JP2738152B2 - Method for producing nuclear-substituted chlorinated toluene - Google Patents

Method for producing nuclear-substituted chlorinated toluene

Info

Publication number
JP2738152B2
JP2738152B2 JP2334980A JP33498090A JP2738152B2 JP 2738152 B2 JP2738152 B2 JP 2738152B2 JP 2334980 A JP2334980 A JP 2334980A JP 33498090 A JP33498090 A JP 33498090A JP 2738152 B2 JP2738152 B2 JP 2738152B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
mct
mol
toluene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2334980A
Other languages
Japanese (ja)
Other versions
JPH04208238A (en
Inventor
兼正 高島
照雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2334980A priority Critical patent/JP2738152B2/en
Publication of JPH04208238A publication Critical patent/JPH04208238A/en
Application granted granted Critical
Publication of JP2738152B2 publication Critical patent/JP2738152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 イ)発明の目的 〔産業上の利用分野〕 本発明は、トルエン(以下、TOLと省略)および/ま
たはモノクロロトルエン(以下、MCTと省略)を塩素化
し、核置換塩素化トルエンを製造する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION a) Object of the Invention [Industrial Application Field] The present invention relates to a method for chlorinating toluene (hereinafter abbreviated as TOL) and / or monochlorotoluene (hereinafter abbreviated as MCT) to obtain a nucleus-substituted chlorine. The present invention relates to a method for producing fluorinated toluene.

核置換塩素化トルエンは工業的に重要な化合物であ
り、医薬、農薬の原料として用いられている。特にMCT
あるいはジクロロトルエン(以下、DCTと省略)は有用
であり、MCTには、オルソクロロトルエン、メタクロロ
トルエン、パラクロロトルエンの3種の異性体が、DCT
には、2,3−ジクロロトルエン2,4−ジクロロトルエン、
2,5−ジクロロトルエン、2,6−ジクロロトルエン、3,4
−ジクロロトルエン、3,5−ジクロロトルエンの6種の
異性体が存在する。
Nuclear substituted chlorinated toluene is an industrially important compound, and is used as a raw material for pharmaceuticals and agricultural chemicals. Especially MCT
Alternatively, dichlorotoluene (hereinafter abbreviated as DCT) is useful, and MCT includes three isomers of orthochlorotoluene, metachlorotoluene, and parachlorotoluene.
Has 2,3-dichlorotoluene 2,4-dichlorotoluene,
2,5-dichlorotoluene, 2,6-dichlorotoluene, 3,4
There are six isomers: -dichlorotoluene, 3,5-dichlorotoluene.

〔従来の技術〕[Conventional technology]

従来、核置換塩素化オルエンは、塩化第二鉄等のフリ
ーデルクラフト型触媒を用い、TOLを塩素化して製造し
ている。
Conventionally, nuclear-substituted chlorinated orenes have been produced by chlorinating TOL using a Friedel-craft type catalyst such as ferric chloride.

一般に、塩化第二鉄を触媒とする反応では、トリクロ
ロトルエン等の高次核置換塩素化トルエンの副生が多
く、工業的に有用であるMCT、DCTの収率の低下の原因と
なっている。また、この触媒は反応生成物に均一に溶解
するため、反応生成物から触媒を除去するための水洗工
程、水洗後の反応生成物の脱水工程が必要であり、更に
水洗工程において触媒が水和物となるため、触媒の再利
用が不可能となる等の問題があり、操作が複雑で、経済
的に不利であった。
In general, in reactions using ferric chloride as a catalyst, there are many by-products of higher nucleus-substituted chlorinated toluene such as trichlorotoluene, which causes a decrease in the yield of industrially useful MCT and DCT. . Further, since this catalyst is uniformly dissolved in the reaction product, a water washing step for removing the catalyst from the reaction product and a dehydration step of the reaction product after the water washing are necessary. Therefore, there is a problem that the catalyst cannot be reused, and the operation is complicated, which is economically disadvantageous.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明者らは、高次核置換塩素化トルエンの生成を抑
制し、MCT、DCTの収率を実質的に高め、更に触媒が反応
生成物に溶解せず、目的物の取得が効率的で経済的な核
置換塩素化トルエンの製造方法について鋭意研究した結
果、本発明を完成した。
The present inventors have suppressed the production of higher-order nuclear-substituted chlorinated toluene, substantially increased the yield of MCT and DCT, and furthermore, the catalyst was not dissolved in the reaction product, and the target product was obtained efficiently. The present invention has been completed as a result of intensive studies on an economical method for producing a nuclear-substituted chlorinated toluene.

