JPH0420696B2 - - Google Patents

Info

Publication number
JPH0420696B2
JPH0420696B2 JP61136276A JP13627686A JPH0420696B2 JP H0420696 B2 JPH0420696 B2 JP H0420696B2 JP 61136276 A JP61136276 A JP 61136276A JP 13627686 A JP13627686 A JP 13627686A JP H0420696 B2 JPH0420696 B2 JP H0420696B2
Authority
JP
Japan
Prior art keywords
segregation
center
reduction
slab
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61136276A
Other languages
Japanese (ja)
Other versions
JPS62275556A (en
Inventor
Shigeaki Ogibayashi
Mamoru Yamada
Tatsuo Mukai
Makoto Tefun
Masazumi Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to US06/892,075 priority Critical patent/US4687047A/en
Priority to EP86110690A priority patent/EP0211422B2/en
Priority to ES8601468A priority patent/ES2001615A6/en
Priority to DE8686110690T priority patent/DE3676753D1/en
Priority to CA000515167A priority patent/CA1279462C/en
Priority to AU60791/86A priority patent/AU571787B2/en
Publication of JPS62275556A publication Critical patent/JPS62275556A/en
Publication of JPH0420696B2 publication Critical patent/JPH0420696B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は連続鋳造鋳片の厚み中心部にみられる
不純物元素、即ち鋼鋳片の場合には硫黄、燐、マ
ンガン等の偏析を防止し均質な金属を得ることの
できる連続鋳造方法に関するものである。 (従来の技術) 近年、海洋構造物、貯槽、石油およびガス運搬
用鋼管、高張力線材などの材質特性に対する要求
は厳しさを増しており、均質な鋼材を提供するこ
とが重要課題となつている。元来鋼材は、断面内
において均質であるべきものであるが、鋼は一般
に硫黄、燐、マンガン等の不純物元素を含有して
おり、これら鋳造過程において偏析し部分的に濃
化するため鋼が脆弱となる。特に近年生産性や歩
留の向上及び省エネルギー等の目的のために連続
鋳造法が一般に普及しているが、連続鋳造により
得られる鋳片の厚み中心部には通常顕著な成分偏
析が観察される。こうした成分偏析は最終製品の
均質性を著しく損ない、製品の使用過程や線材の
線引き工程等で鋼に作用する応力により亀裂が発
生するなど重大欠陥の原因になるため、その低減
が切望されている。かかる成分偏析は凝固末期に
残溶鋼が凝固収縮力等によつて流動し、固液界面
近傍の濃化溶鋼を洗い出し、残溶鋼が累進的に濃
化していくことによつて生じる。従つて成分偏析
を防止するには、残溶鋼の流動原因を取り除くこ
とが肝要である。かかる溶鋼流動原因としては、
凝固収縮に起因する流動のほか、ロール間の鋳片
バルジングやロールアライメント不整に起因する
流動等があるが、これらの内最も重大な原因は凝
固収縮であり、偏析を防止するには、これを補償
する量だけ鋳片を圧下することが必要である。 鋳片を圧下することにより偏析を改善する試み
は古くからなされており、例えば特公昭59−
16862号公報に記載されているように、連続鋳造
工程において鋳片中心部温度が液相線温度から固
相線温度に至るまでの間鋳片を凝固収縮を補償す
る量以上の一定の割合で圧下する方法が知られて
いる。 しかしながら、この場合、条件によつて偏析改
善効果が殆ど認められなかつたり、場合によつて
は、偏析がかえつて悪化する等の問題があり、成
分偏析を充分に改善することは困難であつた。 本発明者らはかかる従来法の問題の発生原因に
ついて種々調査した結果、従来法の場合に偏析改
善効果が認められなかつたり、あるいは偏析がか
えつて悪化することが起こるのは、基本的に圧下
すべき凝固時期とその範囲が不適正であることに
起因しており、次の三つの事実が考慮されていな
かつた点にあることを知見した。その一つはロー
ルアライメントの不整、ロール曲り等の機械的要
因によつて偏析が悪化し、かつその悪影響は圧下
量が大きいほど顕著となることである。鋳片を圧
下することによる偏析改善効果は、凝固収縮補償
による偏析改善効果と機械的要因による偏析悪化
による逆効果の差として得られ、機械的要因が大
きい場合にはその悪影響が凝固収縮補償による偏
析改善効果を上回り、かえつて偏析が悪化するこ
とが起こる。二つ目の事実は圧下すべき量であ
る。圧下量は凝固収縮を過不足なく補償する量で
なければならず、この値を超える圧下を加えると
偏析は再び悪化する。もう一つの事実は線状偏析
に関するものである。線状偏析とは、鋳片を鋳造
方向に平行に切断した断面でみた時に、鋳片厚み
方向中心部の高濃度部分が鋳造方向に細く連続し
た形態の偏析であつて、これを鋳片広幅面に平行
な面で観察すると偏析部が網目状に連なつてい
る。線状偏析は圧延後の製品においても残存し、
連続した高濃度部分が亀裂の優先的伝播経路とな
るため製品を脆弱にする。線状偏析は凝固末期に
過度に鋳片を圧下した場合に発生する偏析形態で
あり、軽圧下による偏析改善効果を発揮するには
偏析形態が線状となるのを避け、分散したスポツ
ト状の形態としなければならない。 (発明が解決しようとする課題) 本発明の目的は従来法のかかる問題点を解消
し、均質な鋼材を得るための連続鋳造方法を提供
するにある。 (課題を解決するための手段) 本発明の要旨とするところは下記のとおりであ
る。 鋳片を連続的に引き抜く溶融金属の連続鋳造に
おいて、鋳片の中心部が固相率0.1ないし0.3とな
る時点から流動限界固相率となる時点までの領域
を0.5mm/分以上2.5mm/分未満の割合で未凝固鋳
片を連続的に圧下し、それ以降、鋳片中心部が固
相線温度となるまでの領域は圧下を加えないこと
を特徴とする連続鋳造方法。 以下、本発明を更に詳述する。 中心偏析のない鋳片を得るための手段として前
記特公昭59−16862号公報に開示されているよう
な軽圧下法は有効な方策ではあるが、本発明者ら
の知見によれば、軽圧下法において極めて重要な
ことは、その圧下すべき領域である。すなわち、
中心偏析を低減するには、鋳片厚み中心部が、固
相率0.1ないし0.3となる時点から流動限界固相率
となる時点までの領域(以後、この領域をステー
ジ−2と称す)で凝固収縮を過不足なく補償す
るように連続的に鋳片を圧下することが重要であ
る。 ここで、鋳片中心部の固相率とは、鋳片断面内
中心における固相と液相の総量に対する固相の体
積割合であり、流動限界固相率とは、溶鋼が流動
し得る上限の固相率であつて、固相率0.6ないし
0.9の値である。 中心偏析は固液共存域内、すなわち鋳片中心部
が液相線温度となる時点から固相線温度となる時
点の間の領域内での溶鋼流動によつて生じるもの
であるが、本発明者らの知見によれば、鋳片に圧
下を加えることによる偏析改善効果は中心部固相
率の高い下流域で大きく、上流域では小さい。何
故ならは、下流側での凝固収縮を補うため上流側
から供給される溶鋼は鋳片厚み方向では、最も流
動抵抗の小さい厚み中心付近の溶鋼が主体となる
が、厚み中心付近の溶鋼の濃度は中心部固相率が
増大するにつれて高くなので、下流域ほど高濃度
の溶鋼が最終凝固部へ吸引され中心偏析への悪影
響が大きいからである。逆に上流域では中心部溶
鋼の濃度が低いため溶鋼流動による中心偏析への
影響は小さく、言いかえれば圧下による偏析改善
効果が小さい。 ところで本発明者らは、工業的規模の連鋳機に
より圧下ロール本数、圧下範囲、及び圧下開始時
期を種々変更した数多くの実験から次の事実を見
出した。すなわち、一般に連続鋳造機の互いに対
をなす上、下ロールの間のロール間隔は設定値に
対して鋳造中は多少のずれを生じる(このずれを
以後動的アライメント不整と呼ぶ)。この動的ア
ライメント不整は、軸受のガタや、鋳片幅方向の
反力の違い、ロールのたわみ、ロールの熱反り等
によつて生じ、ロールが鋳片から受ける反力が大
きいほど、言いかえれば圧下量が大きいほど大き
く、これによつて新たな流動が発生し、偏析を悪
化させる。鋳片を圧下することによる偏析改善効
果は、凝固収縮補償による偏析改善効果と動的ア
ライメント不整を増加させることによる偏析悪化
の逆効果との差として得られる。前者の偏析改善
効果は下流域で大きく、上流域で小さいので、上
