially useful. ing. In addition, since this catalyst is uniformly dissolved in the reaction product, a water washing step is required to remove the catalyst from the reaction product, and a dehydration step for the reaction product after water washing is necessary.
Furthermore, since the catalyst becomes a hydrate in the water washing process, there are problems such as the reuse of the catalyst becomes impossible, and the operation is complicated.
.. It was economically disadvantageous.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

本発明者らは、高次核置換塩素化トルエンの生成を抑制
し、M(:T、n)CTの収率を実質的に高め、更に触
媒が反応生成物に溶解せず、目的物の取得が効率的で経
済的な核置換塩素化トルエンの製造方法について鋭意研
究した結果、本発明を完成した。
The present inventors suppressed the production of highly substituted chlorinated toluene, substantially increased the yield of M(:T,n)CT, and furthermore, the catalyst was not dissolved in the reaction product and the target product was obtained. The present invention was completed as a result of intensive research into a method for producing nuclear-substituted chlorinated toluene that is efficient and economical to obtain.

口)発明の構成 〔課題を解決するための手段〕 本発明はTOLおよび/またはMCTを塩素化して核置
換塩素化トルエンを製造するに際し、触媒としてマグネ
シアを用い、液相て塩素化することを特徴とする核置換
塩素化トルエンの製造方法である。
(1) Structure of the invention [Means for solving the problem] The present invention involves using magnesia as a catalyst and chlorinating in the liquid phase when producing nuclear-substituted chlorinated toluene by chlorinating TOL and/or MCT. This is a characteristic method for producing nuclear-substituted chlorinated toluene.

本発明において、触媒として使用するマグネシアは、軽
焼マグネシアか好適であり、炭酸マグネシウム、水酸化
マグネシウムを力焼己て製造したもの、金属マグネシウ
ムを空気中で加熱し製造したもの等を用いればよい。
In the present invention, the magnesia used as a catalyst is preferably lightly calcined magnesia, and those produced by force-burning magnesium carbonate or magnesium hydroxide, those produced by heating metallic magnesium in air, etc. may be used. .

触媒の形状は反応の方式によって任意に選択することか
でき、粉末状、顆粒状、球状、筒状、環状等の形状の触
媒が使用可能である。マグネシアの形状及び大きさは反
応結果に本質的な影響を余り与えない。
The shape of the catalyst can be arbitrarily selected depending on the reaction method, and catalysts in powder, granule, spherical, cylindrical, annular, etc. shapes can be used. The shape and size of magnesia have little essential influence on the reaction results.

本発明の反応は液相反応であり、回分式および連続式の
いずれの方法でも行うことか中米る。回分式では、例え
ば、触媒をTOLまたはMCTに懸濁させ、塩素ガスを
供給することにより実施できる。連続式反応は、例えば
、触媒を充填した反応塔にTOLまたはMCTおよび塩
素を流通させることにより実施できる。塩素は窒素等の
不活性ガスで希釈して用いてもよい。
The reaction of the present invention is a liquid phase reaction and can be carried out either batchwise or continuously. The batch method can be carried out, for example, by suspending the catalyst in TOL or MCT and supplying chlorine gas. The continuous reaction can be carried out, for example, by flowing TOL or MCT and chlorine through a reaction tower packed with a catalyst. Chlorine may be used after being diluted with an inert gas such as nitrogen.

塩素の反応系への供給割合は、反応温度、TO′Lまた
はMCTと触媒の比率なとによって最適範囲か決定され
るか、0. 001〜’Imol ’/g−cat’h
rか好ましく、更に好ましい割合は、001〜0. 1
mol 7g−cat−hrである。0001 mol
 / g−cat  −hr未満ては、塩素転化率は1
00%となるか、工業的見地からすると非能率的であり
、所要の生産量を得ようとすれば、装置が大型となるの
で好ましいとはいえない。又、1mol 7g−cat
  −hrを超えると、未反応塩素が増加し、廃液処理
費用も嵩み、経済的とはいえない。
The rate of supply of chlorine to the reaction system is determined by the reaction temperature, TO'L, or the ratio of MCT to catalyst, or is within an optimal range. 001~'Imol'/g-cat'h
r is preferable, and the more preferable ratio is 001 to 0. 1
mol 7g-cat-hr. 0001 mol
/ g-cat -hr, the chlorine conversion rate is 1
00%, which is inefficient from an industrial standpoint and requires a large-sized device to obtain the required production volume, which is not desirable. Also, 1mol 7g-cat
If it exceeds -hr, unreacted chlorine increases and waste liquid treatment costs also increase, making it uneconomical.