ロ)発明の構成 〔課題を解決するための手段〕 本発明はTOLおよび/またはMCTを塩素化して核置換塩
素化トルエンを製造するに際し、触媒として活性アルミ
ナを用い、液相で塩素化させることを特徴とする核置換
塩素化トルエンの製造方法である。
B) Configuration of the Invention [Means for Solving the Problems] In the present invention, in producing nucleus-substituted chlorinated toluene by chlorinating TOL and / or MCT, chlorination in the liquid phase is performed using activated alumina as a catalyst. A process for producing nuclear-substituted chlorinated toluene characterized by the following.

本発明において、触媒として使用する活性アルミナ
は、α−アルミナを除く、準安定アルミナを指定し、一
般的には、γ−、δ−、η−、θ−、κ−、ρ−、χ−
アルミナなどが該当し、これらの混合物であっても構わ
ない。
In the present invention, the activated alumina used as a catalyst designates metastable alumina excluding α-alumina, and is generally γ-, δ-, η-, θ-, κ-, ρ-, χ-.
Alumina and the like are applicable, and a mixture thereof may be used.

触媒の形状は反応の方式によって任意に選択すること
ができる。粉末状、顆粒状、球状、筒状、環状等の形状
の触媒が使用可能である。活性アルミナの形状及び大き
さは反応結果に本質的な影響を余り与えない。
The shape of the catalyst can be arbitrarily selected depending on the reaction system. Catalysts in the form of powder, granules, spheres, cylinders, rings, etc. can be used. The shape and size of the activated alumina do not significantly affect the reaction results.

本発明の反応は液相反応であり、回分式および連続式
のいずれの方法でも行うことが出来る。回分式では、例
えば、触媒をTOLまたはMCTに懸濁させ、塩素ガスを供給
することにより実施できる。連続式反応は、例えば、触
媒を充填した反応塔にTOLまたはMCTおよび塩素を流通さ
せることにより実施できる。塩素は窒素等の不活性ガス
で希釈して用いてもよい。
The reaction of the present invention is a liquid phase reaction, and can be performed by either a batch system or a continuous system. The batch system can be carried out, for example, by suspending the catalyst in TOL or MCT and supplying chlorine gas. The continuous reaction can be carried out, for example, by flowing TOL or MCT and chlorine through a reaction column filled with a catalyst. Chlorine may be diluted with an inert gas such as nitrogen before use.

塩素の反応系への供給割合は、反応温度、TOLまたはM
CTと触媒の比率などによって最適範囲が決定されるが、
0.001〜1mol/g−cat・hrが好ましく、更に好ましい割合
は、0.01〜0.1mol/g−cat・hrである。0.001mol/g−cat
・hr未満では、塩素転化率は100%となるが、工業的見
地からすると非能率的であり、所要の生産量を得ようと
すれば、装置が大型となるので好ましいとはいえない。
又、1mol/g−cat・hrを超えると、未反応塩素が増加
し、廃液処理費用も嵩み、経済的とはいえない。
The supply rate of chlorine to the reaction system depends on the reaction temperature, TOL or M
The optimum range is determined by the ratio of CT and catalyst, etc.
0.001 to 1 mol / g-cat · hr is preferable, and a more preferable ratio is 0.01 to 0.1 mol / g-cat · hr. 0.001mol / g-cat
If it is less than hr, the chlorine conversion is 100%, but it is inefficient from an industrial point of view, and it is not preferable to obtain a required production amount because the apparatus becomes large in size.
On the other hand, if it exceeds 1 mol / g-cat · hr, unreacted chlorine increases and waste liquid treatment cost increases, which is not economical.