流域で圧下した場合、動的アライメント不整によ
る偏析悪化による逆効果が凝固収縮補償による偏
析改善効果を上回り、かえつて偏析が悪化するこ
とが起こる。 本発明者らは数多くの実験から、その境界が、
中心部が固相率0.1ないし0.3となる時点であり、
通常の工業的規模の連鋳機においては、該時点よ
り上流側では鋳片を圧下することにより、中心偏
析がかえつて悪化することがあることを見出し
た。悪化の度合は連鋳機の整備状態が悪く、動的
アライメント不整の程度が著しいほど、また圧下
量が大きいほど顕著となる。すなわち、中心部固
相率が0.1ないし0.3となる時点より上流側で中心
部が液相線温度となる時点より下流側の領域(以
後この領域をステージ−1と称す)では、軽圧
下による中心偏析改善効果が小さく、動的アライ
メント不整を極めて小さく管理していない場合に
は、中心偏析がかえつて悪化することがあるた
め、基本的には圧下を行わなくてもよいが、も
し、圧下する場合には、、圧下量を0.5mm/分未満
とし、これ以上の圧下は避けるべきである。ま
た、通常圧下領域では、圧下反力に耐え得るロー
ル支持構造とする必要があり、設備的にもコスト
高となるため、上記領域を圧下しないことは、設
備費削減という経済効果をもたらすことになる。 鋳片厚み中心部が流動限界固相率となる時点よ
り下流側で中心部が固相線温度となるとなる時点
より上流側の領域(以後この領域をステージと
称す)では厚み中心部にはデンドライト状もしく
は粒状の固相がネツトワーク状に連結して存在
し、未凝固溶鋼は固相で遮られ互いに弧立してい
るため、凝固収縮による溶鋼流動は起り得ず、従
つて圧下する必要はない。一方、この領域で鋳片
に過度の圧下を加えると、中心偏析の形態は製品
特性に対して有害な線状偏析となる。製品特性に
対して最も有利である分散した微細なスポツト状
の偏析形態を得るためには、この領域では圧下を
加えないことが必要である。 以上より、本発明において積極的に圧下すべき
領域は鋳片中心部が固相率0.1ないし0.3となる時
点から流動限界固相率となる時点までの領域とす
る。但し、動的アライメント不整が著しく小さく
圧下による悪影響が殆ど無視できる場合には、ス
テージ−1についても凝固収縮補償のためにス
テージ−2と同程度の圧下を加えて差支えな
い。一方、動的アライメント不整が十分小さく管
理されていない場合には、動的アライメント不整
による偏析悪化の悪影響を少なくするためにステ
ージ−1は圧下量を0.5mm/分未満の範囲内に
とどめる必要がある。また、何れの場合でも、下
流側のステージについては圧下を加えないこと
を原則とする。本発明に係るステージ−1,
−2,の各領域のロール間隔と凝固状態の関係
を第1図に示す。 次に圧下すべき量について説明する。 通常、連鋳鋳片には中心部の偏析のほかに、第
2図に示すようにV状の偏析(V偏析)が見られ
る。このV偏析は凝固収縮によつて生じるもので
あるから、その発生個数を観察することによつ
て、圧下量が凝固収縮量に対して十分か否かを知
ることが出来る。本発明者らは、かかる現象を観
察することにより次の二つの事実を見い出した。
その一つは、圧下量の考え方に関するものであり
凝固収縮量を補償するために重要なのは、ロール
一本あたりの圧下量(単位mm)ではなく、クレー
ターエンド(凝固先端)近傍数mの範囲での平均
的な圧下速度(mm/分)であることを知つた。こ
こで圧下速度とは鋳片上の任意の点が、複数のロ
ールの間を通過する過程で単位時間当り圧下され
る量をいう。実操業におけるロール間隔の設定に
あたつては、上記圧下速度を引抜速度で除した
値、すなわち圧下勾配(単位mm/m)により、鋳
造方向単位長さ当りの圧下量(すなわちロール間
隔絞り込み量)を知ることができる。もう一つの
事実は、凝固収縮を過不足なく補償するための圧
下量(以後調正圧下量と呼ぶ)に関するものであ
る。適正圧下量に対し圧下量が小さすぎると、鋳
造方向に向うV偏析が生じるが圧下量が大きすぎ
ると鋳造方向と逆方向(すなわちメニスカスの方
向)に向うV偏析(以後逆V偏析と称す)が生じ
る。適正圧下量とは、V偏析も逆V偏析も生じな
い圧下量として定義づけられる。適正圧下量は鋳
片の厚み、幅、冷却条件によつて変化し、通常ス
ラブの場合は0.5ないし1.5mm/分、ブルームもし
くはビレツトの場合には1.0mm/分以上2.5mm/分
未満である。 本発明者らは更にセンターポロシテイーについ
ても圧下条件の影響を調査した。その結果センタ
ーポロシテイーはステージ−2で適正圧下を実
施することにより大幅に減少することを見出し
た。ステージで過度の圧下が加わつた場合に
は、センターポロシテイーは更に減少するが、ス
テージで圧下が加わらない場合に比べその差は
小さく、材質改善効果はステージ−2での適正
圧下だけで十分である。 次に本発明を実施例により説明する。 実施例 1 表1の組成を目標成分として、転炉で溶製し
Caをを添加して成分調整した溶鋼を180〜300mm
厚×1580mm幅のスラブ断面サイズで連続鋳造し次
いで厚板に圧延した。 連続鋳造直後の鋳片からサンプルを採取し、V
偏析個数、中心偏析指数、最終凝固部偏析形態を
調査した。また圧延後の厚板からサンプルを採取
し、水素誘起割れ(HIC)テストを実施しHIC割
れ発生率を調査した。その結果を表2にまとめて
示す。なお、中心偏析指数とは、鋼中Mnのレー
ドル分析値を基準としてこの値の1.3倍以上の高
濃度部分(偏析スポツト)の厚みを指数化して示
したもので、この値が大きいほど成分の偏析が大
であることを示している。 連続鋳造にあたり、中心部固相率が0.75となる
時点がロールセグメントの境界にくるように鋳造
速度を0.6〜1.5m/分の範囲内で調整するととも
に、ステージ−1と−2の境界が中心部固相
率0.2となるように伝熱計算により求めステージ
−2の範囲を定めた。なお、ステージ−1及
びステージの範囲も同様に伝熱計算により定め
た。 鋼番A及びBはステージ−2での圧下量を適
正な値とした例、鋼番C〜Eはそれに加えてステ
ージ−1で軽圧下を加えた例、鋼番F〜Kは比
較例を示した。 なお圧下量0とは圧下が加わらないようロール
間隔を鋳造方向に一定に設定することを意味する
もので、鋳片を支持する作用及びバルジングが生
じた場合にはそれを抑える作用を有する。
(Field of Industrial Application) The present invention is aimed at preventing the segregation of impurity elements found in the center of the thickness of continuously cast slabs, such as sulfur, phosphorus, and manganese in the case of steel slabs, and obtaining a homogeneous metal. This relates to a continuous casting method that can be used. (Prior art) In recent years, requirements for material properties for offshore structures, storage tanks, steel pipes for oil and gas transportation, high-tensile wire rods, etc. have become more severe, and providing homogeneous steel materials has become an important issue. There is. Originally, steel should be homogeneous in its cross section, but steel generally contains impurity elements such as sulfur, phosphorus, and manganese, which segregate and become partially concentrated during the casting process. Becomes vulnerable. Particularly in recent years, continuous casting methods have become popular for purposes such as improving productivity and yield and saving energy, but noticeable component segregation is usually observed in the center of the thickness of slabs obtained by continuous casting. . Such component segregation significantly impairs the homogeneity of the final product and causes serious defects such as cracking due to stress acting on the steel during the product usage process and wire drawing process, so there is an urgent need to reduce it. . Such component segregation occurs when the remaining molten steel flows at the final stage of solidification due to solidification contraction force, washes out the concentrated molten steel near the solid-liquid interface, and the remaining molten steel progressively becomes concentrated. Therefore, in order to prevent component segregation, it is important to eliminate the cause of the flow of residual molten steel. The causes of such molten steel flow are as follows:
In addition to flow caused by solidification shrinkage, there are flows caused by slab bulging between rolls and roll misalignment, but the most important cause of these is solidification shrinkage, and in order to prevent segregation, it is necessary to It is necessary to reduce the slab by a compensating amount. Attempts to improve segregation by rolling down slabs have been made for a long time; for example,
As described in Publication No. 16862, during the continuous casting process, the slab is heated at a constant rate greater than the amount that compensates for solidification shrinkage while the temperature at the center of the slab reaches from the liquidus temperature to the solidus temperature. A method of rolling down is known. However, in this case, there were problems such as hardly any segregation improvement effect being observed depending on the conditions, or in some cases, segregation worsening, and it was difficult to sufficiently improve component segregation. . The present inventors have conducted various investigations into the causes of such problems in the conventional method, and have found that the reason why the conventional method does not have an effect on improving segregation or causes segregation to worsen is basically due to pressure. It was found that this was due to inappropriate coagulation timing and range, and that the following three facts were not taken into consideration. One of these is that segregation is exacerbated by mechanical factors such as irregular roll alignment and roll bending, and the negative effects thereof become more pronounced as the reduction amount increases. The segregation improvement effect of rolling the slab is obtained as the difference between the segregation improvement effect due to solidification shrinkage compensation and the adverse effect due to segregation worsening due to mechanical factors.If the mechanical factor is large, the negative effect is due to solidification shrinkage compensation. This may outweigh the segregation improvement effect and actually worsen the segregation. The second fact is the amount to be reduced. The amount of reduction must be an amount that justly compensates for solidification shrinkage, and if a reduction exceeding this value is applied, segregation will worsen again. Another fact concerns linear segregation. Linear segregation is a type of segregation in which the high-concentration part at the center of the slab in the thickness direction is narrow and continuous in the casting direction when the slab is viewed in a cross section cut parallel to the casting direction. When observed in a plane parallel to the plane, the segregated areas are connected in a network. Linear segregation remains even in products after rolling,
Continuous high concentration areas provide preferential crack propagation routes, making the product brittle. Linear segregation is a form of segregation that occurs when slabs are reduced excessively at the final stage of solidification.In order to achieve the segregation improvement effect of light reduction, the form of segregation should be avoided to become linear, and dispersed spot-like forms should be avoided. It must be in the form. (Problems to be Solved by the Invention) An object of the present invention is to solve the problems of the conventional method and provide a continuous casting method for obtaining a homogeneous steel material. (Means for Solving the Problems) The gist of the present invention is as follows. In continuous casting of molten metal, in which slabs are continuously drawn, the area from the point where the solid phase ratio in the center of the slab reaches 0.1 to 0.3 to the point where the flow limit solid phase rate is reached is 0.5 mm/min or more and 2.5 mm/min. A continuous casting method characterized in that an unsolidified slab is continuously rolled down at a rate of less than 1 minute, and thereafter no reduction is applied in the area until the center of the slab reaches the solidus temperature. The present invention will be explained in more detail below. Although the light reduction method disclosed in the above-mentioned Japanese Patent Publication No. 59-16862 is an effective method for obtaining slabs without center segregation, the light reduction method is effective according to the findings of the present inventors. What is extremely important in law is the area to be covered. That is,
In order to reduce center segregation, the center of the thickness of the slab should solidify in the region from the time when the solid fraction reaches the flow limit solid fraction of 0.1 to 0.3 (hereinafter, this region is referred to as stage-2). It is important to continuously reduce the slab so as to compensate for shrinkage in just the right amount. Here, the solid fraction at the center of the slab is the volume ratio of the solid phase to the total amount of solid phase and liquid phase at the center of the cross section of the slab, and the flow limit solid fraction is the upper limit at which molten steel can flow. The solid phase rate is between 0.6 and 0.6.
The value is 0.9. Center segregation occurs due to the flow of molten steel within the solid-liquid coexistence region, that is, the region between the time when the center of the slab reaches the liquidus temperature and the time when the center reaches the solidus temperature. According to their findings, the segregation improvement effect of applying reduction to slabs is large in the downstream region where the central solid fraction is high, and small in the upstream region. This is because the molten steel supplied from the upstream side to compensate for solidification shrinkage on the downstream side is mainly molten steel near the center of thickness where the flow resistance is lowest in the thickness direction of the slab, but the concentration of molten steel near the center of thickness is This is because the higher the solid fraction in the center increases, the higher the concentration of molten steel in the downstream region is drawn into the final solidification zone, which has a greater adverse effect on center segregation. On the other hand, in the upstream region, the concentration of molten steel in the center is low, so the influence of molten steel flow on center segregation is small, in other words, the effect of reduction on segregation improvement is small. By the way, the present inventors have discovered the following fact from a number of experiments in which the number of rolling rolls, rolling range, and rolling start time were variously changed using an industrial-scale continuous casting machine. That is, generally speaking, the distance between the upper and lower rolls of a continuous casting machine that forms a pair of rolls deviates somewhat from a set value during casting (this deviation is hereinafter referred to as dynamic misalignment). This dynamic misalignment is caused by bearing play, differences in reaction force in the slab width direction, roll deflection, roll heat warping, etc. The larger the amount of reduction, the greater the amount of reduction, which generates new flow and worsens segregation. The effect of improving segregation by rolling down the slab is obtained as the difference between the effect of improving segregation due to solidification shrinkage compensation and the reverse effect of worsening segregation due to increasing dynamic misalignment. The former's segregation improvement effect is large in the downstream region and small in the upstream region, so if the reduction is applied in the upstream region, the adverse effect of worsening segregation due to dynamic misalignment will exceed the segregation improvement effect due to solidification shrinkage compensation, and the segregation will worsen instead. things happen. The inventors have determined from numerous experiments that the boundary is
This is the point at which the solid phase ratio in the center is 0.1 to 0.3,
It has been found that in a normal industrial-scale continuous casting machine, center segregation may be worsened by rolling down the slab upstream from this point. The degree of deterioration becomes more significant as the continuous casting machine is poorly maintained, the degree of dynamic misalignment is significant, and the reduction amount is large. In other words, in the region upstream from the point at which the solid phase ratio in the center reaches 0.1 to 0.3 and downstream from the point at which the center reaches the liquidus temperature (hereinafter this region is referred to as stage-1), the center is heated under light pressure. If the effect of improving segregation is small and the dynamic alignment irregularity is not kept to an extremely small level, center segregation may worsen, so basically there is no need to roll down, but if you do In such cases, the amount of reduction should be less than 0.5 mm/min, and further reduction should be avoided. In addition, in the normal rolling area, it is necessary to have a roll support structure that can withstand the rolling reaction force, which increases equipment costs, so not rolling down the above area has the economic effect of reducing equipment costs. Become. In the region downstream from the point at which the center of the slab thickness reaches the flow limit solidus fraction and upstream from the point at which the center reaches the solidus temperature (hereinafter this region is referred to as the stage), there are dendrites in the center of the thickness. Solid phases in the form of solid or granular shapes exist connected in a network, and the unsolidified molten steel is blocked by the solid phase and stand up from each other, so molten steel flow due to solidification shrinkage cannot occur, and therefore there is no need to reduce the molten steel. do not have. On the other hand, if excessive reduction is applied to the slab in this region, the form of center segregation becomes linear segregation, which is harmful to the product properties. In order to obtain a dispersed, fine, spot-like segregation morphology that is most advantageous for product properties, it is necessary that no reduction be applied in this region. From the above, in the present invention, the region to be actively rolled is defined as the region from the time when the solid fraction at the center of the slab reaches 0.1 to 0.3 to the time when the solid fraction reaches the flow limit. However, if the dynamic misalignment is extremely small and the adverse effects of reduction can be almost ignored, it is acceptable to apply reduction to the same extent as stage-2 for stage-1 in order to compensate for solidification shrinkage. On the other hand, if the dynamic misalignment is not managed to be sufficiently small, it is necessary to keep the rolling reduction amount of stage-1 within a range of less than 0.5 mm/min in order to reduce the negative effect of worsening segregation due to the dynamic misalignment. be. In any case, as a general rule, no reduction should be applied to the downstream stage. Stage-1 according to the present invention,
Figure 1 shows the relationship between the roll spacing and the solidification state in each region of -2. Next, the amount to be reduced will be explained. In addition to segregation in the center, continuous cast slabs usually exhibit V-shaped segregation (V-segregation) as shown in FIG. 2. Since this V segregation is caused by solidification shrinkage, by observing the number of occurrences, it is possible to know whether the reduction amount is sufficient for the solidification shrinkage amount. The present inventors discovered the following two facts by observing such phenomena.
One of these concerns the concept of rolling reduction. What is important in compensating for solidification shrinkage is not the rolling reduction per roll (unit: mm), but the range of several meters near the crater end (solidification tip). I learned that the average rolling speed (mm/min) is The rolling speed here refers to the amount by which a given point on the slab is rolled down per unit time during the process of passing between a plurality of rolls. When setting the roll spacing in actual operation, the reduction amount per unit length in the casting direction (i.e. roll spacing reduction amount) is determined by the value obtained by dividing the above reduction speed by the drawing speed, that is, the reduction gradient (unit: mm/m) ) can be known. Another fact concerns the amount of reduction (hereinafter referred to as the adjustment amount of reduction) to compensate for solidification shrinkage. If the reduction amount is too small compared to the appropriate reduction amount, V segregation will occur toward the casting direction, but if the reduction amount is too large, V segregation will occur in the direction opposite to the casting direction (i.e., the direction of the meniscus) (hereinafter referred to as reverse V segregation). occurs. The appropriate rolling reduction amount is defined as the rolling reduction amount at which neither V segregation nor reverse V segregation occurs. The appropriate reduction amount varies depending on the thickness, width, and cooling conditions of the slab, and is usually 0.5 to 1.5 mm/min for slabs, and 1.0 mm/min or more and less than 2.5 mm/min for blooms or billets. . The present inventors further investigated the influence of rolling conditions on center porosity. As a result, it was found that center porosity can be significantly reduced by applying appropriate pressure reduction in Stage-2. If excessive reduction is applied at the stage, the center porosity will further decrease, but the difference is smaller than when no reduction is applied at the stage, and the appropriate reduction at stage 2 is sufficient to improve the material quality. be. Next, the present invention will be explained by examples. Example 1 Smelting was carried out in a converter using the composition shown in Table 1 as the target component.
180 to 300 mm of molten steel whose composition has been adjusted by adding Ca.
The slab cross-section size was 1580 mm thick and 1580 mm wide, which was continuously cast and then rolled into a thick plate. A sample was taken from the slab immediately after continuous casting, and V
The number of segregated particles, central segregation index, and final solidified zone segregation morphology were investigated. In addition, samples were taken from the rolled plates and subjected to a hydrogen-induced cracking (HIC) test to investigate the HIC cracking incidence. The results are summarized in Table 2. The center segregation index is an index that indicates the thickness of a high concentration area (segregation spot) that is 1.3 times or more of the ladle analysis value of Mn in steel, and the higher the value, the higher the concentration of the component. This shows that segregation is large. During continuous casting, the casting speed is adjusted within the range of 0.6 to 1.5 m/min so that the point at which the solid fraction in the center reaches 0.75 is at the boundary of the roll segment, and the boundary between stages -1 and -2 is at the center. The range of stage-2 was determined by heat transfer calculation so that the partial solid fraction was 0.2. Note that the range of stage-1 and stage was similarly determined by heat transfer calculation. Steel numbers A and B are examples in which the reduction amount at stage-2 was set to an appropriate value, steel numbers C to E are examples in which a light reduction was added in stage-1 in addition to that, and steel numbers F to K are comparative examples. Indicated. Note that the reduction amount of 0 means that the roll interval is set constant in the casting direction so that no reduction is applied, and has the effect of supporting the slab and suppressing bulging if it occurs.