原料であるTOLまたはMCTの反応系への供給量は、
回分式の場合はマグネシア1.Ogr当り、0.05〜
l Omol’、が好ましく、更に好ましい上限値は1
molである。o、osmot未満では、使用触媒量に
比較して原料供給量が少ないため非能率的であり、10
molを超えると、触媒の負荷か大きくなり、十分な塩
素転化率が得られない。連続式による場合のTC)Lま
たはMC’Tの供給量は、好ましくは0. 0”OL〜
1mol 7g −cat −hr、更に好ましくは0
. 01〜0.1mol 7g −cat・hrである
。0. 001’mol / g −cat  ’hr
未満では、回分式同様、非能率的であり、Imol/g
−cat  −hrを超えると、触媒の負荷が大きくな
り、十分な塩素転化率が得られない。
The amount of raw material TOL or MCT supplied to the reaction system is
For batch type, magnesia 1. Per Ogr, 0.05 ~
l Omol', is preferable, and the more preferable upper limit is 1
It is mol. If it is less than 10 osmot, it is inefficient because the amount of raw material supplied is small compared to the amount of catalyst used.
If it exceeds mol, the load on the catalyst becomes large and a sufficient chlorine conversion rate cannot be obtained. In the continuous system, the supply amount of TC)L or MC'T is preferably 0. 0"OL~
1mol 7g-cat-hr, more preferably 0
.. 01-0.1 mol 7g-cat·hr. 0. 001'mol/g-cat'hr
If it is less than Imol/g, it is inefficient like the batch method, and
If -cat -hr is exceeded, the load on the catalyst becomes large and a sufficient chlorine conversion rate cannot be obtained.

本発明における塩素の、TOLまたはM’CTに対する
供給割合は、対象目的物によって適宜選択すればよいが
、例えばTOLを出発原料としてMCTまたはDCTを
製造する場合は、TOL 1molに対し化学量論量の
60〜80mo1%程度とすればよく、M’CTを出発
原料としてDCTを製造する場合は、MCTlmolに
対し化学量論量の40〜70mo1%程度とすればよい
In the present invention, the supply ratio of chlorine to TOL or M'CT may be appropriately selected depending on the target object, but for example, when producing MCT or DCT using TOL as a starting material, The amount may be about 60 to 80 mo1% of the stoichiometric amount, and when producing DCT using M'CT as a starting material, the amount may be about 40 to 70 mo1% of the stoichiometric amount with respect to 1 mol of MCT.

反応温度は、TOLまたはMCT反応液の融点から沸点
までであるが、20°C〜80℃が好ましい。20°C
未満で塩素化を続けると反応液が凝固する恐れかあり、
十分な塩素転化率が得られず、80°Cを超えると塩化
ベンジル等の側鎖塩化物が副生じ易くなり、核置換塩素
化トルエンの選択率の低下につながり、好ましくない。
The reaction temperature is from the melting point to the boiling point of the TOL or MCT reaction solution, preferably 20°C to 80°C. 20°C
If chlorination is continued at a temperature lower than that, the reaction solution may solidify.
If a sufficient chlorine conversion rate is not obtained and the temperature exceeds 80°C, side chain chlorides such as benzyl chloride are likely to be produced as by-products, leading to a decrease in the selectivity of nuclear-substituted chlorinated toluene, which is not preferable.

本発明反応においては、触媒が反応液に溶解しない不均
一系で進行するため、通常の固液分離手段で触媒を分離
することができ、また反応生成物は溶解塩素、塩化水素
を含有するのみであり、ストリップ等の操作により反応
生成物から塩素、塩化水素の除去を行えば良く、従来、
実施されていた触媒分離のための水洗等の手段を特に必
要とせず、分離精製手段としては分留及び晶析あるい□
は吸着分離等を用いればよい。
Since the reaction of the present invention proceeds in a heterogeneous system in which the catalyst does not dissolve in the reaction liquid, the catalyst can be separated by ordinary solid-liquid separation means, and the reaction product only contains dissolved chlorine and hydrogen chloride. Therefore, chlorine and hydrogen chloride can be removed from the reaction product by stripping or other operations.
There is no special need for water washing or other means for catalyst separation, which was previously used, and fractional distillation, crystallization, or □
For this purpose, adsorption separation or the like may be used.

〔実施例および比較例〕[Examples and comparative examples]

以下、実施例および比較例にもとついて本発明を具体的
に説明する。
Hereinafter, the present invention will be specifically explained based on Examples and Comparative Examples.