原料であるTOLまたはMCTの反応系への供給量は、回分
式の場合は活性アルミナ1.0gr当り、0.05〜10molが好ま
しく、更に好ましい上限値は1molである。0.05mol未満
では、使用触媒量に比較して原料供給量が少ないため非
能率的であり、10molを超えると、触媒の負荷が大きく
なり、十分な塩素転化率が得られない。連続式による場
合のTOLまたはMCTの供給量は、好ましくは0.001〜1mol/
g−cat・hr、更に好ましくは0.01〜0.1mol/g−cat・hr
である。0.001mol/g−cat・hr未満では、回分式同様、
非能率的であり、1mol/g−cat・hrを超えると、触媒の
負荷が大きくなり、十分な塩素転化率が得られない。
In the case of a batch type, the supply amount of TOL or MCT as a raw material to the reaction system is preferably 0.05 to 10 mol, and more preferably 1 mol, per 1.0 gr of activated alumina. If the amount is less than 0.05 mol, the amount of the raw material supplied is small compared to the amount of the used catalyst, so that it is inefficient. The supply amount of TOL or MCT in the case of the continuous method is preferably 0.001 to 1 mol /
g-cathr, more preferably 0.01 to 0.1 mol / g-cathr
It is. If less than 0.001 mol / g-cat
When it is inefficient and exceeds 1 mol / g-cat · hr, the load on the catalyst increases, and a sufficient chlorine conversion cannot be obtained.

本発明における塩素の、TOLまたはMCTに対する供給割
合は、対象目的物によって適宜選択すればよいが、例え
ばTOLを出発原料としてMCTまたはDCTを製造する場合
は、TOL1molに対して化学量論量の60〜80mol%程度とす
ればよく、MCTを出発原料としてDCTを製造する場合は、
MCT1molに対して化学量論量の40〜70mol%程度とすれば
よい。
In the present invention, the supply ratio of chlorine to TOL or MCT may be appropriately selected depending on the target object.For example, when producing MCT or DCT using TOL as a starting material, a stoichiometric amount of 60 mol to 1 mol of TOL is used. About 80 mol%, and when DCT is produced using MCT as a starting material,
The stoichiometric amount may be about 40 to 70 mol% based on 1 mol of MCT.

反応温度は、TOLまたはMCT反応液の融点から沸点まで
であるが、20〜80℃が好ましい。20℃未満で塩素化を続
けると反応液が凝固する恐れがあり、十分な塩素転化率
が得られず、80℃を超えると塩化ベンジル等の側鎖塩化
物が副生し易くなり、核置換塩素化トルエンの選択率の
低下につながり、好ましくない。
The reaction temperature is from the melting point to the boiling point of the TOL or MCT reaction solution, but is preferably from 20 to 80 ° C. If the chlorination is continued at less than 20 ° C, the reaction solution may coagulate, and a sufficient chlorine conversion rate cannot be obtained.If the temperature exceeds 80 ° C, side chain chlorides such as benzyl chloride tend to be produced as by-products, resulting in nuclear substitution. This leads to a decrease in the selectivity of chlorinated toluene, which is not preferable.

本発明反応においては、触媒が反応液に溶解しない不
均一系で進行するため、通常の固液分離手段で触媒を分
離することができ、また反応生成物は溶解塩素、塩化水
素を含有するのみであり、ストリップ等の操作により反
応生成物から塩素、塩化水素の除去を行えば良く、従
来、実施されていた触媒分離のための水洗等の手段を特
に必要とせず、分離精製手段としては分留及び晶析ある
いは吸着分離等を用いればよい。
In the reaction of the present invention, since the catalyst proceeds in a heterogeneous system in which the catalyst does not dissolve in the reaction solution, the catalyst can be separated by ordinary solid-liquid separation means, and the reaction product contains only dissolved chlorine and hydrogen chloride. It is sufficient to remove chlorine and hydrogen chloride from the reaction product by an operation of a strip or the like, and there is no particular need for a conventional means such as washing with water for catalyst separation. Distillation and crystallization or adsorption separation may be used.

〔実施例および比較例〕[Examples and Comparative Examples]

以下、実施例および比較例にもとづいて本発明を具体
的に説明する。
Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples.

実施例1〜2、比較例1 冷却管、温度計、撹拌器、ガス吹き込み管を備えたフ
ラスコに第一表記載の原料(2.0mol)および触媒(10.0
g)を仕込み、50℃に昇温した。続いて塩素ガスを0.5mo
l/hrの速度で6時間または2時間導入し、未反応塩素量
を分析した。反応後、得られた反応混合物をガスクロマ
トグラフにて分析した。その結果を第一表に示す。
Examples 1 and 2 and Comparative Example 1 In a flask equipped with a cooling pipe, a thermometer, a stirrer, and a gas blowing pipe, the raw materials (2.0 mol) and the catalyst (10.0) described in Table 1 were added.
g) and heated to 50 ° C. Then, add 0.5mo of chlorine gas.
It was introduced at a rate of l / hr for 6 hours or 2 hours, and the amount of unreacted chlorine was analyzed. After the reaction, the obtained reaction mixture was analyzed by gas chromatography. The results are shown in Table 1.