【表】【table】

【表】 表2に示すとおり、本発明に係る鋼番A〜E
は、いずれもV又は逆V偏析が皆無で中心偏析指
数も小さい。又偏析形態は微細スポツト状でHIC
割れ発生率も5%以下と良好な値であつた。 これに対し比較例は、V偏析又は逆V偏析が生
じるか又は偏析形態が有害な粗大スポツト状や線
状を呈し、中心偏析指数も大でHIC割れ発生率も
著しく高い値であつた。 以上のように、本発明は比較例との間に顕著な
差が認められ、本発明の優位性が実証された。 実施例 2 表3の組成を目標成分として、転炉で溶製した
溶鋼を300mm×500mmの断面サイズでブルームに連
続鋳造し、次いで線材に圧延した。前記実施例1
と同様に連続鋳造直後の鋳片からサンプルを採取
し、V偏析個数、中心偏析指数、最終凝固部偏析
形態を調査した。その結果を表4にまとめて示
す。 連続鋳造にあたり、中心部固相率が0.75となる
時点がロールセグメントの境界にくるように鋳造
速度を0.6〜0.9mの/分の範囲内で調整すると共
にステージ−1と−2の境界が中心部固相率
0.2となるように伝熱計算により求めステージ
−2の範囲を定めた。なお、ステージ−1及び
ステージの範囲も同様に伝熱計算により定め
た。 鋼番イ〜ヘは、凝固収縮量を過不足なく補償す
るようにステージ−2での圧下量を適正な値と
したものであり、鋼番ハ〜ヘは更にステージ−
1で軽圧下を加えた例である。鋼番ト〜オは比較
例であつて、鋼番トはステージ−2での圧下量
が過小な例、鋼番チ,リ,ヌはステージ−2で
の圧下量が過大な例で、このうち鋼番リ,ヌはス
テージ−1での圧下量も過大である。鋼番ル,
オはステージ−2での圧下量を0mm/分とした
例で、このうち鋼番オはステージでの圧下量が
過大である。
[Table] As shown in Table 2, steel numbers A to E according to the present invention
All have no V or inverse V segregation and have a small central segregation index. In addition, the segregation morphology is fine spot-like and HIC.
The cracking incidence was also a good value of 5% or less. On the other hand, in the comparative examples, V segregation or inverted V segregation occurred, or the segregation form exhibited harmful coarse spots or lines, the central segregation index was large, and the HIC cracking incidence was extremely high. As described above, a remarkable difference was observed between the present invention and the comparative example, demonstrating the superiority of the present invention. Example 2 Using the composition shown in Table 3 as the target component, molten steel produced in a converter was continuously cast into a bloom with a cross-sectional size of 300 mm x 500 mm, and then rolled into a wire rod. Said Example 1
Similarly, samples were taken from slabs immediately after continuous casting, and the number of V segregation, center segregation index, and final solidified zone segregation morphology were investigated. The results are summarized in Table 4. During continuous casting, the casting speed is adjusted within the range of 0.6 to 0.9 m/min so that the point at which the central solid fraction reaches 0.75 is at the boundary of the roll segment, and the boundary between stages -1 and -2 is at the center. Part solid phase ratio
The range of stage-2 was determined by heat transfer calculation so that the value was 0.2. Note that the range of stage-1 and stage was similarly determined by heat transfer calculation. For steel numbers I to F, the reduction amount in stage-2 was set to an appropriate value so as to compensate for the amount of solidification shrinkage.
This is an example in which light pressure was applied in step 1. Steel numbers T to O are comparative examples; steel number G is an example in which the amount of reduction in stage-2 is too small; Of these, steel numbers I and N had an excessive reduction amount at stage-1. steel number,
E is an example in which the reduction amount at stage-2 is 0 mm/min, and of these, steel No. O has an excessive reduction amount at the stage.

【表】【table】

【表】 表4に示すように、本発明に係る鋼番イ〜ヘ
は、いずれもV又は逆V偏析が皆無で中心偏析指
数も小さい。又偏析形態は微細スポツト状で理想
的なものであつた。 これに対し比較例は、V偏析又は逆V偏析が生
じるか或いは偏析形態が有害な粗大スポツト状や
線状を呈した。 以上のように、本発明は比較例との間に顕著な
差が認められ、ブルームの連続鋳造においてもそ
の優位性が実証された。
[Table] As shown in Table 4, steel numbers A to F according to the present invention all have no V or inverse V segregation and have a small central segregation index. In addition, the segregation morphology was ideal, with fine spots. On the other hand, in the comparative example, V segregation or reverse V segregation occurred, or the segregation form exhibited a harmful coarse spot shape or linear shape. As described above, the present invention was found to be significantly different from the comparative example, and its superiority was also demonstrated in continuous bloom casting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る各凝固ステージ、圧下す
べき量および範囲の関係を示す図、第2図は連続
鋳造鋳片に見られる中心偏析とV偏析の模式図で
ある。
FIG. 1 is a diagram showing the relationship between each solidification stage, the amount and range of reduction to be performed according to the present invention, and FIG. 2 is a schematic diagram of center segregation and V segregation observed in continuously cast slabs.

Claims (1)

【特許請求の範囲】[Claims] 1 鋳片を連続的に引き抜く溶融金属の連続鋳造
において、鋳片の中心部が固相率0.1ないし0.3と
なる時点から流動限界固相率となる時点までの領
域を0.5mm/分以上2.5mm/分未満の割合で未凝固
鋳片を連続的に圧下し、それ以降、鋳片中心部が
固相線温度となるまでの領域は圧下を加えないこ
とを特徴とする連続鋳造方法。
1. In continuous casting of molten metal in which slabs are continuously drawn, the area from the point where the solid phase ratio in the center of the slab reaches 0.1 to 0.3 to the point where the flow limit solid phase rate is reached is 0.5 mm/min or more 2.5 mm. A continuous casting method characterized in that an unsolidified slab is continuously rolled down at a rate of less than 1/min, and thereafter no rolling is applied in the area until the center of the slab reaches a solidus temperature.
JP13627686A 1985-08-03 1986-06-13 Continuous casting method Granted JPS62275556A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US06/892,075 US4687047A (en) 1985-08-03 1986-08-01 Continuous casting method
EP86110690A EP0211422B2 (en) 1985-08-03 1986-08-01 Continuous casting method
ES8601468A ES2001615A6 (en) 1985-08-03 1986-08-01 Continuous casting method.
DE8686110690T DE3676753D1 (en) 1985-08-03 1986-08-01 CONTINUOUS METHOD.
CA000515167A CA1279462C (en) 1985-08-03 1986-08-01 Continuous casting method
AU60791/86A AU571787B2 (en) 1985-08-03 1986-08-01 Continuous casting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60171314A JPS6233048A (en) 1985-08-03 1985-08-03 Continuous casting method
JP60-171315 1985-08-03

Publications (2)

Publication Number Publication Date
JPS62275556A JPS62275556A (en) 1987-11-30
JPH0420696B2 true JPH0420696B2 (en) 1992-04-06

Family

ID=15920959

Family Applications (2)

Application Number Title Priority Date Filing Date
JP60171314A Granted JPS6233048A (en) 1985-08-03 1985-08-03 Continuous casting method
JP13627686A Granted JPS62275556A (en) 1985-08-03 1986-06-13 Continuous casting method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP60171314A Granted JPS6233048A (en) 1985-08-03 1985-08-03 Continuous casting method

Country Status (1)

Country Link
JP (2) JPS6233048A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177269A (en) * 1997-09-10 1999-03-23 Kobe Steel Ltd Continuous casting method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669606B2 (en) * 1989-05-16 1994-09-07 新日本製鐵株式会社 Continuous casting method
JPH078421B2 (en) * 1989-08-31 1995-02-01 新日本製鐵株式会社 Continuous casting method
JPH0710428B2 (en) * 1990-03-29 1995-02-08 新日本製鐵株式会社 Continuous casting method
JP2530522B2 (en) * 1991-03-08 1996-09-04 新日本製鐵株式会社 Continuous casting method
JP2561180B2 (en) * 1991-04-09 1996-12-04 新日本製鐵株式会社 Continuous casting method
JP4508087B2 (en) * 2005-11-17 2010-07-21 住友金属工業株式会社 Continuous casting method and continuous cast slab
JP5600929B2 (en) * 2008-12-10 2014-10-08 Jfeスチール株式会社 Manufacturing method of continuous cast slab
JP5907334B2 (en) * 2011-09-05 2016-04-26 Jfeスチール株式会社 Continuous casting method for cast slabs
JP5811820B2 (en) * 2011-12-09 2015-11-11 新日鐵住金株式会社 Casting method of slab
KR101930660B1 (en) 2014-12-24 2018-12-18 제이에프이 스틸 가부시키가이샤 Continuous steel casting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107831A (en) * 1978-02-13 1979-08-24 Nippon Kokan Kk Continuous steel casting
JPS5762804A (en) * 1980-09-30 1982-04-16 Nippon Kokan Kk <Nkk> Continuous casting method for cast steel ingot having excellent sour resisting characteristic
JPS5916862A (en) * 1982-07-20 1984-01-28 Sumitomo Chem Co Ltd Preparation of n-t-butylformamide
JPH036855A (en) * 1989-06-05 1991-01-14 Takehide Shirato Semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594943A (en) * 1982-06-30 1984-01-11 Nippon Kokan Kk <Nkk> Production of continuous casting ingot having no semimacro segregation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107831A (en) * 1978-02-13 1979-08-24 Nippon Kokan Kk Continuous steel casting
JPS5762804A (en) * 1980-09-30 1982-04-16 Nippon Kokan Kk <Nkk> Continuous casting method for cast steel ingot having excellent sour resisting characteristic
JPS5916862A (en) * 1982-07-20 1984-01-28 Sumitomo Chem Co Ltd Preparation of n-t-butylformamide
JPH036855A (en) * 1989-06-05 1991-01-14 Takehide Shirato Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177269A (en) * 1997-09-10 1999-03-23 Kobe Steel Ltd Continuous casting method

Also Published As

Publication number Publication date
JPH036855B2 (en) 1991-01-31
JPS6233048A (en) 1987-02-13
JPS62275556A (en) 1987-11-30

Similar Documents

Publication Publication Date Title
JPH0420696B2 (en)
JPH038864B2 (en)
JPH09285856A (en) Continuous casting method
US4687047A (en) Continuous casting method
JP3427794B2 (en) Continuous casting method
JP7047495B2 (en) Continuous casting method of slabs
JPH0422664B2 (en)
JPH038863B2 (en)
JPH0530548B2 (en)
JPH0628789B2 (en) Continuous casting method
JP5012294B2 (en) Steel continuous casting method
JP7273307B2 (en) Steel continuous casting method
JPH0390263A (en) Continuous casting method
JPH0573506B2 (en)
JPH03138056A (en) Method for continuously casting steel
JPH0422551A (en) Continuous casting method
JPH0573507B2 (en)
JP2640399B2 (en) Continuous casting method
JPH05245605A (en) Light rolling reduction method in continuous casting
JPH05220554A (en) Continuous casting method
JPH05220560A (en) Continuous casting method
JPH05220558A (en) Continuous casting method
JPH05293618A (en) Continuous casting method
JPH05220556A (en) Continuous casting method
JP2002086253A (en) Secondary cooling method in continuous casting

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term