実施例1〜2、比較例1 冷却管、温度計、撹拌器、ガス吹き込み管を備えたフラ
スコに第−表記載の原料(2,0mol )および触媒
(10,0g)を仕込み、50°Cに昇温した。続いて
塩素ガスを0 、 5 mol/hrの速度て6時間ま
たは2時間導入し、未反応塩素量を分析した。反応後、
得られた反応混合物をガスクロマトグラフにて分析した
。その結果を第−表に示す。
Examples 1 to 2, Comparative Example 1 A flask equipped with a cooling tube, a thermometer, a stirrer, and a gas blowing tube was charged with the raw materials (2.0 mol) and catalyst (10.0 g) listed in Table 1, and heated at 50°C. The temperature rose to . Subsequently, chlorine gas was introduced at a rate of 0.5 mol/hr for 6 or 2 hours, and the amount of unreacted chlorine was analyzed. After the reaction,
The resulting reaction mixture was analyzed using a gas chromatograph. The results are shown in Table 1.

塩素転化率は次式で定義される値である。The chlorine conversion rate is a value defined by the following formula.

□以下余白□ ハ)発明の効果 本発明によれば、高次核置換塩素化物の生成か極めて少
ないので、有用な核置換塩素化トルエンであるMCTお
よびDCTの収率か実質的に高く、更に触媒が反応生成
物に溶解せず、反応生成物の後処理操作が極めて簡単で
あり、本発明は工業的に非常に有利な核置換塩素化トル
エンの製造方法である。
□ Space below □ C) Effects of the invention According to the present invention, since the production of higher-order nuclear-substituted chlorides is extremely small, the yields of MCT and DCT, which are useful nuclear-substituted chlorinated toluenes, are substantially high; The catalyst does not dissolve in the reaction product, and the post-treatment of the reaction product is extremely simple, so the present invention is an industrially very advantageous method for producing nuclear-substituted chlorinated toluene.

Claims (1)

【特許請求の範囲】[Claims] 1、トルエンおよび/またはモノクロロトルエンを塩素
化し、核置換塩素化トルエンを製造するに際し、触媒と
してマグネシアを用い、液相で塩素化することを特徴と
する核置換塩素化トルエンの製造方法。
1. A method for producing nuclear-substituted chlorinated toluene, which comprises using magnesia as a catalyst to chlorinate toluene and/or monochlorotoluene to produce nuclear-substituted chlorinated toluene in a liquid phase.
JP2334979A 1990-11-30 1990-11-30 Production of nucleus-substituted chlorinated toluene Pending JPH04208237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2334979A JPH04208237A (en) 1990-11-30 1990-11-30 Production of nucleus-substituted chlorinated toluene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2334979A JPH04208237A (en) 1990-11-30 1990-11-30 Production of nucleus-substituted chlorinated toluene

Publications (1)

Publication Number Publication Date
JPH04208237A true JPH04208237A (en) 1992-07-29

Family

ID=18283368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2334979A Pending JPH04208237A (en) 1990-11-30 1990-11-30 Production of nucleus-substituted chlorinated toluene

Country Status (1)

Country Link
JP (1) JPH04208237A (en)

Similar Documents

Publication Publication Date Title
US3932542A (en) Process for preparation of 2,5-dibromo-p-xylene
US5171899A (en) Process for production of 1,1,1-trifluoro-2,2-dichloroethane
EP0346612A1 (en) Process for production of 1,1,1-trifluoro-2,2-dichloroethane
US20040054245A1 (en) Method of hydrodechlorinating nuclear-chlorinated ortho-xylenes
US1934675A (en) Method of preparing tetrachlorobenzene
JPS6212212B2 (en)
JP4500167B2 (en) Preparation of benzophenone
US4778933A (en) Process for making decabromodiphenyl oxide
US5003117A (en) Process for decabromodiphenyl methane
JPH04208237A (en) Production of nucleus-substituted chlorinated toluene
JP2738152B2 (en) Method for producing nuclear-substituted chlorinated toluene
JP5858836B2 (en) Process for producing polychloropropane
US4089909A (en) Separation of dichlorobenzene isomers
JPH0193550A (en) Production of dichlorobenzene
JP2518095B2 (en) Method for producing dichlorobenzene
US6271417B1 (en) Process for producing 3-bromobenzoyl halides
JP4432390B2 (en) Method for producing chlorobenzene
US5599981A (en) Process for producing alkylbenzoyl chloride
JP4731062B2 (en) Method for chlorinating alkyl aromatic hydrocarbons
JP2002179600A (en) Method for producing high-purity 3-chloro-1-propanol
JPH0238572B2 (en)
JP3248561B2 (en) Method for producing high-purity orthoformylbenzoic acid
JP4271278B2 (en) Method for chlorinating cycloalkenes
US3356733A (en) Process for production of bis (trichloroacetyl)-benzene isomers and their mixtures
JPH04273845A (en) Production of high-purity 2-chloroterephthaloyl chloride