塩素転化率は次式で定義される値である。 The chlorine conversion is a value defined by the following equation.

ハ)発明の効果 本発明によれば、高次核置換塩素化物の生成が極めて
少ないので、有用な核置換塩素化トルエンであるMCTお
よびDCTの収率が実質的に高く、更に触媒が反応生成物
に溶解せず、反応生成物の後処理操作が極めて簡単であ
り、本発明は工業的に非常に有利な核置換塩素化トルエ
ンの製造方法である。
C) Effects of the Invention According to the present invention, the production of high-order nuclear-substituted chlorinated products is extremely small, so that the yields of useful nuclear-substituted chlorinated toluene, MCT and DCT, are substantially high, and further, the catalyst is produced by reaction. The present invention is a very industrially advantageous method for producing a nucleus-substituted chlorinated toluene, which does not dissolve in a product and the post-treatment operation of the reaction product is extremely simple.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】トルエンおよび/またはモノクロロトルエ
ンを塩素化し、核置換塩素化トルエンを製造するに際
し、触媒として活性アルミナを用い、液相で塩素化する
ことを特徴とする核置換塩素化トルエンの製造方法。
1. A method for producing a nucleus-substituted chlorinated toluene, comprising chlorinating toluene and / or monochlorotoluene to produce a nucleus-substituted chlorinated toluene by using active alumina as a catalyst and chlorinating in a liquid phase. Method.
JP2334980A 1990-11-30 1990-11-30 Method for producing nuclear-substituted chlorinated toluene Expired - Fee Related JP2738152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2334980A JP2738152B2 (en) 1990-11-30 1990-11-30 Method for producing nuclear-substituted chlorinated toluene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2334980A JP2738152B2 (en) 1990-11-30 1990-11-30 Method for producing nuclear-substituted chlorinated toluene

Publications (2)

Publication Number Publication Date
JPH04208238A JPH04208238A (en) 1992-07-29
JP2738152B2 true JP2738152B2 (en) 1998-04-08

Family

ID=18283380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2334980A Expired - Fee Related JP2738152B2 (en) 1990-11-30 1990-11-30 Method for producing nuclear-substituted chlorinated toluene

Country Status (1)

Country Link
JP (1) JP2738152B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102603469A (en) * 2012-02-21 2012-07-25 南通市东昌化工有限公司 Production method of ortho-chlorotoluene

Also Published As

Publication number Publication date
JPH04208238A (en) 1992-07-29

Similar Documents

Publication Publication Date Title
JPS5814418B2 (en) Production method of benzoyl chloride
JP2738152B2 (en) Method for producing nuclear-substituted chlorinated toluene
JP3203067B2 (en) Method for producing 2,4-dichlorofluorobenzene
JPH07110827B2 (en) Method for producing tetrabromobisphenol A
JP3572619B2 (en) Method for producing difluoromethane
KR101123148B1 (en) Method of preparing iodinated aromatic compounds
JPH069535A (en) Production of 2,4,5-trifluorobenzonitrile
US5872291A (en) Process for producing benzoyl chlorides
US5055624A (en) Synthesis of 1,1-dichloro-1,2,2,2-tetrafluoroethane
US4089909A (en) Separation of dichlorobenzene isomers
JP2518095B2 (en) Method for producing dichlorobenzene
JP4665309B2 (en) Method for producing high purity 3-chloro-1-propanol
US6124512A (en) Ring halogenation of aromatic compounds
JPH0193550A (en) Production of dichlorobenzene
JP5307149B2 (en) Process for producing iodinated aromatic compounds
JPH04208237A (en) Production of nucleus-substituted chlorinated toluene
JPH10287609A (en) Production of 3,3-dichloro-1,1,1-trifluoroacetone
JPH04305544A (en) Method of preparing paradichlorobenzene
JP2739768B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JPH09316028A (en) Production of high-purity orthoformylbenzoic acid
JPH0258255B2 (en)
JP4731062B2 (en) Method for chlorinating alkyl aromatic hydrocarbons
JPH0420413B2 (en)
JP2000159700A (en) Production of bisdifluoromethylbenzene
JPS62221640A (en) Production of p-bromofluorobenzene

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees